喹啉方酸菁/TiO_2的制备及其对碱木质素活化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是哈尔滨市科技局科技创新人才研究专项资金(RC2009QN01705-3)和林业公益性行业科研专项经费(20090472)的部分内容。
     针对工业木质素具有甲氧基含量高、化学反应活性低的缺点,依据光电转化原理提高TiO2可见光催化性能,本论文制备了可以响应可见光激发的喹啉方酸菁/TiO2复合催化剂。与一般的可见光响应/TiO2复合催化剂比较,喹啉方酸菁/TiO2复合催化剂具有催化条件温和、可见光响应范围广、负载方法简单、成本低的优点。在可见光激发条件下,喹啉方酸菁/TiO2增加了碱木质素的羟基、羰基和羧基等活性基团并保留碱木质素的苯环结构。本文研究了喹啉方酸菁/TiO2催化剂的制备方法及表征、喹啉方酸菁/TiO2催化剂的性能评价及其对碱木质素的活化机制。
     合成了二羟基-喹啉方酸菁和二甲醚-喹啉方酸菁2种可见光敏化剂。结果表明,二羟基-喹啉方酸菁易溶于水,得率87.05%、纯度为98.6%;分子量为1063.2(三聚体),化学式为C72H50N6O4。二甲醚-喹啉方酸菁难溶于水,得率66.07%,纯度为99.6%;分子量为394.5,化学式为C26H22N2O2。在380nm~800nm响应区间,2种喹啉方酸菁可见光的吸收性能显著高于TiO2。
     制备了响应可见光激发的喹啉方酸菁/TiO2复合催化剂。以浸渍法和烧结法分别将二羟基-喹啉方酸菁和二甲醚-喹啉方酸菁负载于纳米TiO2表面制备了2种喹啉方酸菁/TiO2催化剂;结果表明,二羟基-喹啉方酸菁催化剂对气体苯的催化呈一级反应。二甲醚-喹啉方酸菁/TiO2在反应初期对气体苯的催化呈一级反应。喹啉方酸菁/TiO2在活化过程中可生成具有催化活性的超氧自由基、单线态氧、羟基自由基,证实光电转化原理可以应用于提高TiO2可见光催化性能的研究。
     研究了喹啉方酸菁/TiO2-可见光催化剂对碱木质素的活化作用和活化机制。考察了活化碱木质素的抗氧化性和吸附性能;探讨了喹啉方酸菁/TiO2-可见光协同技术对碱木质素的活化机制。结果表明,活化后的碱木质素总羟基含量为9.4%,较碱木质素提高18%。在酸性环境下pH=5时活化碱木质素的溶解度是碱木质素的16.32倍。活化碱木质素降解液对[DPPH"]和[O2-·]的清除率均能达到常见抗氧化剂BHT自由基清除率的80%以上。活化木质素进行Cu2+的吸附性能测定优于碱木质素,吸附量为6.65mg/g,碱木质素对Cu2+的吸附量为3.28mg/g。
     综上,本论文证实光电转化原理可以应用于提高TiO2可见光催化性能的研究。喹啉方酸菁/TiO2-可见光协同技术对碱木质素的活化效果较好。喹啉方酸菁/TiO2活化碱木质素的研究为提高碱木质素反应活性提供了一种新方法。
The study was supported by forestry industry research special funds for public welfare projects(No.20090472) and special Fund Project for Science and Technology Innovation of Harbin (No. RC2009QN01705-3).
     For industrial lignin have shortcomings of methoxyl content and lower chemical reactivity,, the aim of paper was looking after a way which could increased the quantity of hydroxyl, carbonyl, carboxyl and kept benzene-ring of alkali lignin. Based on principles of photoelectric conversion, two kinds of quinoline squarylium cyanine/TiO2were prepared. The composite catalysts were increased the quantity of above groups of alkali lignin in visible lilght. There are four sections in the paper that included preparation, characterization, performance evaluation of quinoline squarylium cyanine/TiO2and activation mechanism to alkali lignin.
     Two kinds of quinoline squarylium cyanine were synthesized. QSC-(OH)2squarylium cyanine is soluble in water, yield87.05%, purity98.6%, molecular weight of1063.2(trimer) and chemical formula C72H50N6O4. QSC-(OCH3)2squarylium cyanine is difficulty soluble in water, yield66.07%, a purity of99.6%, molecular weight394.5and chemical formula C26H22N2O2. Response in the380nm-800nm, absorbance capacity of QSC-(OH)2/TiO2is significantly higher than QSC-(OCH3)2/TiO2.
     Two kinds of quinoline squarylium cyanine/TiO2were prepared. Results show that catalyst reaction of QSC-(OH)2/TiO2was order reaction for gas benzene in the whole. But catalyst reaction of QSC-(OCH3)2/TiO2was order reaction for gas benzene in the initial, quinoline squarylium cyanine/TiO2also can generate the superoxide radical, singlet oxygen and hydroxyl radicals. The work confirmed photosensitization/TiO2in gas and liquid systems can improve catalytic properties of TiO2in visible light.
     The activation mechanism of quinoline squarylium cyanine/TiO2to alkali lignin was researched. Anti-oxidation and adsorption properties of activated alkali lignin were investigated. Results show that the total hydroxyl content of activated alkali lignin is9.4%, higher18%than alkali lignin. At pH=5, the solubility of activated alkali lignin was16.32times that of alkali lignin.. The [DPPH·] and[O2-·] radical-scavenging rate of activated alkali lignin and its supernatant liquid could be80%of anti-oxidant BHT. Cu2+adsorption of activated alkali lignin better than alkali lignin, adsorption was6.65mg/g.
     In summary, Photosensitive/TiO2were confirmed to increase the response to visible light of TiO2. Activated technology of visible light assisted quinoline squarylium cyanine/TiO2has better activation. The paper provided a novel approach to improve the reactivity of alkali lignin.
引文
[1]Hyeok Choi, Elias Stathatos, Dionysios D. Dionysiou. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination,2007,202(1-3):199-206.
    [2]曹怡,张建成.光化学技术.北京:化学工业出版社,2004:228.
    [3]M. Gratzel. Dye-sensitized solar cells. J Photochem Photobiol C:Photochem Rev,2003,4: 145-153.
    [4]凡素华,王科志.钌配合物基太阳能电池光敏剂分子设计的最新研究进展.无机化学学报,2008,vol 24(8):1206-1212.
    [5]张力,孙岳明.染料敏化太阳能电池的研究进展.化工时刊,2008,22(10):59-63.
    [6]袁志好,王玉红,孙永昌.太阳光活性的铁酸铝-二氧化钛纳米复合光催化剂.中国科学B辑化学,2005,35(6):471-477.
    [7]孙世国,彭孝军,徐勇前.铼、钉太阳能电池染料稳定性电喷雾质谱研究.大连理工大学学报,2005,45(4):492-495.
    [8]胡燕.Ce掺杂TiO2纳米粒子的制备及其光催化活性.应用化工,2006,35(8):15-17.
    [9]Tianyou Peng, Ke Dai, Huabing Yi, Dingning Ke, Ping Cai, Ling Zan. Photosensitization of different ruthenium (Ⅱ) complex dyes on TiO2 for photocatalytic H2 evolution under visible-light. Chemical Physics Letters,2008,460:216-219.
    [10]Suyoung Hwang, Jung Ho Lee, Chanmoo Park, et al. A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun,2007:4887-4889.
    [11]马毅斌.染料敏化太阳能电池光电极的研究.哈尔滨工业大学硕士.2007:3.
    [12]宋晓睿,王雪松,张宝文.以芳胺为电子给体的D-π-A有机光敏染料——染料敏化太阳电池中的应用.化学进展,2008,vol 20(10):1524-1533.
    [13]李超砚.蒽醌及咔唑系列光敏染料在DSSCs中的应用研究.大连理工大学硕士.2007:7.
    [14]The-Vinh Nguyen, Jeffrey C.S. Wua, Chwei-Huann Chiou. Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalystsunder concentrated natural sunlight. Catalysis Communications,2008,9:2073-2076.
    [15]N.N. Rao, Sangeeta Dube, Manjubala, P. Natarajan. Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/TiO2 catalysts. Applied Catalysis B:Environmental,1994,5(1-2): 33-42.
    [16]孙世国,彭孝军,凡明文等.铼联吡啶系列光敏染料的研究.有机化学,2004,24(8):953-956.
    [17]Haiqiang Wang, Zhongbiao Wu, Yue Liu, Yuejun Wang. Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide. Chemosphere, 2009, vol 74(6):773-778.
    [18]范志云,李爱民,吴林,侯国华,高冠道,陈金龙.金属酞菁可见光催化降解水中污染物研究进展.现代化工,2006,vol 26(10):20-24.
    [19]吴迪,沈珍,薛兆历,游效曾.卟啉类光敏剂在染料敏化太阳能电池中的应用.无机化学学报,2007,vol 23(1):1-14.
    [20]王文珍;廖代正;王耕霖.混配型羧酸钌配合物的合成、结构和性质研究.复旦学报(自然科学版),2003,vol 42(6):897-902.
    [21]O'Regan, Grazel M., Alow Cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature,1991,353:737-740.
    [22]过家好,何晓英,蔡生民,郭敏,陈秀英,彭孝军.两种菁类染料复合敏化Ti02纳米晶电极的光电化学研究.化学学报,2009,vol 67(15):1725-1730.
    [23]Kyung-Jun Hwang, Wang-Geun Shim, Sung-Hoon Jung, Seung-Joon Yoo, Jae-Wook Lee. Analysis of adsorption properties of N719 dye molecules on nanoporous TiO2 surface for dye-sensitized solar cell. Applied Surface Science,2010, vol 256(17):5428-5433.
    [24]Qing Wang, Shaik M. Zakeeruddin, Md. K. Nazeeruddin, Robin Humphry-Baker, and Michael Gratzel. Molecular Wiring of Nanocrystals:NCS-Enhanced Cross-Surface Charge Transfer in Self-Assembled Ru-Complex Monolayer on Mesoscopic Oxide Films. J. Am. Chem. Soc,2006,128 (13):4446-4452.
    [25]Md. K. Nazeeruddin, T. Bessho, Le Cevey, S. Ito, C. Klein, F. De Angelis, S. Fantacci, P. Comte, P. Liska, H. Imai, M. Graetzel. A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell. Journal of Photochemistry and Photobiology A:Chemistry,2007,185:331-337.
    [26]陈文兴,刘凡,吕汪洋,申晓媛,姚玉元,徐敏.温敏性金属酞菁聚合物的制备及光活性.中国科学B辑:化学,2008,vol 38(5):441-448.
    [27]夏道成.新型取代基酞菁与酞菁晶体的合成及光学性质研究.大连理工大学博士学位论文.2008,9:22.
    [28]吴欢文,张宁,钟金莲,洪三国.p-n复合半导体光催化剂研究进展.化工进展,2007,vol 26(12):1669-1674.
    [29]陈松.染料敏化剂在纳米二氧化钛表面单层分散状态的研究.北京化工大学硕士学位论文.2003,12:10.
    [30]孔令义.香豆素化学.北京:化学工业出版社.2009,10:119.
    [31]L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, M. Gratzel, Organic dye for highly efficient solid-state dye-sensitized solar cells, Adv. Mater.,2005(17):813.
    [32]肖星.功能共轭聚合物的合成与自组装.中国科学院化学研究所.博士学位论文.2008:9.
    [33]董春雷.花系染料的合成及其性质表征.黑龙江大学硕士学位论文.2005:25.
    [34]车庆林,彭孝军.方酸菁功能染料及其应用.染料工业,1999,36(2):10-11.
    [35]宋波,张茜,彭孝军.新型水溶性荧光标示剂吲哚方酸菁染料的合成及光谱性能.高等学校化学学报,2008,29(5):932-935.
    [36]R.J. Williams. Comparison of covalent and no covalent labeling with near-infrareddyes for the high performance liquid chromatographic determination of human serum albumin. Anal.Chem,1993,65:601-605.
    [37]李春兰,王兰英,孙国峰.吲哚菁染料的研究进展.有机化学.2006,26(4):442-453.
    [38]何晓晓,陈基耕,王柯敏.吲哚类菁染料Cy3嵌入的核壳荧光纳米颗粒的制备及其性质研究.高等化学学报,2006,27(10):1835-1839.
    [39]蒋松春,范如霖,朱正华.方酸著染料的合成.化学学报,1986,44:1182-1184.
    [40]柯卫军,刘秀芳,徐汉生.冠醚方酸碲碳菁染料的合成研究.高等学校化学学报,1997,18(12):1995-1998.
    [41]薛金萍,刘宏,范长安.四-α-(2-甲基-8-喹啉氧基)酞菁金属配合物的合成、表征及光敏活性研究.化学学报,2007,65(16):1605-1611.
    [42]李晓卉,张宝文,曹怡等.方酸染料与吡唑啉化合物的物化性质及其功能性的研究.感光科学与光化学,2000,18(3):285-286.
    [43]H. Horiuehi, S. Ishibashi, S. Tobita, M. Uehida, M. Sato, K. Toriba, K. Otaguro, H. Hiratsuka. Photodegradation processes of cyanine dyes in the film state induced by Singlet molecular oxygen. Phys.Chem:B,2003, vol 107(31):7739-7746.
    [44]Matsui Masaki, Hashimoto YOshimi, Funabiki Kazumasa, JinJi Ye, Tsukas Yoshida, Hideki Minoura. Application of near-infrared absorbing heptamethine cyanine dyes as sensitizers for zine oxide solar cell. Synthetic Metals,2005,148(2):147-153.
    [45]Stephen R. Davidson, Martin M. Hilchenbach. The use of fluorescent probes in immunochemistry. Photochemistry and photobiology,1990,52(2):431-438.
    [46]黄光团,黄德音,陆明湖.阴离子碳菁染料的合成与聚集动力学研究.感光科学与光化学,1999,vol 17(1):66-72.
    [47]宫永宽,魏永锋,党高潮,吕亚鹏.一种菁染料在溶液中的聚集状态研究.西北大学学报(自然科学版),1997,vol 27(1):49-52.
    [48]周金渭,杨建武,申洁如.外加盐反离子对一种阴离子菁染料的J-聚集效应.感光科学与光化学,1989,vol 1:37-41.
    [49]Kevin D. Belfield, Mykhailo V. Bondar, Florencio E. Hernandez,Olga V. Przhonska, Sheng Yao. Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly. Chemical Physics,2006, vol 320:118-124.
    [50]曾万学,陈萍,郑德水,冈崎庸树,速水正明.多甲川键著染料光氧化机理研究.感光科学与光化学,1995,vol 13(2):136-143.
    [51]赵为,张宝文,曹怡.方酸菁功能材料修饰纳米晶TiO2薄膜电极的光电转换性能研究. 功能材料,1999,30(3):304-306.
    [52]Shanmuga Sakthivel, Horst Kisch. Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. Chem Phys Chem,2003,4:487.
    [53]United States Patent 6699577
    [54]United States Patent 6723381
    [55]United States Patent 5958514
    [56]United States Patent 5616532
    [57]United States Patent 6653356
    [58]United States Patent 6627579
    [59]United States Patent 6537379
    [60]Iqbal Ahmed Siddiquey. Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with poly-diethoxysiloxane. Dyes and Pigments.2008, vol 76:754-759.
    [61]S. Koide, T. Nonami. Disinfecting efficacy of a plastic container covered with photocatalyst for postharvest. Food Control,2007, vol 18:1-4.
    [62]France Busato. Powder and water brone coatings 2000-2010 is past growth sustainable. Quo Vadis-Coatings. Macromolecular Symposia 187, Weinheim:Wiley-VCH VerlagGmbH, 2002.
    [63]任成军,邹涛,陈国强等Pt2Ti02/Ce02-Mn02复合催化剂光热降解气相苯.催化学报,2006,vol 27(12):1048-1050.
    [64]Choi W K, Termin A, Hoffmann M R. The role of metal ion dopants in quantumsized TiO2: correlation between photo reactivity and charge carrier recombination dynamics. Phys Chem.1994, vol 98(5):136-139.
    [65]K. Vinodgopal, Prashant V. Kamat. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films. Environ. Sci. Techno, 1995, vol(29):841-845.
    [66]Asahi R, Morikawa T, Ohwakl T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269.
    [67]Morikawa Takeshi, Asahi R, Ohwaki T, et al. Band-gap narrowing of titanium dioxide by nitrogen doping. Journal of Appl Phys,2001,40(6A):561.
    [68]Shanmuga Sakthivel, Horst Kisch.Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide.Chem Phys Chem,2003,4:487.
    [69]Hiroshi Irie, Yuka Watanabe, Kazuhito Hashimoto. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. Phys Chem:B,2003,107:5483.
    [70]Burda Clemens, Lou Yongbing, Chen Xiaobo, et al. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett,2003,3(8):1049.
    [71]Yin Shu, Zhang Qiwu, Saito Fumio, et al. Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chem Lett.2003,32(4):358.
    [72]孙秀云,李欣,段传玲等.N掺杂可见光化催化剂的研究.无机化学学报,2007,23(3): 517-522.
    [73]LiDi, HajimeHaneda, ShuichiHishita et al. Fluorine doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity. Fluorine Chem,2005, vol 126:69.
    [74]H. Irie, Y. Watanabe, K. Hashimoto. Nitrogen concentration dependence on photoctalytic activity of TiO2xNx powders. Phys Chem:B,2003,107:5483.
    [75]S. Sakthivel, KischHorst. Day light photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed,2003,42:4908.
    [76]T. Umebaysahi, T. Yamaki, S. Tanaka et al. Visible light induced degradation of methylene blue on S-doped TiO2. Chem Lett.2003,32(4):330.
    [77]T. Umebayashi, T. Yamaki, H. Itoh, et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl PhyLett,2002,81(3):454.
    [78]Tomas Johansson, Per Olof Nyman. A cluster of genes encoding major isozymes of lignin peroxidase and manganese peroxidase from the white-rot fungus Trametes versicolor. Gene,1996,170(1):31-38.
    [79]Hiromi Yamashita, Masaru Harada, Junko Misaka. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2. Catalysis Today,2003, vol(84):191-196.
    [80]王娟芸,钟俊波.TiO2/Sr2CeO4苯气相光催化氧化.催化学报.2005,vol 26(3):171-172.
    [81]杨淑蕙等.植物纤维化学(第三版).中国轻工业出版社.2001.
    [82]G. S. Fernando, C. A. M. Laisse, M. L. F. Nelson, et al. Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes. American Chemical Society,2006,45:6627-6631.
    [83]F. Claire, M. alvaro, R. Alirio. Kinetics of Vanillin Production from Kraft Lignin Oxidation. American Chemical Society,1996,35:28-36.
    [84]Xiang Q., Lee Y. Y. Production of Oxy chemicals from Precipitated Hardwood Lignin. Applied Bio-chemistry and Biotechnology,2001,91-93:71-80.
    [85]沈江华,郭元茹,方桂珍等.利用HnXW12O40催化降解碱木质素工艺的研究.中国造纸学报,2009,Vol24,No.4:77-80.
    [86]Villar J.C., CaperosA, Garc 1 a-Ochoa F. Oxidation of hard-wood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Science and Technology,2001,35:245-255.
    [87]蒋挺大.木质素.北京:化学工业出版社.2009,1:83.
    [88]李光壁,王昶,李晨陶,等.木素类模型物紫丁香醇TiO2光催化降解.化学反应工程与工艺,2009,Vol 25,No.3:228-232.
    [89]王昶,李晨陶,贾青竹,等.纳米TiO2光催化降解紫丁香基木素模型物,中国造纸学报.2009,Vol 24,No.3:47-50.
    [90]A. M. Moilanen, T. Lundell, T. Vares, A. Hatakka. Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiate. Applied Microbiology Biotechnology,1996,45: 792-799.
    [91]Xuewei Yang, Fuying Ma, Yelin Zeng, Hongbo Yu, Chunyan Xu, Xiaoyu Zhang. Structure alteration of lignin in corn stover degraded by white-rot fungus Irpex lacteus CD2 International Biodeterioration & Biodegradation,2010,64(2):119-123.
    [92]Richard Liwichi, Alistair Paterson, Malcolm, J. Macdonald, Paul Broda. Phenotypic Classes of Phenoloxidase-Negative Mutants of the Lignin-Degrading Fungus Phanerochaete chrysosporium. Journal of Bacteriology,1985,162(2):641-644.
    [93]Blanchette R.A., Abad A.R., Farrell R.L., Leathers T.D. Detection of Lignin Peroxidase and Xylanase by Immunocytochemical Labeling in Wood Decayed by Basidiomycetes. Applied and Environmental Microbiology,1989,55(6):1457-1465.
    [94]Reetta Haapala, Susan Linko. Production of Phanerochaete Chrysosporium Lignin Peroxidase under Various Culture Conditions. Applied Microbiology Biotechnology,1993, 40:494-498.
    [95]J. S. Yang, H. L. Yuan, H. X Wang, W. X. Chen. Purification and characterization of lignin peroxidases from Penicillium decumbens P6. Journal of Microbiology & Biotechnology, 2005,21:435-440.
    [96]Anne Kantelinen, Annele Hatakka, Liisa Viikari. Production of lignin peroxidase and laccase by Phlebia radiata. Applied Microbiology and Biotechnology,1989,31(3): 234-239.
    [97]M. L. NikuPaavola, E. Karhunen, A. Kantelinenl, L. Viikari, T. Lundell and A. Hatakka. The Effect of Culture Conditions on the Production of Lignin Modifying Enzymes by the White-rot Fungus Phlebia Radiata. Journal of Biotechnology,1990,13:211-221.
    [98]Qiu Weihua, Chen Hongzhang. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin. Bioresource Technology,2008,99:5480-5484.
    [99]方桂珍,李丽英,任世学.钯/炭-Pd/C催化剂对碱木质素的活化作用.中国造纸学报,2004,Vol,29(2):129-133.
    [100]方桂珍,李丽英,叶结旺.Pd/C催化下碱木质素与环己烯的还原反应.中国造纸学报,2005,Vol 30(2):73-76.
    [101]方桂珍,徐凤英,任世学.CuO/C催化还原碱木质素的化学结构特征.中国造纸学报,2007,Vo1.22(1):42-45.
    [102]Knut Lundquist, Gerhard E. Miksche. Nachweis eines neuen verknupfungsprinzips von guajacylpropaneinheiten im fichtenlignin. Tetrahedron Letters,1965,6(25):2131-2136.
    [103]郭伊丽,武书彬,王少光,等.碱木素热解特性的初步研究.中国造纸学报,2007, 22(2):31-34.
    [104]G. S. Fernando, C. A. M. Laisse, M. L. F. Nelson, et al. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chemical Engineering Science,2007,62:5386-5391.
    [105]邢其毅,裴伟伟.有机化学(第三版).北京:高等教育出版社.2005:914.
    [106]王宇鹏.D-π-A结构染料合成与应用.长春理工大学硕士学位论文.2010:14-15.
    [107]程萍,顾明元,金燕苹.TiO2光催化剂可见光化研究进展.化学进展,2005,vol 1(71):9-14.
    [108]王振宇,傅南雁.基于喹啉与苯胺衍生物不对称方酸菁染料的合成与光谱性质.有机化学,2011,vol 31(11):1842-1847.
    [109]李春兰,王兰英,孙国峰,张祖训.吲哚菁染料的研究进展.有机化学,2006,vol26(4):442-453.
    [110]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展.环境科学进展,1997,5(3):1-10.
    [111]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学重的应用(修订版).科学出版社.2001.
    [112]姚超等.硅烷偶联剂对纳米二氧化钛表面改性的研究.无机材料学报,2006,vol21(2):315-321.
    [113]李惠.酞菁钴配合物的性质及其与甲巯咪唑的作用研究.扬州大学硕士学位论文.2007:40.
    [114]王贤亲,张国亮,张凤宝,王燕.空气中苯系物的Ti02光催化降解研究进展.化学研究与应用,2006,vol 18(4):344-348.
    [115]武江波,曾祥英,李桂英,安太成,盛国英,傅家谟.紫外光照射下甲苯光化学降解的初步研究.地球化学,2007,vol 36(3):328-334.
    [116]Xiaojin Xue, Yiming Xu. Selective photooxidation of cyclohexene with molecular oxygen sensitized by palladium phthalocyaninesulfonate. Journal of Molecular Catalysis A:Chemical,2007,276:80-85.
    [117]许宜铭.环境污染物的光催化降解:活性物种与反应机理.化学进展,2009,Vol21(2/3):524-533.
    [118]张前程,张凤宝,张国亮.苯在TiO2上的气相光催化氧化反应历程.催化学报,2004,vol 25(1):39-43.
    [119]丁震,陈晓东,林萍,付德刚,袁春伟.纳米TiO2对气相中甲醛光催化降解的研究.环境科学研究,2006,vol 19(4):74-78.
    [120]孙福侠,吴鸣,王红,王复东,顾婉贞.纳米TiP2光催化降解苯酚的动力学研究.催化学报,1999,vol 20(3):301-304.
    [121]蒋朝俊.光催化降解染料废水的研究.化学工业与技术.2004,vol 25(1):21-24.
    [122]王怡中,胡春.在TiO2光催化剂上苯酚的光催化氧化研究.环境科学学报,1995,vol (4):472-479.
    [123]任世学;方桂珍.超声波处理对麦草碱木质素结构特性的影响.林产化学与工业,2005,Vol 24(S1):82-86.
    [124]任世学,方桂珍.超声波处理对碱木素官能团含量的影响.中国造纸学报,2005,Vol24(4):20-22.
    [125]王昶,李晨陶,李桂菊,等.TiO2光催化降解木质-愈创木酚的研究.杭州:第四届全国化学工程与生物化工年会.浙江大学,2007.
    [126]王昶,李晨陶,贾青竹,等.纳米TiO2光催化降解紫丁香基木质素模型物.中国造纸,2009,vol 24(3):47-51.
    [127]李光壁,王昶,李晨陶等.木质素类模型物紫丁香醇TiO2光催化降解.化学反应工程与工艺,2009,Vol 25(3):228-232.
    [128]詹瑶,詹怀宇,罗小林,等.制浆废液中木质素的氧化降解及小分子降解产物的高值化利用.造纸科学与技,2009,vol 28(5):55-60.
    [129]陈晓华,樊永明,曹春昱,等.醌型木质素模型物的光学特性.物理化学学报,2010,vol 26(1):125-130.
    [130]李辉,李友明.纳米TIO2光催化氧化技术再造纸废水处理中的.中国造纸,2003,vol22(8):45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700