C/C抗烧蚀TaC、TaC/SiC涂层的制备及其抗烧蚀机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高C/C复合材料的抗烧蚀性能,以适应新一代高性能固体火箭发动机(SRM)对喷管材料更高的要求,本文首次用化学气相沉积的方法在C/C复合材料上成功地制备了TaC涂层、TaC/SiC多层复合涂层、TaC-SiC共沉积涂层,并对其工艺、结构特点及结构形成动力学进行了研究,采用了激光烧蚀和氧炔焰烧蚀等试验对涂层的抗热震、抗烧蚀性能和烧蚀机理进行了研究,建立了TaC、TaC-SiC共沉积涂层烧蚀模型。
     较全面地研究了TaC涂层化学气相沉积(CVD)工艺。研究包括沉积温度、沉积压力、沉积位置、稀释气体Ar与反应气体H_2用量等方面对涂层的成分、结构的影响。探明了CVD TaC涂层的结构形态及其形成基本规律,沉积温度与沉积压力对涂层结构形态、致密度有着决定性的影响。低于1250℃快速沉积为形态1型结构——针状晶体拱形排列;高于1250℃慢速沉积为形态2型结构——柱状晶纵向排列。2500℃热处理时CVD TaC涂层的原子体扩散能力大大提高,涂层出现了明显的烧结收缩与再结晶现象,涂层结构与性能全面退化。
     探索了CVD-TaC涂层的结构形态的形成动力学机制。由于沉积相对温度低,TaC涂层在950~1400℃之间只出现针状和柱状两种典型结构。ES势直接控制着层间质量传输,也就控制了涂层的生长模式。二维岛的形成与形貌演变对涂层初期形貌起着决定性的作用,从而影响涂层的最终结构和涂层的性能,岛的紧致程度主要是由原子沿岛边扩散和跨越角的快慢程度所决定。
     制备了TaC/SiC多层复合涂层及TaC—SiC共沉积涂层,研究了其结构特点,发现并初步研究了TaC—SiC共沉积规律。无梯度TaC/SiC多层复合涂层内有明显的层间界面,热失配使得界面易出现应力集中和层间裂纹。C/C基体表面的驰豫结构对沉积气体TaCln(n=1~5)具有选择性吸附特性,在无H_2或H_2很少的情况下TaC-SiC共沉积涂层主要是TaC。只有在H_2适量并提高CH_3SiCl_3的浓度的情况下才能得到TaC-SiC共沉积涂层。在稳定的TaC-SiC共沉积涂层工艺中,发现了结构与成分周期性波动的自组织结构花样,这种结构的抗热震性能和抗氧化性能优于单一TaC涂层。
     发现了低应力、无裂纹、抗热冲击性良好的TaC涂层结构——纳米介孔针状拱形结构;发明了具有低应力、无裂纹特征的双重梯度共存的TaC/SiC多层复合涂层技术,突破了陶瓷涂层抗热冲击性能差的世界性难题。CVD涂层中均匀分布的纳米介孔结构具有低弹性模量、低膨胀特点和吸收、缓解内部应力应变的功能,具有抵抗2300℃/s氧炔焰热冲击能力。从基体到涂层表面形成由致密到疏松的TaC涂层结构,能够获得无裂纹、抗热冲击性能良好的单一成分TaC涂层。成分波动式C-TaC梯度复合涂层工艺是一种有效的低应力、无裂纹涂层的制备方法。TaC/SiC双梯度涂层不仅减小了涂层间和表面涂层的热应力,而且通过第二重梯度将界面应力分散到整个涂层,显著地降低了应力方向的单一性所导致的应力应变的递增传递集中。提高基体的均匀性是高质量涂层的保障;C-TaC或C-SiC的梯度过渡层能够有效提高涂层与基体的连接强度,降低界面应力,消除裂纹。
     激光烧蚀和氧炔焰烧蚀等试验探索了TaC、TaC/SiC涂层的烧蚀过程、烧蚀机理。致密TaC涂层与基体间的热失配大,涂层的烧蚀为热冲击脱落,瞬间失效,烧蚀机制为热冲击剥蚀控制机制;结构为针状的多孔TaC、C-TaC涂层无裂纹,抗热冲击性能好,但涂层自身的强度低,易被高速气流冲蚀,其烧蚀机制为机械冲蚀控制机制。较理想的抗烧蚀的涂层应在满足抗热冲击性能的前提下,尽量提高涂层的致密度、厚度,提高涂层的抗冲蚀性能。探明了TaC涂层的氧化界面存在由Ta、O、C组成的多孔氧化过渡层,TaC涂层的超高温抗氧化性能是由氧化性气体在表面的Ta_2O_5的液膜的溶解扩散机制控制,当TaC涂层全部被氧化后,在表面的Ta_2O_5的液膜易与C/C基体发生活化氧化,管蚀效应使活化氧化沿基体内的缝隙向内部快速渗入腐蚀,大大加快了对C/C基体的整体腐蚀和烧蚀。具有双梯度的TaC/SiC多层复合涂层抗热冲击性能和抗氧化性能优异。
     从热力学和试验两方面证明了TaC、TaC-SiC涂层在烧蚀过程中无活化氧化反应。建立了TaC涂层、TaC—SiC共沉积涂层涂抗氧化、抗烧蚀模型。在小型C/C、石墨喷管基体上成功制备出厚度大、低应力、无裂纹、均匀的TaC、C/TaC、TaC/SiC涂层,为下一步制备高性能喷管的研究与应用打下了坚实的基础。
In order to improve the resistant-ablation performance of C/C composites and to meet higher requirement for the throat of the latest type of solid rocket motor with high performance, TaC coatings, TaC/SiC composite coatings and TaC-SiC co-deposited coatings were first prepared successfully by means of chemical vapor deposition. The technology, the characteristics in the structure and the kinetics forming coating structure were studied. The thermal shock resistance, ablative resistance and ablative mechanism of the coatings were investigated by ablation tests with low power laser and oxyacetylene flame, and the ablation models of TaC coatings, TaC-SiC co-deposited coatings were built.The CVD TaC coating technology was studied overall. The studies included the influence of deposited temperature, deposited pressure, deposited position and the amount for dilute gas Ar and reaction gas H_2 on the composition and structure of coatings. The basic mechanisms for the structure patterns of CVD TaC coatings and their formation were discovered. The temperature and pressure in CVD have remarkable influence over the structure patterns and density of CVD TaC coatings.The needle-like crystal-----the structure pattern I was formed under1250℃in high speed deposition, or the columnar crystals ----- the structure patternⅡwas formed over 1250℃in low speed deposition. With thermal treating at 2500℃, the atomic volume diffusion of CVD TaC coatings was noticeably improved and coatings structure and performance degenerated overall while apparent shrinking and re-crystalline in coatings appeared.
     The kinetic mechanism of formation of CVD TaC structure patterns was explored. Only two structure patterns, needle-like crystal and columnar crystals, occur to TaC coatings because of the lower relative deposited temperature during 950~1400℃. ES energy controls directly the atom transmission between layers, and so does the growth model of TaC coatings. Formation and evolution of two dimension islands play a decisive role in incipience morphology of coatings, and affect ultimate structures and properties of coatings. The density of islands is decided by on diffusion speeds alone island edge and rate crossing angle between islands.
     TaC/SiC composite coatings and TaC-SiC co-deposited coatings were prepared and their structure characteristics were studied. The deposited mechanisms of TaC-SiC co-deposited coatings have been discovered and studied. TaC/SiC composite coatings with non-gradient have obvious interface between layers. Cracks between layers appear easily due to mismatch of thermal expansion and stress concentration. The relaxation structure of C/C matrix surface has a characteristic of selective adsorption to deposited gas TaCl_n(n=1~5), TaC-SiC co-deposited coating is mostly TaC with no H_2 or scarce H_2. Under the circumstances of suitable rate of H_2 and higher rate of CH_3SiCl_3, the TaC-SiC co-deposited coating with equal ingredient of TaC or SiC may be acquired. Under stable TaC-SiC co-deposited technology, the self-assembly structure patterns with fluctuation of structure and composition were discovered. And its performance of thermal shock resistance and oxidation resistance are superior to TaC coatings.
     The nanosized pore needle-like structure of TaC coating structure, with crackfree, low stress and good thermal shock resistance was discovered. The technology used to prepare TaC/SiC composite coatings with crackfree, low stress and two gradients was invented. So, the international problem for the low thermal shock of ceramic coatings was solved. Results show that the nanosized pore structure formed well-distributed in the TaC coating interior during CVD process characterizes to reduce the hardness, elastic modulus, linear expansibility and to absorb and relieve the inner thermal stress in coatings with resistance of 2300℃/s thermal shock. The TaC coating structure distributing from the dense matrix towards loose coating surface will result in the thick crackfree coatings with good thermal shock resistance. The technology to prepare C-TaC composite coatings with composition fluctuation is the effective method of preparation of crackfree, low stress coatings. TaC/SiC composite coatings with two gradients not only diminish the thermal stress between coating layers and on coating surface, but also reduce remarkably thermal stress concentration and disperse interface stress to full coating by two-gradient structure. It is necessary to obtain the dense and homogeneous matrix surface for the crackfree and low stress coating. C-TaC or C-SiC gradient transitional coatings can enhance connective strength between coating and matrix, and reduce interface stress, eliminate crack in coatings.
     Ablation process and mechanism at ultra-high temperature for TaC and TaC/SiC coatings on carbon-carbon composites have been investigated by ablation experiments with low power laser and oxyacetylene flame. Ablation results show that the dense TaC coatings fall from matrix by thermal shock because of mismatch between TaC coating and matrix, losing efficacy instantly. The ablation mechanism is the denuded mechanism by thermal shock. TaC and C-TaC coatings with needle-like pore structure are crackfree and good thermal shock resistance, but low strength and washed out by high speed fluid. The ablation mechanism is the mechanical erosion. The ideal coatings with ablation resistance should improve coating density, thickness, washing-out-resistance under the prerequisite of satisfied thermal resistance. There exists the diffusion transition layer of 1~2μm that consists of pores and fine crystals containing carbon, oxygen and tantalum. The Ta_2O_5 melt occurrence changes the oxidation mechanism for the TaC coating from the interface reaction mechanism to the diffusion mechanism in the way that oxygen is dissolved and diffused in the melt. When TaC coating was oxidized wholly, the Ta_2O_5 melt on the surface of matrix makes a active reaction to C/C composites. The pipeline-like erosion effect speed active oxidization of carbon alone the aperture in C/C composites, so the erosion and ablation of C/C matrix is accelerated greatly. TaC/SiC composites with two-gradient have superior thermal shock resistance and oxidization resistance.
     Results show from thermodynamics and tests that there are no active oxidization under the ablation of TaC coatings and TaC-SiC co-deposited coatings. The models of oxidization resistance and ablation resistance for TaC coating and TaC-SiC coatings were built. TaC coatings, C/TaC coatings and TaC/SiC coatings with thicker, low stress, crackfree and homogeneous character were prepared successfully on the small throats of C/C matrix and graphite matrix, so the sold foundation on researching and manufacturing high performance throats of SRM was laid.
引文
[1] Donald L, Schmidt, Kenneth E, et al. Unique Applications of Carbon-Carbon Composites Materials (Part One ). SAMPE Journal, 1999,35(3): 27-39
    [2] Donald L, Schmidt, Kenneth E, et al. Unique Applications of Carbon-Carbon Composites Materials (Part Two ). SAMPE Journal, 1999,35(4): 51-63
    [3] Donald L, Schmidt, Kenneth E, et al. Unique Applications of Carbon-Carbon Composites Materials (Part Three ). SAMPE Journal, 1999,35(5): 47-55
    [4] Choury J J. Carbon/Carbon materials for nozzles of solid propellant rocket motors. AIAA76-609.
    [5] Bussiere M., Ariane V. solid rocket booster nozzle development status. AIAA94-3063.
    [6] Savage G. Carbon-carbon composites. Cambridge: Champan & Hall, 1993:11
    [7] 赵稼祥.邓禄普(Dunlop)航空部的碳/碳复合材料.新型碳材料,1989,2:6-13
    [8] 郭正,赵稼祥.碳/碳复合材料的研究与发展.宇航材料工艺.1995(5):1-7
    [9] 李成功,傅恒志,于翘.航空航天材料.北京:国防工业出版社,2002:235
    [10] Erich, Fitzer. The Future of Carbon-Carbon Composites. Carbon, 1987,25(2): 163-190
    [11] 宋允,任慕苏,孙晋良.碳/碳复合材料在推进系统上的应用.产业用纺织品,2000,18(6):39-42
    [12] 苏君明.高效高冲质比C/C喷管的应用与进展.新型碳材料,1996,11(3):18-23.
    [13] 卢嘉德.固体火箭发动机复合材料技术的进展及应用前景.固体火箭技术,2001,24(1):46-52.
    [14] 霍肖旭,曾晓梅,刘红林.炭/炭复合材料及炭纤维增强塑料在固体火箭喷管上的应用.炭素技术,2001(3):23-26.
    [15] 宋桂明,周玉,王玉金等.固体火箭发动机喉衬材料.固体火箭技术,1998,21(2):51-61
    [16] 李世普.生物医用材料导论,武汉工业大学出版社,武汉,2000:79-82
    [17] Blazewicz M, Paluszkiewicz C. Characterization of biomaterials used for bone regeneration by FTIR spectroscopy. Journal of Molecular Structure, 2001, 563-564:147-152
    [18] 苏君明.C/C喉衬材料的研究与发展.炭素科技,2001,11(3):6-11.
    [19] 黄坚定,唐菊花.国外大型固体发动机喷管性能分析.固体火箭技术,1996,19(2):9-16.
    [20] 朱良杰,廖东娟.C/C复合材料在美国导弹上的应用.宇航材料工艺,1993(4):12-14
    [21] Olemcrrcr. Ariane 5 solid rocket motor nozzle design. AIAA90-20883
    [22] Broquere B H. Carbon/Carbon nozzle exit cones SEP's experience and developments. AIAA 97-2647.
    [23] 洪鑫,张宝炯等译.火箭发动机基础(Sutton G P,Bibllarz O.Rocket Propulsion Elements,Seventh Edition.2001 by John Wiley & Sons,Ins.).北京:科学出版社,2003
    [24] 王春利.航空航天推进系统.北京:北京理工大学出版社,2003
    [25] 董师颜,张兆良.固体火箭发动机原理.北京:北京理工大学出版社,1996
    [26] 王罗禹,于龙怀译.固体火箭发动机的结构与试验((苏)A.M.维尼茨基等注).北京:国防工业出版社,1985
    [27] http://www.kepu.com.cn/gb/beyond/spaceflight/space_vortual/index.html
    [28] 阮崇智.我国固体推进技术发展的回顾与展望中国航天 1999年第10期:27-29
    [29] 林德春,张德雄.固体火箭发动机材料现状和前景展望.宇航材料工艺,1999(4):1-5
    [30] 林德春,张德雄.固体火箭发动机材料现状和前景展望续.宇航材料工艺,1999(5):1-4
    [31] 林德春.复合材料于空间固体火箭发动机.高科技纤维与应用 1996(6):2-6
    [32] 庞爱民.法国的固体推进剂技术.推进技术.飞航导弹,2000(4):38-41
    [33] 戴耀松译.战斧助推器MK-U1替代喷管设计.飞航导弹,1996,4:29-35
    [34] Edward W P. History of solid rocket motors. AIAA 98-3978
    [35] Bachrach V E. Material Development and solid rocket motor. AIAA 87-1219
    [36] 王零森.钨基复合材料自发汗冷却机理研究.中南矿冶学院学报,1983,1:8-15
    [37] 宋桂明,孟庆昌,王玉金等.TiC和ZrC颗粒增强钨基复合材料的烧蚀研究.固体火箭技术,2001,24(2):
    [38] 陈正求,李世英.钨铜复合材料的发展.钨钢科技,1984,3:7-12
    [39] Sherman A, Tuffias R H and Kaplan R B. The properties and applications of rhenium produced by CVD. JOM 1991, 6:20
    [40] Rosenberg S D, and Schoenman L. New generation of high-performance engines for spacecraft propulsion. J.Propul. and Power., 1994,10(1):40
    [41] 马图哈K H.(德)主编.丁道云译.非铁合金的结构与性能.北京:科学出版社,1997
    [42] Criscione J M, Mercuri R A, Schram E P, et al. High temperature protective coatings for graphite. Technical Document Report No.ML-TDR-64-173, Part Ⅱ, Air Force Materials Laboratory, Wright-Patterson Air Force Base,Ohio. 1965,1
    [43] 史可顺,林济福.生焦石墨的特性和显微结构.宇航材料工艺,1983,2:6-10
    [44] 何洪庆,周旭.石墨渗铜材料的烧蚀模型探索.固体火箭技术1991,4:102-107
    [45] 郭正.俄罗斯和乌克兰碳/碳复合材料研制情况和特点.出国考察技术报告,1994;(1):190~192
    [46] Suryanarayanna C. Nanocrystalline materials: A critical review. In: Proc. of the symp. of high temperature and high performance materials for rocket engine and space applications. Illinos, 994
    [47] Simler J. Manufacturing technology program for improvement in productivity and cost in carbon carbon rocket nozzles. In: 42nd Intern, SAMPE Symp., 1997:1196~1208
    [48] Katzman H A. Polyarylacetylene-matrix composites for solid rocket motor components. AD A302053
    [49] 陈大明.纳米陶瓷复合材料的制备与性能.材料导报,1997;(5):67~71
    [50] 丘哲明.固体火箭发动机材料与工艺.北京:宇航出版社,1995
    [51] 黄海明,杜善义,吴林志等.C/C复合材料烧蚀性能分析.复合材料学报,2001,18(3):76-80.
    [52] Huanghai ming, Wulin zhi, Wang Jianxin etc. Thermochemical ablation of spherical cone during re-try. Journal of Harbin Institute of Technology, 2001, 18(1): 18-22
    [53] 王伟.喷管扩张段绝热层的烧蚀计算.固体火箭技术,1999,22(3):16-19
    [54] 邓跃军,蔡峨等.喷管碳基喉衬的烧蚀.航空动力学报,1989,4(3):250-252
    [55] 何洪庆,周旭.固体火箭喷管中的烧蚀机制控制.推进技术,1993(4):36-41
    [56] 易法军,梁军,孟松鹤等.防热复合材料的烧蚀机理与模型研究.固体火箭技术,2000,23(3):48-56
    [57] 韩杰才,张杰,杜善义.细编穿刺碳/碳复合材料超高温氧化机理研究.航空材料,1996,17(5):577-581.
    [58] 刘建军,苏君明,陈长乐.炭/炭复合材料烧蚀性能影响因素分析,炭素,2003,114(2):15-1
    [59] Huang Haiming, Wang Jianxin, Wu Linzhi, etal. Aninvestigation of the ablation problem of carbon-carbon composite in re-entry condition[J]. Journal of Harbin Institute off echnology, 2000,7(4). 16-20
    [60] 许正辉.3D炭/炭材料用炭纤维选择。第二届全国新型炭材料学术研讨会论文集
    [61] Bahl O P.高密度炭/炭复合材料的发展[J].新型炭材料的发展,1987,(1):53-55
    [62] 李林远,王抗利.炭/炭复合材料的研究、生产和使用中的若干问题[J].固体火箭技术,1991,(9):99-101
    [63] 李国栋,熊 翔.C/C复合材料基TaC涂层低功率激光烧蚀特征.粉末冶金材料科学与工程,2005,10(3):155-159
    [64] Buchanan F J, Little J A. Glass sealants for carbon-carbon composites[J]. J Mater Sci, 1993, 28: 2324-2330
    [65] 邹武,张康助,张立同.陶瓷基复合材料在火箭发动机上的应用[J].固体火箭技术,2000,23(2):60-68
    [66] 成来飞,张立同.高温长寿命C/C防氧化复合梯度涂层的研究.高技术通讯[J].1996,(5):16-12
    [67] Westwood M E, Webster J D. Review oxidation protection for carbon fiber composites[J]. J Mater Sci, 1996,31: 1389 -1397
    [68] 王世驹.碳/碳复合材料氧化行为的研究[J].兵器材料科学与工程,1999,22(4):36~40
    [69] 崔红,苏君明,李瑞珍.等.添加难熔金属碳化物提高C/C复合材料抗烧蚀性能的研究[J].西北工业大学学报,2000,18(4):669-673
    [70] 李贺军,曾燮榕,朱小旗,等.炭/炭复合材料抗氧化研究[J],炭素,1999(3):2-7
    [71] 程基伟,罗瑞盈,王天民.炭/炭复合材料高温抗氧化研究的现状[J],炭素技术,2001(5)
    [72] 金石译(美国国家材料咨询委员会所属涂层委员会编)高温抗氧化涂层—防止超级合金难熔金属和石墨氧化的涂层[M].科学出版社,1980:239-253
    [73] Patterson, M. C. L He, S. Fehrenbacher, L. L. etc. Advanced HfC-TaC oxidation resistant composite rocket thruster. Materials and Manufacturing Processes, v 11, n 3, May, 1996, p 367-379
    [74] 常琮瑜.译.U.S.5254397.梯度碳化物涂层炭纤维增强复合材料,新型碳材料,1997(3):47-53
    [75] Bruno,et al, Net mold tantalum carbide rocket nozzle throat. January 6, 2004, U.5.0673449.
    [76] 简科,胡海峰,陈朝辉.碳/碳复合材料高温抗氧化涂层研究进展.材料保护,2003,36(1):21-24
    [77] 徐永东.高温结构陶瓷材料的设计准则[J].硅酸盐通报,1997(3):55~58
    [78] 郭全贵.碳材料高温氧化防护陶瓷涂层体系研究进展[J].宇航材料工艺,1998(2):11~16
    [79] 郭海明.C/C复合材料防氧化复合涂层的制备及其性能[J].宇航材料工艺,1998(5):37~40
    [80] Sheehan J E, Buesking K W, Sullivan B J.Carbon Composites[J]. Annu. Rev. Mater. Sci., 1994, 24:19~44
    [81] Goujard S, Vandenbulcke L, Tawil H. Oxidation Tests of Carbonaceous Composite Materials Protected by Si-BC CVD Coatings[J]. Thin Solid Films, 1994, 252:120
    [82] Agrawal D K, Harshe G; Breval E, etal.[NZP], NaZr2P3O12-type Materials for Protection of Carbon-Carbon Composites[J]. J. Mater. Res., 1996, 11 (12):3158
    [83] Kee K N, Miller R A, JACOBSONND. New-Generation of Plasma-Sprayed Mullite Coatings on Silicon-Carbide J. Am. Ceram. Soc., 1995, 78(24):705-710
    [84] Graham D W, Stinton D P. Development of tantalum pentoxide coatings by chemical vapor deposition[J]. J. Am. Ceram. Soc., 1994, 77(9):2298-2304
    [85] Buchanan F J, Little J A. Surface and Coatings Technology, 1991, 46:217
    [86] Wu T M, Wu Y R. Methodolohy in exploring the oxidation behaviour of carbon-carbon composites[J]. J. Mater. Sci., 1994, 29:1260
    [87] Wu T M, Wei W C. Materials Chemistry and Physics, 1993, 33:208
    [88] CHEN-CHIM.MA, etal.J.Mater.Sci., 1996,31:649
    [89] Hu H S, Joshi A, Lee J S. J. Vac. Sci. Technol, 1991,A9(3):1535
    [90] 成来飞,张立同.高温长寿命C/C防氧化复合梯度涂层的研究[J].高技术通讯,1996,6(5):16~18.
    [91] 方海涛,朱景川,尹钟大.碳,碳复合材料抗氧化陶瓷涂层研究进展.高技术通讯[J].1999,(8).12:54~58
    [92] 成来飞,张立同,徐永东,周万城.液相法制备碳碳复合材料Si-W涂层表面氧化层的结构[J].硅酸盐学报,1997,(5):537
    [93] 曾燮榕,郑长卿,李贺军,扬峥.碳/碳复合材料MoSi_2涂层的防氧化研究[J].复合材料学报,1997,14(3):37
    [94] Westwood M E, Webster J D, Day R J, etal. Oxidation on protection for carbon fiber composites[J].J. Mater. Sci., 1996, 31:1389-1397
    [95] Strife J R, Sheehan J E. Ceramic coatings for carbon-carbon composites[J]. Ceramic Bulletin, 1988, 67(2): 369-374
    [96] Gee S M, Little J A. Oxidation behavior and protection of carbon carbon composites[J]. J. Mater. Sci., 1991, 26:1093-1100
    [97] Buchanan F J, Little J A. Corrosion Seience, 1993, 35(5-8): 1243
    [98] Buchanan F J,Little J A. J. Mater. Sci., 1993, 28:2324
    [99] Buchanan F J, Little J A. Particulate-containing glass sealants for carbon-carbon composites[J]. Carbon, 1995, 33 (4): 491-497
    [100] 高南,张启富,顾宝珊.译.(McCauley R A. Corrosion of Ceramics. 1995. New York)陶瓷腐蚀,北京:冶金工业出版社,2003
    [101] Goujard S,Vandenbulcke L, Tawil H. Thin Solid Films, 1994, 252:12
    [102] Goujard S, Vandenbulcke L. Thin Solid Films,1994, 245:86
    [103] Morimoto T, Ogura Y, Kondo M, etal. Multilayer coating for carbon-carbon composites[J]. Carbon, 1995, 33(4): 351
    [104] Yamamoto O, Sasamoto T, Sogabe T J, 1998, 17:327
    [105] Yamamoto O,Inagaki M.新型碳材料 1999,14(1):1
    [106] Nakanu J, Fujii K, Yamada R. J. Am Ceram. Soc., 1997, 80(11): 2897
    [107] Guo Q G, Song J R, Liu L. etal. Relationship between oxidation resistance and structure of B_4C-SiC/C composites with self-healing properties[J]. Carbon 1999,37(1): 33-40
    [108] 朱庆山,邱学良,马昌文.HTR-10球形燃料元件基体石墨抗氧化研究[J].高技术通讯 1998,(3):50
    [109] Meili Guo, KuiShen, Yudong Zheng. Multilayered coatings for protecting carbon-carbon composites from oxidation[J]. Carbon, 1995, 33(4): 449-453
    [110] Kowwbel W, Withers J C. CVD and CVR silicon-based functionally gradient coatings on C-C composites[J]. Carbon, 1995, 33(4): 415-426
    [111] 周玉.陶瓷材料学[M],哈尔滨工业大学出版社,1995:308
    [112] Kehr D, Brennfleck K, Weiss R. Application of SiC Coatings by CVD for the Protection of Carbon—Carbon Composites Against Oxidation[J]. High Temperature-High Pressures, 1990, 22 (6): 693
    [113] Joshi A, Lee J S. coatings with particulate dispersions for high temperature oxidation, protection of carbon and C/C composites Composites Part A, 1997, 28A: 181-189
    [114] 曾燮榕,李贺军,扬峥.碳/碳复合材料表面MoSi_2-Sic复相陶瓷涂层及其抗氧化机制[J].硅酸盐学报,1999,27(2):8-14
    [115] Tsou H T, Kowbel W. A hybrid PACVD multilayer coating for oxidation protection of composites[J]. Carbon, 1995, 3 (9): 1279-1288
    [116] Tsou H T, Kowbel W. Surface and Coatings Technology, 1996, 79:139
    [117] Tsou H T, Kowbel W. A hybrid PACVD Si_3N_4 coating for oxidation protection of composites[J]. Carbon, 1995, 3(9): 1289
    [118] Moore A W, Dowell M B, Stover E R, etal. Ceram. Eng. And Sci. Pro., 1995, 16(4): 263
    [119] Fritze H, Jojic J, Witke T, etal. Mullite based oxidation protection for SiC-C/C composites in air at temperatures up to 1900 K[J].J. Eur. Ceram. Soc. 1998 (18): 2351-2364
    [120] 邓景屹.化学气相渗工艺及热结构复合材料研究(博士论文).沈阳,中科院金属所.2001
    [121] Caputo A J, Lackey W J, Stinton D P. Development of a new fasterprocess for the fabrication of ceramic fiber-reinforced ceramic composites by chemical vapor infiltration, Ceram. Eng. Sci. Proc., 1985, p690
    [122] Urmura S, Sohda Y, Kude Y. SiC/C functionally gradient material prepared by chemical vapor deposition, Preceedings of the first international symposium FGM.Sendai, 1990:237
    [123] Niihara K, Hirai T. Chemical vapor-deposited silicon nitride. Part Ⅰ Preparation and some properties[J].J. Mater. Sci. 1976, 11:593-603
    [124] Niihara K, Hirai T. Chemical vapor-deposited silicon nitride. Part Ⅱ Density and formation mechanism[J].J. Mater. Sci. 1976,11:604
    [125] Wang Y, Sasa ki M, Hirai T. Density and microstructure of CVD SiC-C nanocomposites[J]. J. Mater. Sci. 1991,26:6618
    [126] Wang Y, Sasa ki M, Goto T, etal. Themodynamics for the preparation of SiC-C nano-composites by chemical vapor deposition[J]. J. Mater. Sci. 1990,25:4607
    [127] Kaae J L, Guld T D. Structure and mechanical properties of codeposited pyrolytic C-SiC alloy[J]. J. Am. Soc, 1971,54(2)605
    [128] Moeller H H, Long W G, Caputo A J,etal. SiC fiber reinforced SiC composites using chemical vapor infiltration. SAMPE Guarterly, 1986
    [129] Lamicaq P J, Bemhart G A, Dauchier M, etal. SiC/SiC composites ceramics. Am. Ceram. Soc. Bull. 1986 65(2)336
    [130]Tai N H, Chou T W.On the deposition mechanism of Al_2O_3 in the CVI process for forming ceramic composites[J]. J. Mater. Res. 1990,5(2):2255
    [131]Tai N H, Chou T W. Analytical modeling of chemical vapor infiltration in fabrication of ceramic composites[J]. J. Am. Ceram. Soc. 1989,73(3):414
    [132]Crammer D C. Fiber coating and characterization[J]. Am. Ceram. Soc. Bull. 1989,68(2):415
    [133]Aggour L, Fitzer E, Ignotowitz E, etal. Chemial vapor deposition of pyro-carbon, SiC, TiC, TiN,Si and Ta on different Types of carbon fiber,Carbon,1974,12:358
    [134]Wang H, Singh R N Goela J S. Effect of postdeposition treatmen s on the mechanical properties of a chemical-vapor-deposited silicon carbide[J].
    [135]Kim D J, Choi D J. High-temperature corrosion resistance of chemical vapor deposited silicon carbide against hydrogen chloride and hydrogen gaseous environments[J]. J. Am. Ceram. Soc. 1996, 79(2):503
    [136]Cholet V Vandenbulcke L. Chemical vapor infiltration of boron nitride interphase in ceramic fiber performs: Discussion of some Aspects of the fundamentals of the isothermal chemical vapor infiltration process. J. Am. Ceram. Soc. 1993, 76(11):2846
    [137]Jawed I, Nagle D C. Oxidation protection in carbon-carbon composites. Mas. Res. Bull., 1986,21:1391
    [138]Shinavski R J, Diefendorf R J. CVI processing of thin C/HfB_2 composites [J]. Ceram. Eng. Sci.Proc. 1993,14[9-10]:824
    [139]Girard H. Slonina J P. The preparation and properties of high density carbon-carbon compodites[J]. Processding of the fifth London internation carbon and graphite conference,1978,(1):483
    [140]Liu W C, Sun S J,Li M J.The mirostructures and properties of CVD C/C composites extended abstracs 20~(th) Biennial Conferce on Carbon Santa Barbroa, Ca,1991:370
    [141]Fitzer E, Gadow R. Fiber-reinfored silicon carbide[J]. Am. Ceram. Soc. Bull.,1986,65(2):326
    [142]Naslain R, Hagenmuller P, Chrisin F, etal. The carbon fiber-carbon and silicon carbide binary matrix composites a new class of materials for high temperature applications,In Proc. 3~(rd). Int. conf. Composite Materials, Paris, 1980:1084
    [143]Liu W C Sun S J Li M J, etal. The preparation of C/C-SiC nanomatrix composites by chemical vapor infiltration[J]. J. Mater.Sci.Lett. 1993,(12):886
    [144] Dupel P. Bourrat X Pailler R. Structure of pyrocarbon infiltration by pulse-CVI, Carbon, 1995,33(9): 1193
    [145] Stinton D P.Caputo A J. Synthesis of fiber-reinforced SiC composites by chemical vapor infiltration[J]. Am. Ceram. Soc.Bull. 1986,65(2):347
    [146] Haynes J A, Lance M J, Cooley K M, etal. CVD mullite coatings in high temperature, high pressure air H_2O[J]. J.Am.Ceram.Soc., 2000, 83(3):657~659
    [147] Gourjard S, Vandenbulke L, Tawil H. The oxidation behavior of two and three dimensional C/SiC thermostructural materials protected by chemical vapor deposition polylayers coatings. J.Mater.Sci., 1994, 29(23):6212~6220
    [148] Courtois C, Desmaison J, Tawil H. Protection against oxidation of C/SiC composites with a multiplayer CVD coating. Engineering Ceramics, 1993, 13:803~808
    [149] Kowbel W, Tsou L K. Chemical vapor deposition (CVD) BN Si3N4 interracial coating for improved oxidation resistance of SiC SiC composites. Journal of Materials Synthesis and Processing, 1995(3): 121
    [150] Kowble W, Tsou H T, Withers J C. Silicon carbide whisker reinforced CVD alumina coating on a SiC SiC composite. Journal of materials Synthesis and Processing, 1996(4):51~58
    [151] 李志强,肖俊明,林峰,等.Si_3N_4结合SiC窑具材料抗氧化性的研究.金刚石与磨料磨具工程,1996(1):29~30
    [152] Ferraris M, Montorsi M, Salvo M. Glass coating for SiCf/SiC composites for high temperature applieation.Acta. Materialia, 2000, 48(18~19):4721~4724
    [153] 刘开琪.含炭耐火材料抗氧化涂料的配制及抗氧化原理.耐火材料,2000,34(1):20~22
    [154] Aparicio M, Duran A. Yttrium silicate coatings for oxidation protection of carbon silicon carbide composites. J.Am.Ceram.Soc., 2000, 83(6): 1351~1355
    [155] 张宗涛,黄勇,乐恢榕,等.SiC晶须表面成分和涂层对抗氧化性的影响.材料科学进展,1992,6(5):409~413
    [156] 徐明霞.溶胶.凝胶法莫来石被覆SiC复合微粒子的制备.硅酸盐通报,1996,15(1):31~35
    [157] 涂强,赵天亮,薄新维.碳化硅Sol Gel法浸渗莫来石涂层研究.矿冶,2000,9(1):72~74
    [158] Wurrn R, Demovsek O, Greil P. Sol Gel derived SrTiO3 and SrZrO3 coatings on SiC and C fibers. J.Mater.Sci., 1999, 34 (16):4031~4037
    [159] Li T K, Hirschfeld D A, Brown J J. Thin film coatings of (Ca0.6, Mg0.4)Zr4(PO4)6 on Si3N4 and SiC. J. Mater. Res., 1994, 9(8):2014~2028
    [160] Kato M, Goto Y. Fabrication of TiO2 coating on SiC whisker by a sol gel method. J.Mater.Sci.Lett., 1996, 15(15):1291~1293
    [161] Lee K N, Miller R A, Jacobson N S. New generation of plasma sprayed mullite coating on silicon carbide. J. Am. Ceram. Soc., 1995, 78(3):705~710
    [162] Pan Mu, Chen Y B, Gani M S J. Stress analysis of alumina coatings on silicon carbide based refractories during thermal cycling. Journal of Wuhan University of Technology Materials ScienceEdition, 1999, 14(3):9~15
    [163] Pan Mu, Luo Zhiping, Nan Cewen, etal. Microstructure of MgAl_2O_4 spinel coating. Chinese Journal of Materials Research, 2000, 14(suppl.): 122~126
    [164] Xu Yongdong, Xu Y D, Cheng L F, etal. Oxidation behavior and mechanical properties of C/SiC composites with Si MoSi2 oxidation protection coating. J.Mater.Sci., 1999, 34(24): 6009~6014
    [165] 刘荣军,周新贵,张长瑞,等.包渗法制备Cf/SiC陶瓷基复合材料MoSi_2/SiC/Si防氧化涂层.宇航材料工艺,2000,30(3):45~48
    [166] 张巨先,侯耀永,高陇桥,等.非均匀成核法涂覆改性纳米SiC粉体表面研究.硅酸盐学报,1998,26(6):762~767
    [167] Chaim R, Stark G, Gal Or L, etal. Electrochemical ZrO_2 andAl_2O_3 coatings on SiC substrates. J.Mater.Sci., 1994, 29(23):6241~6248
    [168] Cheng L F, Xu Y D, Zhang L T, etal. Oxidation behavior of C/SiC composites with a Si W coating from room temperature to 1500℃. Carbon, 2000, 38(15):2133~2138
    [169] Choury J. J. Carbon-carbon Marterials for Nozzles of Solid Propellent Rocket Motors. AAIA Paper No.76-609, 1976
    [170] 梁英教,车荫昌,刘晓霞,等.无机热力学数据手册.东北大学出版社,1993
    [171] 叶大伦,胡建华.实用无机热力学数据手册.北京:冶金工业出版社,2002
    [172] http://www.ultramet.corn/u2000.htm
    [173] Sayir A. Carbon fiber reinforced hafnium carbide composite NASA Glenn Research Center/Case Westem Reserve University, Cleveland, OH 44135, USA, ULTRA-HIGH TEMPERATURE CERAMICS, JOURNAL OF MATERIALS SCIENCE. 2004(39):5995-6003
    [174] Frisk K, Guillermet A F. Gibbs energy coupling of the phase diagram and thermochemistyr in the tantalum-carbon system. Journal of Alloys and Compounds, 1996(238): 167-179
    [175] 孟广耀.化学气相淀积与无机新材料.北京:科学出版社,1984
    [176] 唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社:2003
    [177] Ohring M. The materials science of thin films.Boston: Academic Press, 1992
    [178] Smith D L.Thin film deposition. New York:McGraw-Hill Inc., 1995
    [179] 田民波.薄膜技术手册.北京:机械工业出版社,1991
    [180] McCrary V R, Donnelly V M, In: Hitchman ML, Jensen KR, editors. Chemical vapour deposition.London: Academic Press; 1993.
    [181] 易茂中,冉丽萍,何家文.厚涂层结合强度测定方法研究进展.表面技术,1998,27(2):33-37
    [182] 刘福田,李兆前,王志,等.涂层材料性能测试技术[J].机械工程材料,2002,26(3):1-4
    [183] 马福康,丘向东,贾厚生,等译.铌与钽(M),中南工业大学出版社,1997:144~145
    [184] 王恩哥.薄膜生长中的表面动力学[J].物理学进展,2003,23(1):1601
    [185] 李国栋.熊翔.黄伯云.温度对CVD-TaC涂层组成、形貌与结构的影响,中国有色金属学报,2005,15(4):565-571
    [186] 舒武炳,郭海明,乔生儒,等.化学气相沉积法制备TiC涂层的相组成和表面形貌[J].西北工业大学学报,2000,18(2):228-321
    [187] 朱钧国,杜春飙,张秉忠,等.碳化锆的化学气相沉积[J].清华大学学报,2000,40(12):59-62
    [188] Teghil R, Alessio L D, DeMaria G, etal. Pulsed laser deposition and characterization of TaC films[J]. Appiled Surface Science, 1995,86:190-195
    [189] Chiu C C, Desu S B. Local equilibrium phase diagrams: SiC deposition in a hot wall LPCVD reactor. J. Mater. Res., 1994.9(8):2066-2071
    [190] 谈慕华,黄蕴元.表面物理化学.北京:冶金工业出版社,1985
    [191] Lee Y J,Chio D J.Comparison of diluent gas effect on the growth behavior of horizontal CVD SiC with analytical and experimental dada. Surface and coatings technology, 2004, 177-178:415-419
    [192] Borton W K, Cabrea N and Frank F C. Philos. Trans. R. Soc. London Ser.A 1951,243:299
    [193] Swartzentruber B S, Mo Y W, Kariotis R, etal. Phys. Rev. Lett. 1990, 65:1913-1917
    [194] Wang X S, Goldberg J L, Bartelt N C, etal. Phys. Rev. Lett. 1990, 65:2430-2434
    [195] Tsong T T and Chen C L. Surf. Sci.1991, 246:13-19
    [196] Wen J M, Chang S L, Burnett J W, etal. Phys. Rev. Lett. 1994,73:2591-2595
    [197] Morgensten K, Rosenfeld G, Plelserma B, etal. Phys. Rev. Lett. 1995, 74: 2958-2062
    [198] Hamilton J C, Dav M S and Foiles S M, Phys. Rev. Lett. 1995,74:2760-2764
    [199] Van Siclen C D. Phys.Rev. Lett. 1995,74:1574-1578
    [200] Khare S V, Bartelt M C and Einstem T L. Phys. Rev. Lett. 1995, 74:2148-2152
    [201] Khare S V, Einstern T L. Phys. Rev. Lett. B1996, 54:11752-11757
    [202] Soler J M. Phys. Rev. Lett. B1996, 53:R10540-10545
    [203] Sholl D and Skodje R T. Phys. Rev. Lett. 1995, 75:3158-3162
    [204] Sholl D and Skodje R T. Physica A. 1996, 231:631-636
    [205] Voter A F. Phs.Rev.B 1986,34:6819-6826
    [206] Bogicevic A, Liu S D, Jacobsen J. etal. Phs.Rev.B1998,57:R9439-9443
    [207] Ostwald W Z. Phs. Chem, LeiPzig,1900,34:495-499
    [208] Ehrilich G and Hudda F G. J. Chem.Phys. 1966.44:1039-1043
    [209] Schwoebel R L and Shipsey E J. J Aool. Phys. 1966,37:3682-3686
    [210] Witten T A and Sander L M. Phys. Rev. Lett. 1981,47:1400-1403
    [211] Zhang Z Y, Chen X and Lagally M G. Phys. Rev. Lett. 1994, 73:1829-1932
    [212] Zhang Z Y, Lagally M G. Science. 1997,276:377-381
    [213] Zhong J, Zhang Z Zhang Z, etal. Phys. Rev. B 2001,63:11340-11346
    [214] 王英华.X光衍射技术基础,北京:原子能出版社:1993
    [215] 恽正中.表面与界面物理,成都:电子科技大学出版社,1993
    [216] 日本炭素材料学会,中国金属学会炭素材料专业委员会编译.新炭素材料入门,1999
    [217] 贺福,王茂章.碳纤维及其复合材料,北京:科学出版社,1995
    [218] 贾成广.陶瓷基复合材料导论[M]北京,冶金工业出版社,2002:256-268
    [219] Boley B A, Weiner J H. Theory of thermal stress[M]. Krieger R H press, 1985
    [220] 关振铎,张中太,焦金生.无机材料物理性能,北京:清华大学出版社,1992
    [221] Bacos M P, Dorvaux J M, LAvigne O etc. C/C composites oxidation model Ⅰ: Morphological experimental investigation. Carbon, 2000,38:77-92
    [222] Bacos M P, Dorvaux J M, LAvigne O etc. C/C composites oxidation model Ⅱ: Oxidation experimental investigations. Carbon, 2000, 38:93-103.
    [223] Bacos M P, Dorvaux J M, LAvigne O etc. C/C composites oxidation model Ⅲ: Physical basis, limitations and applications, Carbon,2000,38:105-117
    [224] D.gozzi, G.Gzzardi, M.Montozzi, etc. Kinetics of high temperature oxidation of refractory carbides. Solid State Ionics, 1997, (101-103): 1243~1250
    [225] 成来飞,张立同,徐永东,李明军.碳碳复合材料复合防氧化涂层材料及其制备方法,西北工业大学学报,1998(2)
    [226] 潘牧,南策文.碳化硅(SiC)基材料的高温氧化和腐蚀,腐蚀科学与防护技术.2000,12(2):110-12
    [227] Huang J F, Zeng X R, Li H J, Xiong X B, Huang M. Mullite-Al_2O_3-SiC oxidation protective coating for carbon carbon composites. Carbon 41 (2003) 2825-2829
    [228] Lee Y J, Joo H J. Ablation characteristics of carbon fiber reinforced carbon (CFRC) composites in the presence of silicon carbide (SiC) coating. Surface and Coatings Technology. 2004(180-181):286-289
    [229] 黄海明,杜善义,施惠基.含钽(Ta)C/C复合材料烧蚀分析,复合材料学报,2003,20(3):13-16
    [230] 何捍卫,周科朝,熊翔.C/C复合材料抗烧蚀涂层的制备.稀有金属材料与工程,2004,33(5):490-493.
    [231] Laub B. Thermo chemical Ablation of tantalum carbide loaded carbon-carbons[R]. AIAA-80-1476, NewYork:AIAA
    [232] 陈肇友.Si-C-O复杂体系中的化学反应,耐火材料 2003,37(6):311~315
    [233] GU Ping, MIAO Hong, LIU Zhao-tao, et al. Elastic Modulus of Nanoporous Alumina Films through Bulge Test [J].Joumal of experimental mechanics, 2004,19(1):34-38
    [234] Richard J. Brook. Processing of Ceramics Part Ⅰ(materials science and technology;Vol. 17A)[M]. Weinheim press(US), 1996:4-10
    [235] LI Guo-dong(李国栋),XIONG Xiang(熊翔),HUANG Bai-yun(黄伯云). Microstructure characteristic and formation mechanism for crackfree TaCcoating on C/C composite.Trans.Nonferrous Met. Soc. China, 2005, 15(12): 1206-1213
    [236] 张立德,蔡伟平,牟季美.纳米微粒,介孔固体组装体系的物性研究.自然科学进展 1999,9(2):103-109
    [237] Wu Chtmgucy, Thomas Bein. Conducting polyaniline in a mesoporous channel host. Science,1994,264:1757
    [238] 陈航榕,施剑林,严东生,等.非硅组成有序介孔材料合成及应用[J].硅酸 盐学报,2000,28(3):259~263
    [239] 赵丽,余家国,赵修建,等.介孔纳米结构材料的研究与发展.稀有金属材料与工程,2004,33(1):5-9
    [240] Paul Schwarzkope and Richard kieffer. Refractory hard metals borides, carbides, nitrides, and silicides. New York: The Macmillan Company,1953
    [241] 武汉建筑材料工业学院,等.玻璃工艺原理.北京中国建筑工业出版社,1981

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700