超滤组合工艺除藻效能及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浸没式超滤(SUF)工艺在饮用水处理领域具有非常广阔的应用前景,可以有效地截留水中的颗粒物、藻类、病原微生物等,但对溶解性有机物的去除效果不佳,水中的天然有机物和藻类代谢物还会加重膜的污染。针对SUF工艺存在的问题,本研究构建了粉末活性炭/浸没式超滤一体化工艺(PAC/SUF),研究了该工艺对微污染含藻水中藻类和溶解性有机物的去除效能及影响因素,分析了工艺运行中的膜污染特性,通过在PAC/SUF工艺前设置不同的预处理工艺,考察了不同组合工艺在处理含藻原水时的效能及其适用性。
     PAC/SUF工艺对含藻原水中污染物去除效能的研究结果表明,在运行的前15天期间,氨氮去除效果由9.9%增加至81.5%,并逐渐趋于稳定;PCR-DGGE及测序结果表明,异养菌是PAC/SUF工艺中的优势菌种,去除NH3-N的蓝细菌和硝化螺菌属均有检出,表明PAC/SUF工艺中微生物量在富集,逐步形成了具有生物降解效能的PAC/SUF工艺。在整个运行期间该工艺对UV254、DOC和CODMn的平均去除率分别为32.7%、23.8%和33.2%,比SUF工艺提高了21.2%、8.8%和11.0%,说明PAC/SUF工艺有助于溶解性有机物的去除。对微囊藻毒素(MC-LR)、2-甲基异茨醇(2-MIB)和土臭素(Geosmin)等藻类代谢产物的平均去除率分别为43.0%、53.3%和61.0%,比SUF工艺提高了24.5%、21.8%和25.4%。对PAC/SUF工艺去除溶解性有机物机理的分析认为,超滤膜及其滤饼层的物理截留作用、PAC的吸附作用和生物降解作用是溶解性有机物的去除的三个主要因素。PAC/SUF工艺对嗅味物质的去除作用可分作三个阶段,第Ⅰ阶段平均去除率为70%,粉末活性炭吸附和曝气分别去除了50%和20%;第Ⅱ阶段为吸附、生物降解和曝气三方面均存在的过渡阶段,去除率为40%~60%;第Ⅲ阶段平均去除率为60%,生物降解和曝气分别去除了40%和20%。
     PAC/SUF工艺对芳香族蛋白、溶解性微生物产物(SMPs)和腐殖酸的去除效果明显优于SUF工艺,以PAC作为载体的微生物降解作用使得PAC/SUF工艺的混合液中EPS的类荧光蛋白和SMPs浓度显著低于SUF工艺,表明PAC可以强化SUF工艺对有机物的去除。扫描电子显微镜对膜表面和断面的观察结果表明,PAC/SUF工艺中膜表面的污染物主要由藻细胞、PAC和生物膜组成,比SUF工艺中膜表面的污泥层更为疏松,透水性更好,可以缓解膜污染。激光共聚焦显微镜的观察结果进一步证实了PAC/SUF工艺中膜表面存在由细菌和多糖等物质组成的厚度为20μm左右的生物膜,在一定程度上改善了对溶解性有机物的去除效果。
     针对一体化PAC/SUF工艺出水中MC-LR浓度不达标、2-MIB和Geosmin浓度高于嗅阈浓度以及原水中腐殖酸去除效率较低等问题,在PAC/SUF工艺前采用混凝-沉淀处理工艺以改善MC-LR、2-MIB和Geosmin的去除效果。结果表明,混凝沉淀工艺可以提高PAC/SUF工艺对有机物、MC-LR、2-MIB和Geosmin的去除效果,对芳香族蛋白、SMPs和腐殖酸去除效果的改善缓解了膜污染,但超滤出水中MC-LR、2-MIB和Geosmin仍有超标的现象发生。
     采用混凝-沉淀-砂滤常规工艺改善PAC/SUF工艺去除有机物的结果表明,常规工艺可以进一步强化有机物的去除效果,超滤出水MC-LR达到了《生活饮用水卫生标准(》GB5749-2006)的要求,2-MIB和Geosmin低于嗅阈浓度值10ng/L,其中砂滤对芳香族蛋白、富里酸和SMPs等溶解性有机物的去除效果显著,可更有效地缓解膜污染。采用高锰酸钾及研发的沸石负载高锰酸钾复合预氧化剂可以有效地去除藻类和MC-LR,但预氧化强化的常规工艺尽管可以提高有机物去除率,却不利于后续PAC/SUF工艺对有机物的去除,对MC-LR、2-MIB和Geosmin的总体去除率下降,超滤出水的MC-LR、2-MIB和Geosmin均不能达标。
     对藻类产生的膜污染进行膜清洗的结果显示,物理清洗不能有效清除膜表面的污染物,化学清洗方法中采用0.5g/L的氢氧化钠和0.5%体积浓度的双氧水依次浸泡30min的膜清洗效果最好。EEM分析表明,氢氧化钠可将膜表面附着的类荧光蛋白和溶解性微生物产物(包括多种蛋白和多糖)洗脱下来。原水水质和工艺运行条件均对膜污染有影响,TMP的增长速度与藻细胞浓度和膜通量均成正比,与反洗频率成反比;曝气频率与TMP的增长速度成反比,但影响程度不大,因此在确定PAC/SUF工艺运行条件时,需要综合考虑膜污染、产水量以及能耗等方面因素。
In view of high removal efficiency of the submerged ultrafiltration (SUF)process to particle material, algae cells and pathogenic micro-organisms, this processhas been considered as the core unit of the current and future water treatmentprocesses. Unfortunately, in one hand, the SUF process cannot remove the dissolvedorganic matter (DOM) efficiently; in the other hand, the natural organic matter (NOM)and algogenic organic matter (AOM) in raw water will pollute the membraneseriously. In this thesis, a novelty integrated process of powered activatedcarbon/submerged ultrafiltration (PAC/SUF) has been developed to treatment themicro-polluted algal-rich raw water. The removal efficiency and mechanism of algaecells and DOM by the PAC/SUF were investigated. Meanwhile, the property of themembrane fouling was studied. Furthermore, the PAC/SUF process was hybrided withseries of pretreatment processes according to the characteristics of raw water quality.
     In the first study, the PAC/SUF process was directly used to treatment algal-richraw water. The experimental results indicated that the removal rate of NH3-Nincreased rapidly from9.9%to81.5%within the starting15days, then stabilizedsubsequently; By the PCR-DGGE technology, the bacterial community in the reactorof PAC/SUF was analyzed. It was indicated that heterotrophic bacteria was thedominant species, however, the autotrophic bacteria including Cyanobacteria andNitrospira were also detected, which were responsibility for NH3-N removal. In thewhole running period, the PAC/SUF process could remove DOM efficiently. Theaverage removal rate of UV254, DOC and CODMnwere32.7%,33.8%and33.2%,respectively, which increased by21.2%,8.8%and11.0%compared with the SUFprocess. Specifically for AOM, including MC-LR,2-MIB and Geosmin, the averageremoval rate could reach43.0%,53.3%and61.0%, respectively, which alsosignificantly increased by24.5%,21.8%and25.4%compared with the SUF process.Through a mechanism analysis of DOM removal, it was thinking that the physicalinterception of membrane and the gel layer on the surface of membrane, adsorption ofPAC and biodegradation contributed into the three main sources of DOM removal.Further analysis indicated that during the whole running period the removal of thetaste and odor matter could be divided into three stages. In the first stage, the averageremoval rate reached to70%, in which adsorption of PAC and aeration contributed50%and20%, respectively; In the second stage, the removal was contributed by thecombined action of adsorption, biodegradation and aeration, but the sharp decrease ofadsorption coupled with the immature biological function, led to a lower removal(40%~60%); In the third stage, the removal rate recovered to60%. Although thePAC was almost exhausted, the higher removal efficiency was contributed by the stable biodegradation function (40%) and aeration (20%).
     Three-dimensional fluorescence spectroscopy (EEM) was utilized to analyze themechanism of dissolved organics removal and the characteristics of membranefouling during the running period of the PAC/SUF process. Results showed that thePAC/SUF process could obtain much better removal efficiency of protein-likesubstances, soluble microbial by-products (SMPs) and humic-like substances than theseparate SUF process, which was attributed to PAC adsorption and biodegradation.The SEM was employed to observe the surface and cross-section of membrane. TheSEM photos showed that there was a porous cake layer composed by algal cells, PACand biofilm on the membrane surface in the reactor of PAC/SUF process. By theCLSM analysis, it was confirmed that the biofilm was composed of microbial cellsand polysaccharides. This cake layer was responsibility for the external membranefouling, however, it could refuse the high concentration of DOM in the reactor intothe membrane effluent.
     When the PAC/SUF process was used directly to treatment the algal-rich rawwater, the concentration of MC-LR,2-MIB and Geosmin in the membrane effluentusually can’t meet the Standards for Drinking Water Quality. In view of which,coagulation/sedimentation units were set as the pretreatment process of the PAC/SUFprocess. Results showed that coagulation/sedimentation units could improve organicremoval of the PAC/SUF process, especially for the removal of MC-LR,2-MIB andGeosmin. Additional, increased removal rate of protein-like substances, solublemicrobial by-products (SMPs) and humic-like substances in the raw water couldfurther help to mitigate membrane fouling. However, the concentration ofmicrocystin-LR,2-MIB and Geosmin still could not reach the standard.
     For further improving the running effect of the PAC/SUF process, theconventional water treatment process was utilized as the pretreatment units. Resultsshowed that the conventional treatment process contributed a further improvement onthe organic removal, with concentration of MC-LR,2-MIB and Geosmin in theeffluent meet the demand of Drinking Water Quality. As a result of sharp decrease ofprotein-like substances, soluble microbial by-products (SMPs) and fulvic after sandfiltration, membrane fouling was alleviated effectively. Enhanced coagulation withpotassium permanganate pre-oxidation was utilized to intensify the performance ofconventional pretreatment. Results showed that the pretreatment alleviated thedevelopment of TMP and enhanced the removal of dissolved organic matter. However,a poor organic removal by PAC/SUF was achieved. None of MC-LR,2-MIB andGeosmin in the effluent could reach the Drinking Water Quality. In order to reduce theload of water treatment processes, potassium permanganate loaded zeolite wasdeveloped and added into the algal-rich water as pretreatment, which was proved toremove the algae and the microcystins-LR effectively.
     Control measures on membrane fouling caused by algal-rich water wereinvestigated. Different chemical reagents were used to study the cleaning efficienciesof PVDF membrane after long–term ultrafiltration of algal-rich water. Results showedthat the physical methods could not remove the foulants availably, while the filterperformance of membrane soaked in0.5g/L of NaOH and0.5%of H2O2successivelyexhibited a best recover. SMPs (various protein and polysaccharide included) andprotein-like were redissolved in NaOH. Both of the quality of raw water and fluxexerted obvious influence on the membrane fouling. The growth of TMP wasproportional to either of the concentration of algal cells or the flux, but inverselyproportion to the frequency of air bubbling. However, mitigation of membrane fouling,energy depletion and operating cost should be taken into account comprehensively todetermine the optimal operating parameters.
引文
[1]中华人民共和国环境保护部.2010中国环境状况公报.中华人民共和国环境保护部.2011:3.
    [2]胡鸿钧,魏印心.中国淡水藻类-系统、分类及生态[M].科学出版社.2006.
    [3]常青.水处理絮凝学.北京:化学工艺出版社[M].2003.
    [4]罗晓鸿,周荣.藻类及其分泌物对混凝过程的影响研究[J].环境科学学报,1998,(3):318~324.
    [5] S Kunicane, B Lusse, O Hoyer, et al. Flocculation and filtration of the green algae Chlorella sp.and Dictyosphaerium sp. under selected conditions[J]. Zeitschrift fuer Wasser und AbwasserForschung,1986,19(4):145~151.
    [6] P N Owens, D E Walling. The Phos Phorus content of fluvial sedimentation in rural andindustrialize driver basins[J]. Wat. Res.,2002,36(3):685~701.
    [7] S L Kenefick, S E Hrudey, H G Peterson et a1. Toxin release from M aeruginosa after chemicaltreatment[J]. Wat.Sci.Tech.,1993,27(3~4):433~440.
    [8] M O Skulber, G A Codd. Toxic blue green algae blooms in Europe: a growing problem[J].Ambio,1984,13:244~247.
    [9] G A Codd Cyanobacterial Toxins, the Perception of Water quality and the prioritization ofeutrophication control[J]. Ecol. Eng.2000,16:51~60.
    [10] G A Codd. Cyanobacterial toxins: Occurrence, properties and biological significance[J].Wat.Sci.Tech.1995,32:149~156.
    [11] W W Carmichael. The cyanotoxins.In:J.A.Callow.Advances in Botanical Research[J].Academic Press, London.1997,27:211~256.
    [12] K Sivonen. Cyanobacterial toxins and toxin production[J]. Phycologia,1996,35(6):12~24.
    [13] T N Duy, P K S Lam, G R Shaw. Toxicology and risk assessment of fresh watercyanobacterial (Blue-green algae)toxins in water[J]. Rev.Environ.Contain.Toxico1.2000,163:113~186.
    [14]詹立,张立实,王莉,等.微囊藻毒素Microcystin-LR体外遗传毒性[J].癌变畸变突变,2005,17(3):171~174.
    [15] H Park, M Namikoshi, S M Brittain, et al. Microcystin-LR, a new microcystin isolated fromwaterbloom in a Canadian prairie lake[J]. Toxicon,2001,39:855~862.
    [16]雷腊梅,宋立荣.微囊藻毒素LR对小鼠的急性毒性研究[J].第一军医大学学报,2005,25(5):565~566.
    [17] M F Watanabe, K Tsuji, Y Watanabe, et al. Release of heptapeptide toxin (microcystin) duringthe decomposition process of Microcystisaeruginosa[J]. Nat.Toxins.1992,1(1):48~53.
    [18] H M Oh, S J Lee, J H Kim, et al. Seasonal Variation and indirect monitoring of microcystinconcentrations in daechung reservoir[J]. Appl. Environ. Microbiol.2001,6(4):1484~1489.
    [19] M Jang, H K a, M C Lucas, et al. Change in microcystin production by Microcystisaeruginosa exposed to phytoplanktivorous and omnivorous fish[J]. Aquat. Toxicol.2004,68:51~59.
    [20] C Rivasseau, S Martins, M C Hennion. Determination of some physiochemical parameters ofmicrocystins(cyanbacterial toxins) and trace level analysis in environmental samples usingliquid chromatography[J]. J. Chromatogr.1998,799:155~169.
    [21] A M Dietrich, R C Hoehn, L C Dufresne, et al. Parker Oxidation of odorous and nonodorousalgal metabolites by permanganate, chlorine, and chlorine dioxide[J]. Water Sci. Technol.1995,31(11):223~228.
    [22] B Zaitlin, S B Watson. Actinomycetes in relation to taste and odour in drinking water: Myths,tenets and truths[J]. Water Res.2006,40(9):1741~1753.
    [23] M J McGuire. Off-flavor as the consumer’s measure of drinking water safety[J]. Water Sci.Technol.1995,31:1~8.
    [24] S R rinivasan, G. A Sorial. Treatment of taste and odor causing compounds2-methylisoborneol and geosmin in drinking water: A critical review[J]. J. Environ. Eng.2011,23(1):113.
    [25] M Pirbazari, V Ravindran, B N Badriyha, S Craig, and M J McGuire. GAC adsorber designprotocol for the removal of off-flavors[J]. Water Res.1993,27:1153~1166.
    [26] M Miwa. Effect of chelating agents on the grown of blue-green algae and the release ofgeosmin[J]. Water Sci. Technol.1988,20(8/9):197~203.
    [27] A R Dzialowski, V H Smith, D G Huggins, F deNoyelles, N C Lim, D S Baker et al.Development of predictive models for geosmin-related taste and odor in Kansas, USA,drinking water reservoirs[J]. Water Res.2009,43(11):2829~2840.
    [28] S B Watson, M Charlton, Y R Rao, T Howell, J Ridal, B Brownlee et al. Off flavours in largewaterbodies: physics, chemistry and biology in synchrony[J]. Water Sci. Technol.2007,55:1~8.
    [29] C P Dionigi, T E Lawlor, J E McFarland, P B Johnsen.. Evaluation of geosmin and2-methylisoborneol on the histidine dependence of TA98and TA100Salmonellatyphimurium tester strains[J]. Water Res.1993b,27(11):1615~1618
    [30] S Schulz, J Fuhlendorff, H Reichenbach. Identification and synthesis of volatiles released bythe myxobacterium Chondromyces crocatus[J]. Tetrahedron,2004,60(17):3863~3872.
    [31] R F Robedson, A Hammond, K Jauncey, M C M Beveridge, L A Lawton. An investigationinto the occurrence of geosmin responsible for earthy-musty taints in UK farmed rainbowtrout, Onchorhynchus mykiss[J]. Aquaculture,2006.259(1~4):153~163.
    [32] H Holtan. The Lake Mjosa storyArch. Hydrobiol[J]. Beih. Ergebn. Limnol.1979,13:242~258.
    [33] P E Presson. Off-flavours in aquatic ecosystem-an introduction[J]. Water Sci. Technol.1983,15(6/7):1~11.
    [34] D Bruce, P Westerhoff, A Brawley-Chesworth. Removal of2-methylisoborneol and geosminin surface water treatment plants in Arizona[J]. Journal of Water Supply,2002,51:183~197.
    [35] M Drikas, C W K Chow, J House, M D Burch. Using coagulation, flocculation, and settlingto remove toxic cyanobacteria[J]. J. Am. Water Works Assoc.2001,93(2):100~111.
    [36] J J Chen, H H Yeh. The mechanisms of potassium permanganate on algae removal[J]. WaterRes.2005,39(18):4420~4428
    [37]梁爽,李星,杨艳玲,安东子,王睿.沸石负载高锰酸钾除藻及藻毒素效能研究.北京工业大学学报[J],2011,37(12):1843~1846.
    [38] S Liang, X Li, Y L Yang. Effect and mechanism of microcystin removal by Potassiumpermanganate loaded zeolite[J]. Advanced Materials Research,2010,(113~114):521~524.
    [39] B L Yuan, J H Qu, M L Fu. Removal of cyanobacterial microcystin-LR by ferrateoxidation-coagulation[J]. Toxicon,2002,40(8):1129~1134.
    [40] I D Robert, H Lionel, J D Brookes. Effect of chlorinationon microcystis aeruginosa cellintegrity and subsequent microcystin release and degradation[J]. Environ. Sci. Technol.2007,41(12):4447~4453.
    [41] M Ma, R Liu, H Liu, J H Qu. Chlorination of Microcystis aeruginosa suspension: cell lysis,toxin release and degradation, J.Hazard. Mater. doi:10.1016/j.jhazmat.2012.03.030.
    [42] P Senogles, G Shaw, M Smith. Degradation of the cyanobacterial toxin cylindrospermopsin,from Cylindrospermopsis raciborskii, by chlorination[J]. Toxicon,2000,38(9):1203~1213.
    [43] A Zamyadi, L Ho, G Newcombe, et al. Fate of toxic cyanobacterial cells and disinfectionby-products formation after chlorination[J]. Water Res.2012,46(5):1524~1535.
    [44] A K Y Lam, E E Prepas, D Spink, et al. Chemical control of hepatotoxic phytoplanktonblooms: implications for human health[J]. Wat. Res.1995,29(8):1845~1854.
    [45]侯翠荣,贾瑞宝.化学氧化破坏藻体及胞内藻毒素释放特性研究[J].中国给水排水,2006,22(13):98~101.
    [46]方晶云,马军,王立宁.臭氧预氧化对藻细胞及胞外分泌物消毒副产物生成势的影响[J].环境化学,2006,27(6):1127~1132.
    [47]乔俊莲,董磊,董敏殷,等.次氯酸钠对微囊藻毒素释放及降解特性的研究[J].供水技术,2009,3(4):11~13.
    [48] S W Jung, K H Baek and M J Yu. Treatment of taste and odor material by oxidation andadsorption[J]. Water Sci. Technol.2004,49(9):289~295.
    [49] L Ho, G Newcombe, J P Croué. Influence of the character of NOM on the ozonation of MIBand geosmin[J]. Water Res.2002,36(3):511~518.
    [50] E R Bandala, D Martínez, E Martínez, D D Dionysios. Degradation of microcystin-LR toxinby Fenton and Photo-Fenton processes[J]. Toxicon,2004,43(7):829~832.
    [51] Kiyomi Tsuji, Tomohiko Watanuki, Fumio Kondo, Mariyo F Watanabe. Stability ofmicrocystins from cyanobacteria—II[J]. Effect of UV light on decomposition andisomerization. Toxicon,1995,33(12):1619~1631.
    [52] P J Senogles, J A Scott, G Shaw, H Stratton. Photocatalytic degradation of the cyanotoxinCylindrospermopsin, using Titanium dioxide and UV Irradiation[J]. Water Res.2001,35(5):1245~1255.
    [53] C Collivignarelli, S Sorlini. AOPs with ozone and UV radiation in drinking water:contaminants removal and effects on disinfection byproducts formation[J]. Water Sci.Technol.2004,49(4):51~56.
    [54] A Peter, U V Gunten. Oxidation kinetics of selected taste and odor compounds duringozonation of drinking water[J]. Environ. Sci. Technol.2007,41(2):626~631.
    [55] W G W hite. White’s Handbook of Chlorination and Alternative Disinfectants[J]. Wiley, NewYork.2010.
    [56] C Donati, M Drikas, R Hayes, G Newcombe. Microcystin-LR adsorption by powderedactivated carbon[J]. Water Res.1994,28(8):1735~1742.
    [57] D Cook, G Newcombe, P Sztajnbok. The application of powdered activated carbon for MIBand geosmin removal: predicting PAC doses in four raw waters[J]. Water Res.2001,35(5):1325-1333.
    [58] L Ho, G Newcombe. Effect of NOM, turbidity and floc size on the PAC adsorption of MIBduring alum coagulation[J]. Water Res.2005,39(15):3668~3674.
    [59] J Ridal, B Brownlee, G McKenna, N Levac. Removal of taste and odour compounds byconventional granular activated carbon filtration[J]. Water Quality Research Journal ofCanada,2001,36:43~54.
    [60]左金龙,崔福义,赵志伟,等.国内外臭氧活性炭工艺在饮用水处理中的应用实例[J].中国给水排水,2006,22(10):68~72.
    [61] A Matilainen, M Sillanp. Removal of natural organic matter from drinking water byadvanced oxidation processe[J]s. Chemosphere,2010,80(4):351~365.
    [62]陈刚,俞舜章,卫国荣,等.肝癌高发地区不同饮用水类型中藻毒素含量的调查[J].中华预防医学杂志,1996,30(1):6~9.
    [63] K Y Angeline, E Ellie, S Dadid, et al. Chemical control of the heptotoxic phytoplanktonblooms: implication for human health[J]. Water Res.1995,29:1845~1854.
    [64]韩珊珊.凹凸棒土吸附与强化混凝去除水中嗅味物质的效能研究[J].哈尔滨工业大学硕士学位论文.2011:,44~45
    [65] L Lepistǒ, K Lakti, J Niemi. Removal of cuanobacteria and other phytoplankton in fourFinnish water works[J]. Algolog Studies,1994,75:167~181.
    [66] I Chrous, J Bartram. Toxic cyanobacteria in water. In: A guide to their public healthconsequences, monitoring and management[J]. Geneva: World Health Organization,1999,287~289.
    [67] S Hǒger, D Dietrich, B Hitzfeld. Effect of ozonation in drinking water treatment on theremoval of cyanobacterial toxins[J]. Toxicol. Sci.1999,48:33.
    [68] C Ding, X Yang, W Liu, Y J Chang, C Shang. Removal of natural organic matter usingsurfactant-modified iron oxide-coated sand[J]. J. Hazard. Mater.2010,174(1~3):567~572.
    [69] C H Lai, C Y Chen. Removal of metal ions and humic acid from water by ironcoated filtermedia[J]. Chemosphere,2001,44(5):1177~1184.
    [70] B.A Johnson,B Gong,W Bellamy, et al. Pilot Plant Testing of Dissolved air flotation fortreating Boston’s low-turbidity surface water supply[J]. Water Sci. Technol.1995,31(3~4):83~92.
    [71] J K Edzwald. Algae, bubbles, coagulants, and dissolved air flotation[J]. Water Sci. Technol.1993,27(10):67~81.
    [72] M R Teixeira, V Sousa, M J Rosa. Investigating dissolved air flotation performance withcyanobacterial cells and filaments[J]. Water Res.2010,44(11):3337~3344.
    [73] H Ishii, M Nishijima, T Abe. Characterization of degradation process of cyanobacterialhepatotoxins by a gram-negative aerobic bacterium[J]. Water Res.2004,38(11):2667~2676.
    [74] D Hoefel, L Ho, P T Monisa, G Newcombe, C P Saint. Biodegradation of geosmin by a novelGram-negative bacterium; isolation, phylogenetic characterization and degradation ratedetermination[J]. Water Res.2009,43(11):2927~2935.
    [75] B H Zhou, R F Yuan, C H Shi, L Y Yu, J N Gu, C L Zhang. Biodegradation of geosmin indrinking water by novel bacteria isolated from biologically active carbon[J]. Journal ofEnvironmental Sciences.2011,23(5):816~823.
    [76]吴为中,王占生.水库水源水生物陶粒滤池预处理中试研究[J].环境科学研究,1999,12(1):10~14.
    [77]余冉,吕锡武,稻森悠平.生物接触氧化预处理水中藻类及其毒素[J].中国给水排水,2002,18(12):9~12.
    [78] L Ho, D Hoefel, F Bock, C P Saint, G Newcombe. Biodegradation rates of-methylisoborneol(MIB) and geosmin through sand filters and in bioreactors[J]. Chemosphere,2007,66(11):2210~2218.
    [79] J B Castaing, A Massé, M Pontié, et al. Investigating submerged ultrafiltration (UF) andmicrofiltration (MF) membranes for seawater pre-treatment dedicated to total removal ofundesirable micro-algae[J]. Desalination,2010,253(1~3):71~77
    [80] H Liang, W J Gong, G B Li. Performance evaluation of water treatment ultrafiltration pilotplants treating algae-rich reservoir water[J]. Desalination,2008,221(1~3):345~350.
    [81] M Campinas, M J Rosa. Evaluation of cyanobacterial cells removal and lysis byultrafiltration[J]. Sep.Purif. Technol.2010,70(3):345~353.
    [82] A.J. Gijsbertsen-Abrahamse, W. Schmidt, I. Chorus, S.G.J. Heijman. Removal of cyanotoxinsby ultrafiltration and nanofiltration. J. Membr. Sci.2006,276(1~2):252-259.
    [83]赵勇,李伟英,张明,董秉直.超滤膜对水中微囊藻毒素去除机理及影响因素研究[J].工业水处理,2010,30(4):26~29.
    [84] N Park, Y H Lee, S Lee, J Cho. Removal of taste and odor model compound(2,4,6-trichloroanisole) by tight ultrafiltration membranes[J]. Desalination,2007,212(1~3):28~36.
    [85]李圭白,张杰.水质工程学[M].中国建筑工业出版社.2005.
    [86] S J Duranceau. Membrane practices for water treatment.1st ed.Denver, CO: American WaterWorks Association.2001.
    [87]刘成,陈卫,王嫚,曹喆.常规处理工艺对太湖高藻水源水的处理效能[J].2010中日给水技术国际交流会论文集,2010:48~51.
    [88]马军,刘桂芳,张建利,杜玉柱.强化常规处理工艺提高饮用水水质技术研究进展[M].
    [89]石颖,马军,蔡伟民,李圭白.湖泊、水库水的强化混凝除藻的试验研究[J].环境科学,2001,21(2):251~253.
    [90]陈忠林,王立宁,马军,范洁.预氧化强化混凝去除颤藻及其嗅味研究[J].中国给水排水,2003,19(5):13~15.
    [91]胡澄澄,高乃云,楚文海.沉淀与气浮工艺单元处理太湖原水效果比较[J].给水排水,2010,36(2):13~17.
    [92]孙韶华,贾瑞宝,宋武昌.臭氧-生物活性炭工艺处理高藻引黄水库水[J].给水排水,2009,35(3):32~34.
    [93]段蕾,李伟光,吕炳南,等.高温、高藻期臭氧/生物活性炭工艺的处理效果研究[J].中国给水排水,2007,23(9):37~39.
    [94]李勇,张晓健,陈超.臭氧活性炭去除水中硫醇类致嗅物质的研究[J].清华大学学报(自然科学版),2009,49(3):391~393.
    [95]张金松,乔铁军.臭氧生物活性炭技术水质安全性及控制措施[J].给水排水,2009,35(3):9~13.
    [96] L Li, N Y Gao, Y Deng, et al. Characterization of intracellular&extracellular algae organicatters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfectionbyproducts and odor&taste compounds[J]. Water Res.2012,46(4):1233~1240.
    [97] F S Qu, H Liang, Z Z Wang, et al. Ultrafiltration membrane fouling by extracellular organicmatters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacialcharacteristics of foulants and fouling mechanisms[J]. Water Res.2012,46(5):1490~1500.
    [98] N Her, G Amy, H R Park, M Song. Characterizing algogenic organic matter (AOM) andevaluating associated NF membrane fouling[J]. Water Res.2004,38(6):1427~1438.
    [99] S Babel, S Takizawa. Chemical pretreatment for reduction of membrane fouling caused byalgae[J]. Desalination,2011,274(1~3):171~176.
    [100] I S Chang, S O Bag, C H Lee. Effects of membrane fouling on solute rejection duringmembrane filtration of activated sludge[J]. Process Biochem.2001,36(8~9)855~860.
    [101] J K Shim, H S Na, Y M Lee, H Huh, Y C Nho. Surface modification of polypropylenemembranes by γ-ray induced graft copolymerization and their solute permeationcharacteristics[J]. J. Membr. Sci.2001,190(2):215~226.
    [102] H. Yamagishi, J.V. Crivello, G. Belfort. Development of a novel photochemical techniquefor modifying poly(arylsulfone) ultrafiltration membranes[J]. J. Membr. Sci.1995,105(3):237~247.
    [103] H Y Y, Y J Xie, M X Hua, J L Wang. Surface modification of polypropylene microporousmembrane to improve its antifouling property in MBR: CO2plasma treatment[J]. J. Membr.Sci.2005,254(1~2):219~227.
    [104] J Pieraccia, J V Crivello, G Belfort. Photochemical modification of10kDa polyethersulfoneultrafiltration membranes for reduction of biofouling[J]. J. Membr. Sci.1999,288(1~2):157~167.
    [105] J L Wu, F T Chen, X Huang, W Y Geng, X H Wen. Using inorganic coagulants to controlmembrane fouling in a submerged membrane bioreactor[J]. Desalination,2006,197(1~3):124~136.
    [106] M Campinas, M J Rosa. Assessing PAC contribution to the NOM fouling control in PAC/UFsystems[J]. Water Res.2010,44(5):1636~1644.
    [107] H Liang, Y L Yang, W J Gong, X Li, G B Li. Effect of pretreatment bypermanganate/chlorine on algae fouling control for ultrafiltration (UF) membrane system[J].Desalination,2008,222(1~3):74~80.
    [108] H Liang, W J Gong, J Chen, G B Li. Cleaning of fouled ultrafiltration (UF) membrane byalgae during reservoir water treatment[J]. Desalination,2008,220(1~3):267~272.
    [109] R Bergamasco, L C K Moraes, M F Vieira, et al. Performance of acoagulation–ultrafiltration hybrid process for water supply treatment[J]. Chem. Eng. J.2011,116(2):483~489.
    [110] Y H Xie, S Y Li, K Wu, et al. A hybrid adsorption/ultrafiltration process for perchlorateremoval[J]. J. Membr. Sci.2011,366(1~2):237~244.
    [111] B Schlichter, V Mavrov, H Chmiel. Study of a hybrid process combining ozonation andmicrofiltration/ultrafiltration for drinking water production from surface water[J].Desalination,2004,168(15):307~317.
    [112] I Korus, M Bodzek, K Loska. Removal of zinc and nickel ions from aqueous solutions bymeans of the hybrid complexation–ultrafiltration process[J]. Sep. Purif. Technol.1999,17(2):111~116.
    [113] S Mozi, M Tomaszewsk Treatment of surface water using hybrid processes-adsorption onPAC and ultrafiltration[J]. Desalination,2004,162(10):23~31.
    [114] V C Sarasidis, S I Patsios, A J Karabelas. A hybrid photocatalysis–ultrafltration continuousprocess: The case of polysaccharide degradation[J]. Sep. Purif. Technol.2011,80(1):73~80.
    [115] Y Zhang, J Y Tian, J Nan. Effect of PAC addition on immersed ultrafltration for thetreatment of algal-rich water[J]. J. Hazard. Mater.2011,186(2~3):1415~1424.
    [116] M B Dixon, Y Richard, L Ho, et al. A coagulation–powdered activatedcarbon–ultrafiltration–Multiple barrier approach for removing toxins from two Australiancyanobacterial blooms[J]. J. Hazard. Mater.2011,86(2~3):1553~1559.
    [117]蒋绍阶,刘宗源. UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2002,24(2):61~65.
    [118]国家环境保护总局.水和废水监测分析方法(第四版)[M].中国环境科学出版社,2002.
    [119] GB/T20466-2006,水中微囊藻毒素的测定[S].2006.
    [120] L N Sangolkar, S S Maske, T Chakrabarti. Methods for determining microcystins (peptidehepatotoxins) and microcystin-producing cyanobacteria[J]. Water Res.2006,40(19):3495~3496.
    [121]张锡辉,伍婧娉,王治军,等. HS-SPME-GC法测定水中典型嗅味物质[J].中国给水排水,2007,23(7):78~82.
    [122] K Saito, K Okamura, H Kataoka. Determination of musty odorants,2-methylisoborneol andgeosmin, in environmental water by headspace solid-phase microextraction and gaschromatography-mass spectrometry[J]. J. Chromatogr. A.2008,1186(1~2):434~437.
    [123] K Saito, K Okamura, H Kataoka. Determination of musty odorants,2-methylisoborneol andgeosmin, in environmental water by headspace solid-phase microextraction and gaschromatography–mass spectrometry[J]. J. Chromatogr. A.2008,1186(1~2):434~437.
    [124] S W Lloyd, J M Lea, P V Zimba and C C Grimm. Rapid analysis of geosmin and2-Methylisoborneol in water using solid phase micro extraction procedures[J]. Wat. Res.1998,32(7):2140~2146.
    [125] N Hudson, A Baker, D Reynolds. Fluorescence analysis of dissolved organic matter innatural, waste and polluted waters-a review[J]. River Research and Applications,2007,23(6):631~649.
    [126]刘婷.三种预处理技术对超滤膜污染的影响及其机理研究[D].哈尔滨工业大学博士学位论文,2011:28.
    [127] T Liu, Z L Chen, W Z Yu, et al. Effect of two-stage coagulant addition oncoagulation-ultrafiltration process for treatment of humic-rich water[J]. Water Res.2011,45(14):4260~4268.
    [128] Q. Li, M. Elimelech. Natural organic matter fouling and chemical cleaning of nanofiltrationmembranes[J]. Water Sci.Technol.: Water Supply.2004,4(5~6):245~251.
    [129] C Jarusutthirak, G Amy, J Philippe Croué. Fouling characteristics of wastewater effluentorganic matter (EfOM) isolates on NF and UF membranes[J]. Desalination,2002,145(1~3):247~255.
    [130] B Kwon, N Park, J Cho. Effect of algae on fouling and efficiency of UF membranes[J].Desalination,2005,179(1–3):203~214.
    [131] S Babel, Satoshi Takizawa. Chemical pretreatment for reduction of membrane foulingcaused by algae[J].2011,274(1~3):171~176.
    [132] N Her, G Amy, H R Park, M Song.Characterizing algogenic organic matter (AOM) andevaluating ass-ociated NF membrane fouling[J]. Water Res.2004,38(6):1427~1438.
    [133] M Tomaszewska, S Mozia. Removal of organic matter from water by PAC/UF System[J].Water Res.2002,36(16):4137~4143.
    [134] I I Tumbas, R Hobby, B Küchle, et al. P-Nitrophenol removal by combination of powderedactivated carbon adsorption and ultrafiltration-comparison of different operational modes[J].Water Res.2008,42(15):4117~4124.
    [135] A Wilczak, G Joseph, J J P acangelo et al. Occurence of nitrification in chloraminateddistribution systems. Ammerican water works association[J].Journal.1996,88(7):74~85.
    [136] K D M Pintar, R M Slawsona. Effect of temperature and disinfection strategies onammonia-oxidizing bacteria in a bench-scale drinking water distribution system[J]. WaterRes.2003,37(8):1805~1817.
    [137]许艳红,赵新华,孙宝盛,张海丰,齐庚申. MBR膜丝表面生物膜对出水水质的稳定作用[J].中国给水排水,2006,22(11):65~68,72.
    [138] B Fan, X Huang. Characteristics of a self-forming dynamic membrane coupled with abioreactor for municipal wastewater treatment[J]. Environ. Sci. Technol.2002,36(23):5245~5251.
    [139] L B Chu, S P Li. Filtration capability and operational characteristics of dynamic membranebioreactor for municipal wastewater treatment[J]. Sep. Purif. Technol.2006,51(2):173~179.
    [140] J Lee, H W Walker. Mechanisms and factors influencing the removal of microcystin-LR byultrafiltration membranes[J]. J. Membr. Sci.2008,320(1~2):240~247.
    [141]李甜,董秉直,刘铮.藻类有机物的特性以及对超滤膜的污染[J].环境科学,2010,31(2):319~323.
    [142] L Ho, P Lambling, H Bustamante. Application of powdered activated carbon for theadsorption of cylindrospermopsin and microcystin toxins from drinking water supplies[J].Water Res.2011,45(9):2954~2964.
    [143] M Campinasa, M Jo o Rosa. Removal of microcystins by PAC/UF[J]. Sep. Purif. Technol.210,71(1):114~120.
    [144] J Chen, E J LeBoeuf, S Dai, et al. Fluorescence spectroscopic studies of natural organicmatter fractions.Chemosphere[J].2003,50(5):639~647.
    [145] J Swietlik, E Sikorska. Application of fluorescence spectroscopy in the studies of naturalorganic matter fractions reactivity with chlorine dioxide and ozone[J]. Water Research.2004,38(17):3791~3799.
    [146] D L Gone, J L Seidel, C Batiot, et al. Using fluorescence spectroscopy EEM to evaluate theefficiency of organic matter removal during coagulation-flocculation of a tropical surfacewater (Agbo reservoir)[J]. Journal of Hazardous Materials.2009,172(2-3):693~699
    [147] W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitationemission matrixregional integration to quantify spectra for dissolved organic matter[J]. Environ. Sci. Technol.2003,37(24):5701~5710.
    [148] A Baker, R Inverarity, M Charlton, et al. Detecting river pollution using fluorescencespectrophotometry: case studies from the Ouseburn, NE England[J]. Environmental Pollution.2003,124(1):57~70.
    [149] E K Lee, V Chen, A G Fane. Natural organic matter (NOM) fouling in low pressuremembrane filtration-effect of membranes and operation modes[J]. Desalination,2008,218(1-3):257~270.
    [150]沈小星,方士,王薇,等.饮用水消毒副产物的危害及控制工艺[J].水资源保护,2005,21(4):30~33.
    [151] C S Philip. Con rol of disinfection by-pro duct indrinking water[J]. Water EnvironmentResearch,1998,70(4):727~734.
    [152]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [153] N Her, G Amy, D McKnight, et al. Characterization of DOM as a function of MW byfluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection[J]. WaterRes.2003,37(17):4295~4303.
    [154] F Saravia, C Zwiener, F H Frimmel. Interactions between membrane surface, dissolvedorganic substances and ions in submerged membrane filtration[J]. Desalination,2006,192(1-3):280~28
    [155] Z W Wang, Z C Wu, S J Tang. Extracellular polymeric substances (EPS) properties and theireffects on membrane fouling in a submerged membrane bioreactor[J]. Water Res.2004,38(6):1427~1438.
    [156] H Oh, M Yu, S Takizawa, S Ohgaki. Evaluation of PAC behavior and fouling formation inan integrated PAC–UF membrane for surface water treatment[J]. Desalination,2006,192(1~3):54~62.
    [157] Z W Wang, Z C Wu, S J Tang. Characterization of dissolved organic matter in a submergedmembrane bioreactor by using three-dimensional excitation emission matrix fluorescencespectroscopy[J].Water Research,2009,43:1533~1540
    [158] I S Chang, C H Lee. Membrane filtration characteristics in membrane-coupled activatedsludge system-the effect of physiological states of activated sludge on membrane fouling[J].Desalination.1998,120(3):221-233
    [159] S H Hong, W N Lee, H S Oh, et al. The effects of intermittent aeration on the characteristicsof bio-cake layers in a membrane bioreactor[J]. Environ. Sci. Technol.,2007,41(17):6270~6276.
    [160] A Drews, J Mante, V Iversen, et al. Impact of ambient conditions on SMP elimination andrejection in MBRs[J]. Water Res.2007,41(17):3850~3858.
    [161]刘振中,宋刚.水源水中腐殖酸的危害及去除方法[J].江西科学,2006,24(4):247~252.
    [162] J Cho, K G Song, H Yun, et al. Quantitative analysis of biological effect on membranefouling in submerged membrane bioreactor[J]. Water Science and Technology.2005,51(6-7):9~18
    [163] Z Ahmed, J Cho,B R Lim, et al. Effects of sludge retention time on membrane fouling andmicrobial community structure in a membrane bioreactor[J]. Journal of Membrane Science.2007,287(2):211~218
    [164] H Habarou, J P Croué, V Heim, et al. Identification of organic foulants of nanofiltrationmembranes used for drinking water production[J]. Water Practice Technology,2006,1(4):1~9.
    [165]田家宇.浸没式膜生物反应器组合工艺净化受污染水源水的研究[D].哈尔滨工业大学博士学位论文,2009:28.
    [166] F S Qu, et al. Characterization of dissolved extracellular organic matter (dEOM) and boundextracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UFmembrane fouling[J]. Water Res.2012, doi:10.1016/j.watres.2012.02.045.
    [167] J P Chen, S L Kim, Y P Ting.Optimization of membrane physical and chemical cleaning bya statistically designed approach[J]. J. Membr. Sci.2003,219(1~2):27~45.
    [168]张艳.浸没式超滤膜处理含藻水及膜污染控制研究[D].哈尔滨工业大学博士学位论文,2011:115.
    [169] F S Qu, H Liang, J Y Tian,et al. Ultrafiltration (UF) membrane fouling caused bycyanobateria: Fouling effects of cells and extracellular organics matter (EOM)[J].Desalination,2012, doi:10.1016/j.desal.2012.02.020.
    [170] E Dialynas, E Diamadopoulos. Integration of immersed membrane ultrafiltration withcoagulation and activated carbon adsorption for advanced treatment of municipalwastewater[J]. Desalination,230(1~3):113~127.
    [171] A W Zularisam, A.F. Ismail, M R Salim. Application of coagulation–ultrafiltration hybridprocess for drinking water treatment: Optimization of operating conditions usingexperimental design[J]. Sep. Purif. Technol.2009,65,(2):193~210.
    [172]孙洪伟,彭永臻,魏东洋.低温SBR反硝化过程亚硝态氮积累的动力学研究[J].中国给水排水,2011,27(5):99~103.
    [173]余国忠,栗印环,黄彬,等.铜绿微囊藻的混凝特性与影响因素研究[J].给水排水,2001,31(2):21~25.
    [174] N B Wyatt, L M Gloe, P V Brady. Critical conditions for ferric chloride-induced flocculationof freshwater algae[J]. Biotechnol. Bioeng.2012,109(2):493~501.
    [175] A L Ahmad, N H Mat Yasin, C J C Derek, J K Lim. Optimization of microalgae coagulationprocess using chitosan[J]. Chem. Eng. J.2011,173(3),:879~882.
    [176] I d Godos, H O. Guzman, R Soto. Coagulation/focculation-based removal of algal–bacterialbiomass from piggery wastewater treatment. Bioresour[J]. Technol.2011,102(2):923~927.
    [177] R M Knuckey, M R Brown, R Robert, D M F Frampton. Production of microalgalconcentrates by focculation and their assessment as aquaculture feeds[J]. Aquat. Toxicol.2006,35(3):300~313.
    [178] K J Hwang, H C Liu. Cross-flow microfiltration of aggregated submicron particles[J]. J.Membr. Sci.2002,201(1~2):137~148.
    [179] M Kabsch-Korbutowicz. Effect of Al coagulant type on natural organic matter removalefficiency in coagulation/ultrafiltration process[J]. Desalination.2005,185(1~3):327~333.
    [180] S Hong, M Elimelech. Chemical and physicalaspects of naturalorganicmatter (NOM)fouling of nanofiltration membranes[J]. J. Membr. Sci.1997,132(2):159~181.
    [181] J Cho, G Amy, J Pellegrino, et al. Characterization of clean and natural organic matter(NOM) fouled NF and UF membranes, and foulants characterization[J]. Desalination,1998,118(1~3):101~108.
    [182] A Papazi, P Makridis, P Divanach. Harvesting Chlorella minutissima using cellcoagulants[J]. J. Appl. Phycol.2010,22(3):349~355.
    [183] H X Wang, L Ho, D M. Lewis, et al. Discriminating and assessing adsorption andbiodegradation removal mechanisms during granular activated carbon filtration ofmicrocystin toxins[J]. Water Res.2007,41(18):4262~4270.
    [184] R Srinivasan, G A Sorial. Treatment of taste and odor causing compounds2-methylisoborneol and geosmin in drinking water: A critical review[J]. Journal of EnvironmentalSciences,2011,23(1)1~13.
    [185] K Konieczny, Da S kol, J P onka. Coagulation ultrafiltration system for river watertreatment[J]. Desalination,240(1~3):151~159.
    [186] E Barbot, S Moustier, J Y Bottero, et al. Coagulation and ultrafiltration: Understanding ofthe key parameters of the hybrid process[J]. J. Membr. Sci.2008,352(2):520~527.
    [187] M K Korbutowicz. Impact of pre-coagulation on ultrafiltration process performance[J].Desalination,2006,19(1~3):232~238
    [188] C Ma, S L Yu, W X Shi. High concentration powdered activated carbon-membranebioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature[J].Bioresour. Technol.2012, doi:10.1016/j.biortech.2012.02.007.
    [189] L. Ho, G. Newcombe. Effect of NOM, turbidity and floc size on the PAC adsorption of MIBduring alum coagulation[J]. Water Res.2005,39(15):3668~3674.
    [190]陈卫,袁哲,徐林,等.高锰酸钾预氧化对有机物构型与超滤膜污染的影响[J].中南大学学报(自然科学版),2012,43(1):389~394.
    [191]瞿芳术,梁恒,雒安国,等.高锰酸盐复合药剂预氧化缓解超滤膜藻类污染的中试研究[J].环境科学学报,2010,30(7):1366~1371.
    [192] C S Uyguner, M Bekbolet. Evaluation of humic acid photocatalytic degradation by UV-visand fluorescence spectroscopy[J]. Catalysis Today,2005,101(3~4):267~274.
    [193] J wietlik, D A abrowska, U Raczyk-Stanis1awiak, et al. Reactivity of natural organic matterfractions with chlorine dioxide and ozone[J]. Water Res.2004,38(3):547~558.
    [194]李星,杨艳玲,刘锐平,等.高锰酸钾净水的氧化副产物研究[J].环境科学学报,2004,24(1):56~59.
    [195]杨威,杨艳玲,李圭白,等.胶态水合二氧化锰絮凝粒子的结构形貌及其混凝机理[J].环境科学,2007,28(5):1050~1055.
    [196]苑宝玲,李坤林,钱强,等.高锰酸钾预氧化强化处理受污染的水库水[J].安全与环境工程,2005,12(3):42~45.
    [197] P B etrusevski, A N van Breeman, G J Alaerts. Effects of permanganate pre-treatment andcoagulation with dual coagulation on algae removal in direct filtration[J]. Research andTechnology AQUA.1996,45(5):316~326..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700