城镇污水处理厂中温室气体的释放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球变暖加剧,温室气体减排已经引起了国际社会的普遍关注。N2O和CH4是两种重要的温室气体,其温室效应分别是C02的298倍和23倍。污水生物处理过程是N2O和CH4的重要人为释放源。因此,研究城镇污水处理厂污水生物处理过程中N2O和CH4的释放现状和变化规律并探讨减排措施,具有重要的工程实践和社会意义。
     本论文以采用不同工艺的城镇污水处理厂为研究对象,通过长期系统的现场采样监测和实验室同步分析,研究了污水处理厂污水/污泥处理全工艺流程的温室气体释放状况和变化规律,统计测算了温室气体的释放量范围和释放系数;通过研究不同处理工艺对温室气体释放的影响,筛选确定了温室气体排放较低的推荐处理工艺;通过厂区原位水质监测和实验室分析相结合的方法探讨了在城镇污水处理厂中能显著影响温室气体释放的因素;基于现场实验数据对CH4气体的释放量建立了简易的估算模型。主要研究内容及结论如下:
     (1)开展了常规A/A/O工艺城镇污水处理厂中N2O气体的释放规律研究工作。通过对以济南市水质净化一厂(简称A/A/O一厂)为代表的A/A/O工艺污水处理厂长期系统的N20释放通量监测分析发现,N20的主要释放源是好氧池,占比约80%。A/A/O一厂的N20人均释放系数是1.69~2.34gperson-1yr-1,流量释放系数是2.32×10-5~3.21×10-5gL-1,该厂的人均释放系数和IPCC报告的数据比较接近,但是流量释放系数要远高于IPCC报告中的数据;好氧池污水中溶解氧浓度和亚硝酸盐浓度是能显著影响N2O气体释放的主要因素,冬季较低的水温区间也能促进N2O气体的产生和释放;进水总氮的脱除量是影响全厂N2O气体释放量占总氮脱除量比例的重要因素,对于采用A/A/O生物脱氮工艺的城镇污水处理厂,N2O释放总量占总氮脱除量的比例范围为0.119-0.195%。
     (2)开展了常规A/A/O工艺城镇污水处理厂中CH4气体的释放规律研究工作。以A/A/O一厂为代表,对其进行了长期系统的CH4释放通量监测,确定了该厂CH4气体的主要释放源是厌氧池和好氧池,约占该厂CH4总释放量的40%和32%;该厂CH4的人均释放系数是8.17~17.66gperson-1yr-1,流量释放系数是1.12×104~2.42×104gL-1。好氧池、曝气沉砂池中的溶解氧浓度和高效沉淀池中的水温是影响CH4释放通量的重要因素,夏季较高的水温区间有利于污水处理厂CH4气体的产生和释放;进水COD的脱除量是影响全厂CH4气体释放量占COD脱除量比例的重要因素。利用监测得到的A/A/O污水处理厂的CH4释放数据和相关参数,对CH4的气体释放量建立了简单的估算模型,用现场实测数据对模型进行了检验,表明模型参数设置合理,能够用于CH4释放量的简易估算。
     (3)开展了采用不同处理工艺的城镇污水处理厂中N20和CH4的气体释放通量监测工作。获取了厌氧+氧化沟工艺、预缺氧-A/A/O工艺和倒置A/A/O工艺中N20和CH4的流量释放系数,发现三种工艺中N20和CH4的流量释放系数均明显高于IPCC报告中的参考值;不同处理工艺中释放的N20气体总量占总氮脱除量的比例分别为厌氧+氧化沟工艺:0.183±0.016%,预缺氧-A/A/O工艺:0.156±0.025%和倒置A/A/O工艺:0.117±0.010%;各种工艺中脱除的COD转化成CH4气体的比例分别是厌氧+氧化沟工艺:0.789±0.203%,预缺氧-A/A/O工艺:0.938±0.231%和倒置A/A/O工艺:0.078±0.016%。对三所污水处理厂在实验期间监测到的水质参数变化和N2O、CH4的气体释放通量变化联合进行相关性分析发现在实验期间能够统一显著影响不同处理工艺中N20产生释放的主要因素是污水中的亚硝酸盐浓度,能够统一显著影响不同处理工艺中CH4产生释放的主要因素是污水的氧化还原电位;倒置A/A/O工艺脱除的总氮向N2O的转化率和脱除的COD向CH4的转化率均是四种工艺中最低的,在本论文研究的四种污水处理工艺中,倒置A/A/O工艺是适合城镇污水处理厂采用的温室气体释放最低的推荐处理工艺。
With the accelerating of global warming, the reduction of greenhouse gas (GHG) emissions has aroused international attention. Nitrous oxide (N2O) and methane (CH4) are two important greenhouse gases, and their global warming potentials (GWPs) are 298 and 23 times higher than CO2, respectively. It had been reported that biological wastewater treatment process is an important anthropogenic source of N2O and CH4. Therefore, it is very important to study the production, emission and reduction control of N2O and CH4 during biological wastewater treatment processes.
     This study selected typical municipal wastewater treatment plants (WWTPs) where different biological wastewater treatment processes are used. By long-term systematically field sampling, on-site monitoring in these WWTPs combined with subsequent laboratory analyses, the GHGs production and emission status and variation trends in the entire wastewater/sludge treatment processes in these WWTPs were investigated. The GHGs emission ranges and emission factors (EFs) were calculated based on the experimental data. By comparison between the GHGs emissions of different WWTPs using different wastewater treatment processes, the effect of biological treatment process on GHG emissions were investigated to determine the lowest GHG emission wastewater treatment process. The factors which can significantly influence GHG emissions in WWTPs were identified by both in-situ measurement in WWTPs and laboratory analysis. A simple mathematical model was established to estimate the CH4 emissions and tested by actual experimental data. The main research conclusions are as follows:
     (1) The N2O emissions from 3 WWTPs using typical A/A/O process were measured systematically in long-term experimental period and the No.1 WWTP in Jinan city was selected for N2O emissions analysis as a typical A/A/O WWTP. Results showed the main N2O emission sources are the oxic tanks, which account for more than 80% of total emissions. The per capita EFs and flow based EFs are 1.69~2.34gperson-1yr-1 and 2.32×10-5~3.21×10-5gL-1. The dissolved oxygen (DO) concentration and nitrite concentration in the oxic tanks are the dominant factors influencing N2O emissions. The lower water temperature range in winter could promote N2O emissions in these WWTPs. Total removed nitrogen in influent wastewater is an important factor influencing the proportion of emitted N2O in the T-N removed from this WWTP, the proportion of N2O in the removed T-N was 0.119~0.195% taking these 3 A/A/O WWTPs into account.
     (2) The CH4 emissions from 3 WWTPs using typical A/A/O process were measured systematically in long-term experimental period and the No.1 WWTP in Jinan city was selected for CH4 emission analysis as a typical A/A/O WWTP. Results showed the main CH4 emission sources are the anaerobic tanks and oxic tanks, which account for 40% and 32% of total emissions. The per capita EFs and flow based EFs are 8.17~17.66gperson-1 and 1.12×10-4~2.42×10-4gL-1. The DO concentration in oxic tanks and aerated grit tanks and the water temperature in high density settler tanks are the dominant factors influencing CH4 emissions. The higher water temperature range in summer could promote CH4 emissions in these WWTPs. A simple mathematical model was established to estimate the CH4 emissions in WWTPs and the test for model accuracy by actual experimental data showed this model can better reflect the CH4 emissions from these WWTPs.
     (3) Based on the research of GHG emissions from 3 A/A/O WWTPs, long-term comparative studies were conducted on the GHG emissions from three other WWTPs where anaerobic oxidation ditch, preanoxic A/A/O and reversed A/A/O processes were used respectively. The GHG emission fluxes and sources were determined, the emission variation trends were investigated, and the EFs were figured out. Correlation analyses between N2O and CH4 emissions and water quality parameters were performed to determine the dominant factors influencing GHG emissions from different WWTPs using different biological wastewater treatment processes. Results showed nitrite concentration and oxidation-reduction potential were the factors significantly influencing GHG emissions from these 3 WWTPs. By comparison between the GHG emissions of these WWTPs using 4 different treatment processes, the effect of biological treatment process on GHG emissions were researched, and the lowest GHG emission wastewater treatment process was determined to be the reversed A/A/O process, which has both the lowest N2O/(removed T-N) conversion ratio and CH4/(removed COD) conversion ratio among these 4 studied treatment processes(anaerobic oxidation ditch, conventional A/A/O, preanoxic A/A/O and reversed A/A/O processes).
引文
[1]IPCC. Climate change 2007:The physical science basis. Contributions of working group Ⅰ to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press,2007.
    [2]IPCC, Climate Change 2001:the Scientific Basis[M]. Cambridge: Cambridge University Press,2001.
    [3]Tett S F B, Stott P A, Allen M R. Causes of twentieth-century temperature change near the Earth's surface[J]. Nature,1999,399:569-572.
    [4]Eggleston H S, Buendia L, Miwa K. Guidelines for national greenhouse gas inventories, the National Greenhouse Gas Inventories Programme, the Intergovernmental Panel on Climate Change (IPCC)[M]. Hayama, Kanagawa, Japan,2006.
    [5]Bousquet P, Ciais P, Miller J B, et al. Contribution of anthropogenic and natural sources to atmospheric methane variability [J]. Nature,2006,443:439-443.
    [6]Khalil M A K, Shearer M J, Rasmussen R A. Atmospheric methane:its role in the global Environment[M]. Springer, New York,2000,86-97.
    [7]Mikaloff Fletcher S E, Tans P P, Bruhwiler L M, et al. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios:1. Inverse modeling of source processes[J]. Global Biogeochemical Cycles,2004,18: GB4004.
    [8]Prather M, Derwent R, Ehhalt D F P, et al. Other trace gases and atmospheric chemistry[A]. Climate Change 1994:Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios[C]. Cambridge:Cambridge University Press,1995.
    [9]Bange H W, Rapsomanikis S, Andreae M O. Nitrous oxide in coastal waters[J]. Global Biogeochemical Cycles,1996,10(1):197-207.
    [10]Crutzen P J. The influence of nitrogen oxide on the atmospheric ozone content[J]. Quarterly Journal of the Royal Meteorological Society,1970,96:7311-7327.
    [11]郭李萍,林而达,李少杰.大气氮化物的源汇及气候与环境效应[J].农业环境保护,1999,18(5):193-199.
    [12]耿军军,王亚宜,张兆祥,等.污水生物脱氮革新工艺中强温室气体N20的产生及微观机理[J].环境科学学报,2010,30(9):1729-1738.
    [13]张静蓉,王淑莹,尚会来,等.污水短程硝化反硝化和同步硝化反硝化生物脱氮中N20释放量及控制策略[J].环境科学,2009,30(12):3624-2629.
    [14]Khalil M, Rasmussen R. The global source of nitrous oxide[J]. Journal of Geophysical Research,1992,91(D13):14651-14660.
    [15]Kampschreur M J, Temmink H, Kleerebezem R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research,2009,43(17):4093-4103.
    [16]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [17]娄金生,谢水波,何少华,等.生物脱氮除磷原理与应用[M].长沙:国防科技大学出版社,2002.
    [18]Staley J T, Bryant M P, Pfenning N, et al. Bergey's manual of systematic bacteriology[M]. Williams & Wilkins,1989.
    [19]王晓姗,刘杰,于建生.海洋氮循环细菌研究进展[J].科学技术与工程,2009,9(17):5057-5064.
    [20]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [21]周少奇,周吉林.生物脱氮新技术研究进展[M].环境污染治理技术与设备,2000,1(6):11-18.
    [22]Czepiel P, Crill P, Harriss R. Nitrous oxide emissions from municipal wastewater treatment[J]. Environmental Science & Technology,1995,29(9):2352-2356.
    [23]Frijns J, Roorda J, Mulder M. Op weg naar een klimaatneutrale waterketen[J]. H2O,2008,10,36-37.
    [24]Liu X, Peng Y, Wu C, et al. Nitrous oxide production during nitrogen removal from domestic wastewater in lab-scale sequencing batch reactor[J]. Journal of Environmental Sciences,2008,20(6):641-645.
    [25]Hu Z, Zhang J, Li S P, et al. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs)[J]. Journal of Bioscience and Bioengineering,2010,109(5):487-491.
    [26]Ritcbie G A F, Nicholas D J D. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea[J]. Biochemical Journal,1972,126(5):1181-1191.
    [27]Hynes R K, Knowles R. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH, and oxygen[J]. Canadian Journal of Microbiology,1984, 30(11):1397-1404.
    [28]Mckenney D J, Drury C F, Findlay W I, et al. Kinetics of denitrification by Pseudomonas fiuorescens:oxygen effects[J]. Soil Biology and Biochemistry,1994, 26(7):901-908.
    [29]Davis K J P, Lloyd D, Boddy L. The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa[J]. Journal of General Microbiology,1989,135(9):2445-2451.
    [30]Hanaki K, Zheng H, Matsuo T. Production of nitrous oxide gas during denitrification of wastewater[J]. Water Science and Technology,1992,526(26): 1027-1036.
    [31]Garrido J M, Moreno J, Mendez-Pampin R, et al. Nitrous oxide production under toxic conditions in a denitrifying anoxic filter[J]. Water Research,1998,32(8): 2550-2552.
    [32]Schulthess R V, Wild D, Gujer W. Nitric and nitrous oxide from denitrifying activated sludge at low oxygen concentration[J]. Water Science and Technology, 1994,30(6):123-132.
    [33]Poth M, Focht D D. 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology,1985,49(5):1134-1141.
    [34]Papen H, Renneberg H. Microbial processes involved in emissions of radioactively important trace gases[A]. Transactions 14th International Congress of Soil Science[C]. Kyoto,1990:232-237.
    [35]Anderson I C, Levine J S. Relative rates of NO and N2O production by nitrifiers, denitrifiers and nitrate respirers[J]. Applied and Environmental Microbiology,1986, 51(5):938-945.
    [36]Gupta A B. Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification[J]. Enzyme and Microbial Technology,1997,21(8):589-595.
    [37]Lloyld D, Boddy L, Davies K J P. Persistence of bacterial denitrification capacity under aerobic conditions:the rule rather than the exception[J]. FEMS Microbiology Letters,1987,45(3):185-190.
    [38]Stutzer H, Hartleb R. Uber nitratbidung[J]. Zentralbl Bakteriol Parasitenkd Infektionskr. Hyg Abt 1 Orig Reihe A,1894,22:701.
    [39]Papen H, Regina Von B, Hinkel I, et al., Heterotrophic nitrification by alcaligenes faecalis:NO2-. NO3-、N2O and NO production in exponentially growing cultures [J]. Applied and Environmental Microbiology,1989,55(8):2068-2072.
    [40]Blackmer A M, Bremner J M, Schmidt E L. Production of nitrous oxide by ammonia oxidizing chemoautotrophic microorganisms in soil[J]. Applied and Environmental Microbiology,1980,40(6):1060-1066.
    [41]Brown K, Fesefeldt A, Gliesche C G, et al. A novel type of catalytic copper cluster in nitrous oxide reductase[J]. Natural Structural Biology,2000,7(3): 191-195.
    [42]Rasmussen T, Berks B C, Sanders-Loehr J, et al. The catalytic center in nitrous oxide reductase, Cuz, is a copper-sulfide cluster[J]. Biochemistry,2000,39(42): 12573-12576.
    [43]Bonin P, Tamburini C, Michotey V. Determination of the bacterial processes which are sources of nitrous oxide production in marine samples[J]. Water Research,2002,36 (3):722-732.
    [44]Otte S, Seviour R J, Kuenen J G, et al. Nitrous oxide (N2O) production by Alcaligenes faecalls during feast and famine regimes[J]. Water Research,2000, 34(7):2080-2085.
    [45]Shiba T. Roseobacter litoralis gen. nov. sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacterilchlorophyll a[J]. Systematic and Applied Microbiology,1991,14:140-145.
    [46]Greenberg E P, Becker G E. Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads[J]. Canadian Journal of Microbiology,1997, 23(7):903-907.
    [47]Takaya N, Catalan M A B, Sakaguchi Y, et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide[J]. Applied and Environmental Microbiology, 2003,69(6):3152-3157.
    [48]Robertson L A, Kuenen J G. Physiology of nitrifying and denitrifying bacteria[A]. Rogers J E, Whitman W B. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes[M]. American Society for Microbiology, Washington:D.C.,1991:189-199.
    [49]张朝晖,吕锡武.污水生物处理过程中N2O的逸出控制[J].给水排水,2004,30(4):32-36.
    [50]张可方,杜馨,张朝升,等.DOC/N对同步硝化反硝化影响的试验研究[J].环境科学与技术,2007,30(06):3-5.
    [51]Kishida N, Kim J H, Kimochi Y, et al. Effect of C/N ratio on nitrous oxide emission from swine wastewater treatment process[J]. Water Science and Technology,2004,49(5-6):359-365.
    [52]Wu J, Zhang J, Jia W L, et al. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater[J]. Bioresource Technology,2009,100(12):2910-2917.
    [53]van Rijn J, Tal Y, Barak Y. Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor[J]. Applied and Environmental Microbiology,1996,62(7): 2615-2620.
    [54]Adocuani N, Lendormi T, Limousy L, et al. Effect of the carbon source on N2O emissions during biological denitrification[J]. Resources, Conservation and Recycling,2010,54(5):299-302.
    [55]Tsuneda S, Mikamia M, Kimochib Y, et al. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater [J]. Journal of Hazardous Materials,2005, B119:93-98.
    [56]Schonharting B, Rehner R, Metzger J W, et al. Release of nitrous oxide (N2O) from denitrifying activated sludge caused by H2S-containing wastewater: quantification and application of a new mathematical model[J]. Water Science and Technology,1998,38(1):237-246.
    [57]Garrido J M, Moreno J, Mendez-pampin R, et al. Nitrous oxide production under toxic conditions in a denitrifying anoxic filter[J]. Water Research,1998,32(8): 2550-2552.
    [58]Park K Y, Inamori Y, Mizuochi M, et al. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration[J]. Journal of Bioscience and Bioengineering,2000,90(3):247-252.
    [59]吕锡武,稻森悠平,水落元之.同步硝化反硝化脱氮及处理过程中N2O的控制研究[J].东南大学学报(自然科学版),2001,31(1):95-99.
    [60]Kimochi Y, Inamori Y, Mizuochi M, et al. Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration[J]. Journal of Fermentation and Bioengineering,1998,86(2):202-206.
    [61]Park K Y, Lee J W, Inamori Y, et al. Effects of fill modes on N2O emission from the SBR treating domestic wastewater [J]. Water Science and Technology,2001, 43(3):147-150.
    [62]Tallec G, Gamier J, Billen G, et al. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level[J]. Water Research,2006,40(15):2972-2980.
    [63]刘秀红,彭轶,马涛,等.DO浓度对生活污水硝化过程中N2O产生量的影响[J].环境科学,2008,29(3):660-664.
    [64]von Schulthess R, Wild D, Gujer W. Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration[J]. Water Science and Technology, 1994,30(6):123-132.
    [65]李亚静,孙力平,郑淑平.碳源浓度和污泥龄对反硝化聚磷脱氮影响研究[J].环境科学与技术,2008,31(05):112-115.
    [66]Zheng H, Hanaki K, Mstsuo T. Production of nitrous oxide gas during nitrification of wastewater [J]. Water Science and Technology,1994,30(6): 133-141.
    [67]Hanaki K, Hong Z, Mstsuo T. Production of nitrous oxide gas during denitrification of wastewater[J]. Water Science and Technology,1992,26(5-6): 1027-1036.
    [68]Gejlsbjerg B, Frette L, Westermann P. Dynamics of N2O production from activated sludge[J]. Water Research,1998,32(7):2113-2121.
    [69]Thorn M, Soensson F. Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal[J]. Water Research, 1996,30(6):1543-1547.
    [70]Kong H N, Kimochi Y, Mizuochi M, et al. Study of the characteristics of CH4 and N2O emission and methods of controlling their emission in the soil-trench wastewater treatment process[J]. Science of the Total Environment,2002,290(1-3): 59-67.
    [71]Kim J S, Kim S J, Lee B H. Effect of Alcaligenes faecalis on nitrous oxide emission and nitrogen removal in three phase fluidized bed process [J]. Journal of Environmental Science and Health, Part A,2004,39(7):1791-1804.
    [72]Noda N, Kaneko N, Milkami M, et al. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system[J]. Water Science and Technology,2003,48(11-12):363-370.
    [73]王宝贞,王琳.水污染治理新技术[M].北京:科学出版社.2004:159-168.
    [74]Metcalf & Eddy Inc., Tchobanoglous G, Burton F L, Stensel H D. Wastewater Engineering: Treatment and Reuse,4th ed[M]. McGraw Hill Higher Education, New York,2002.
    [75]Hanson R S, Hanson T E. Methanotrophic bacteria[J]. Microbiology Reviews, 1996,60:439-471.
    [76]Bitton G. Wastewater microbiology,3rd ed[M]. Wiley-Liss, New York,2005.
    [77]Gerardi M H. Wastewater Bacteria[M]. John Wiley & Sons, New York,2006.
    [78]Metcalf and Eddy, Wastewater Engineering: Treatment, Disposal and Reuse[M]. McGraw-Hill Inc, New York,1991.
    [79]Crittenden J. Water Treatment: Principles and Design,2nd ed[M]. John Wiley & Sons, Inc., New York,2005.
    [80]El-Fadel M, Massoud M. Methane emissions from wastewater management[J]. Environmental Pollution,2001,114:177-185.
    [81]Speight J. Lange's Handbook of Chemistry,16th ed[M]. McGraw-Hill, Inc., New York,2004.
    [82]杨继松,刘景双,王金达.三江平原生长季沼泽湿地CH4、N20排放及其影响因素[J].植物生态学报,2006,30(3):432-440.
    [83]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [84]Carneiro T F, Perez M, Romero L I. Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste[J]. Bioresource Technology, 2008,99:6763-6770.
    [85]Moore T R, Dalva M. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils[J]. European Journal of Soil Science,2006,44:651-664.
    [86]Maya-Altamira L, Baun A, Angelidaki I, et al. Influence of wastewater characteristics on methane potential in food-processing industry wastewaters[J]. Water Research,2008,42,2195-2203.
    [87]Sarada R, Joseph R. Studies on factors influencing methane production from tomato-processing waste[J]. Bioresource Technology,1994,47:55-57.
    [88]Yoshida H, Tokumoto H, Ishii K, et al. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment[J]. Bioresource Technology,2009,100:2933-2939.
    [89]Mohanakrishnan J, Gutierrez O, Meyer R L, et al. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor [J]. Water Research,2008,42:3961-3971.
    [90]Jiang G M, Gutierrez O, Sharma K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems [J]. Water Research,2010,44:4241-4251.
    [91]Keller M E, Weitz Veldkamp A M, Reiners WA. Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica[J]. Nature,1993,365: 244-246.
    [92]Banihani Q, Sierra-Alvarez R, Field J A. Nitrate and nitrite inhibition of methanogenesis during denitrification in granular biofilms and digested domestic sludges[J]. Biodegradation,2009,20:801-812.
    [93]Kimochi Y, Inamori Y, Mizuochi M, et al. Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration[J]. Journal of Fermentation and Bioengineering,1998,86:202-206.
    [94]Sommer J, Ciplak A, Sumer E, et al. Quantification of emitted and retained N2O in a municipal wastewater treatment plant with activated sludge and nitrification-denitrification units[J]. Agrobiological Research,1998,51:59-73.
    [95]Tallec G, Gamier J, Billen G. et al. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation[J]. Bioresource Technology,2008,99:2200-2209.
    [96]Foley J, Haas D D, Yuan Z G. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J]. Water Research,2010,44: 831-844.
    [97]IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. In: Eggleston H S, Buendia L, Miwa K, et al.(Eds.)[M]. IGES, Japan,2006, pp.6.24-26.26
    [98]唐孝国,李伟进,平文凯. Multiflo(?)沉淀池、Actiflo(?)沉淀池和Biostyr(?)生物滤池的介绍及其在污水处理中的组合应用[J].水工业市场,2010,11:55-60.
    [99]国家环境保护局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:210-280.
    [100]APHA In: Eaton A D, Clesceri L S, Rice E W, et al. (eds). Standard Methods for the Examination of Water and Wastewater,21st ed[M]. American Public Health Association, Washington DC,2005.
    [101]Montgomery D C, Peck E A, Vining G G. Introduction to Linear Regression Analysis,4th ed[M]. John Wiley & Sons, Inc., New York,2007.
    [102]Houghton J T. Climate Change:The IPCC Assessment on Climate Change[M]. UK: Cambridge University Press,1990.
    [103]IPCC. Estimated source and sink of nitrous oxide[M]. UK:Cambridge University Press,1992.
    [104]IPCC. Climate Change [A]. Houghton J T, Callander B A, Varney S K. The Supplementary Report to the IPCC Scientific Assessment[M]. UK:Cambridge University Press,1992.
    [105]Itokawa H, Hanaki K, Matsuo T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Water Research,2001,35:657-664.
    [106]Chung Y C, Chung M S. BNP test to evaluate the influence of C/N ratio on N2O production in biological denitrification[J]. Water Science and Technology,2000,42: 23-27.
    [107]Goreau T J, Kaplan W A, Wofsy S C, et al. Production of nitrite and nitrogen oxide(N2O) by nitrifying bacteria at reduced concentrations of oxygen[J]. Applied and Environmental Microbiology,1980,40:526-532.
    [108]Rajagopal R, Beline F. Nitrogen removal via nitrite pathway and the related nitrous oxide emission during piggery wastewater treatment[J]. Bioresource Technology,2011,102:4042-4046.
    [109]Kampschreur M J, Tan N C G, Kleerebezem R. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture[J]. Environmental Science & Technology,2008,42:429-435.
    [110]Hao J O, Kim H. pH and oxidation reduction potential(ORP) strategy for optimization of nutrient removal in an alternating aerobic-anoxic system[J]. Water Environment Research,2000,73:95-102.
    [111]Colliver B B, Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers[J]. Biotechnology Advances,2000,18:219-232.
    [112]Schulthess R V, Kuehni M, Gujer W. Release of nitric and nitrous oxides from denitrifying activated sludge[J]. Water Research,1995,29:215-226.
    [113]IPCC. Summary for Policymakers. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Metz B, Davidson O R, Bosch P R, et al.(eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    [114]Guisasola A, de Haas D, Keller J, et al. Methane formation in sewer systems[J]. Water Research,2008,42:1421-1430.
    [115]Czepiel P M, Crill P M, Harriss R C. Methane emissions from municipal wastewater treatment processes[J]. Environmental Science & Technology,1993,27: 2472-2477.
    [116]Chen T H, Hashimoto A G. Effects of pH and substrate:inoculum ratio on batch methane fermentation[J]. Bioresource Technology,1996,56:179-186.
    [117]Qiu Y, Shi H C, He M. Nitrogen and Phosphorous Removal in Municipal Wastewater Treatment Plants in China: A Review[J]. International Journal of Chemical Engineering,2010,3:1-10.
    [118]Zhu B, Gikas P, Zhang R, et al. Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor[J]. Bioresource Technology,2009,100,1122-1129.
    [119]Ahn J H, Kim S, Park H. N2O Emissions from Activated Sludge Processes, 2008-2009:Results of a National Monitoring Survey in the United States[J]. Environmental Science & Technology,2010,44:4505-4511.
    [120]Puig S, Corominas L, Vives M T. Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points[J]. Industrial & Engineering Chemistry Research,2005,44:3367-3373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700