NiO基p型透明导电氧化物薄膜及其二极管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
p型透明导电氧化物(TCO)薄膜是近年来半导体材料领域的研究热点之一。在已经报道的p型TCO薄膜材料中,还没有任何一种材料的性能可以提升至满足实用化的水平。p型氧化物薄膜在材料的导电机理、合成工艺、器件制备等方面都有待进一步研究。基于此,本论文开展了利用新型脉冲等离子体沉积(PPD)技术制备p型TCO薄膜的研究工作,主要研究了Cu、K掺杂的p型NiO透明导电氧化物薄膜,以及由它们和n型TCO薄膜所构成的透明氧化物薄膜二极管。NiO是一种典型的宽禁带p型半导体材料,对其进行适当的掺杂可以提高其在室温下的电导率;PPD是一种基于脉冲电子束烧蚀靶材形成薄膜的技术。开展利用PPD技术制备掺杂氧化镍p型薄膜的研究工作,对于拓展透明导电氧化物薄膜材料的新体系、以及开发p型氧化物薄膜制备工艺,具有重要的意义与价值。主要研究内容与结论如下:
     基于Cu外层电子结构3d10的能级与O2p6相近、能够在金属-氧化学键中引入共价键成分来诱导形成扩展价带结构、从而降低氧离子电负性对空穴载流子强局域化作用的考虑,首先开展了关于掺铜氧化镍p型透明导电薄膜的研究工作。采用PPD方法制备了p型Nil-xCuxO(x=0~0.9)薄膜,Cu掺杂含量的提高有利于改善薄膜的电学性能,但是不利于光学性能;NiO导电的机理主要源于Ni3+存在,薄膜中的间隙氧能产生Ni3+,较高基底温度与较低氧气压条件下沉积薄膜都会减少间隙氧的含量,进而降低电导率;经工艺优化后制备的p型Ni0.9Cu0.10薄膜,室温下电导率达到5.17 S cm-1,可见光区(400~700 nm)的平均透射率为60%。
     开展了关于掺钾氧化镍p型透明导电薄膜的研究工作。利用PPD制备了p型Nil_xKxO(x=0~0.4)薄膜,所制备的薄膜同样没有杂质相的生成,且随沉积温度的提高晶格结构更趋于完善;K置换Ni提供更多的空穴数量,提高了薄膜的电导率;基底温度提高会改善薄膜在可见光区域的透明性,但是同时会减少薄膜中Ni3+的含量,不利于薄膜的电学性能;提高沉积薄膜时的氧气压可以同时改善薄膜的电学性能与光学性能。经工艺优化后制备的p型Ni0.75K0.250薄膜,室温下电导率达到4.25 S cm-1,可见光区的平均透射率接近60%。
     采用基于密度泛函理论的第一性原理方法模拟计算了Cu、K掺杂的NiO超晶胞结构。计算结果表明,两种元素的掺杂都使NiO能带的费米能级进入价带顶,呈现p型半导体特征,并且没有在禁带中引入深能级态。Cu掺杂NiO的价带顶主要由Ni 3d、Cu 3d和O2p态贡献,导带底则主要来源于Ni 4s态;K掺杂NiO的价带顶主要由Ni 3d、K 2p和O 2p态贡献。K掺杂引入的杂质能级对费米能级附近态密度的贡献没有Cu掺杂大。掺杂Cu离子引入的3d能级与NiO价带顶附近的能级发生了杂化,形成的杂化轨道减弱了O 2p能级对空穴载流子的局域性,预示着在NiO中掺Cu能实现更好的p型掺杂效果,有利于提高p型NiO的电导率。
     开展了关于p-Ni0.9Cu0.1O/n-IWO透明氧化物异质结的研究。掺钨氧化铟(IWO)是一种具有低电阻率、高迁移率和同时具备可见-近红外区(700~2500nm)高透射率的新型TCO材料,在太阳能电池透明电极、近红外光传感器等领域具有应用价值。通过调整溅射过程中的氧分压,可以控制IWO薄膜的电阻率在半导体的范围内,从而获得了与p型Ni0.9Cu0.1O薄膜电学性能相匹配的透明氧化物半导体n-IWO薄膜,可见光区平均透射率达到85%,光学禁带宽度3.65 eV。在此基础上,采用反应直流磁控溅射法、PPD和热蒸发法,设计并制备了IWO/n-IWO/p-Ni0.9Cu0.1O/Al四层结构的薄膜二极管。二极管在电流-电压(Ⅰ-Ⅴ)测试中体现了良好的整流特性,整流比接近90。所制备的薄膜电极与半导体层薄膜间的接触均为欧姆接触,没有产生肖特基势垒。分析了pn异质结的能带结构,理论计算得到的内建电势差与二极管的阈值电压大小基本符合。本部分内容对透明氧化物薄膜二极管的制备做出了初步探索,为室温生长全透明非晶氧化物薄膜二极管奠定了实验基础。
     非晶透明导电氧化物由于具有结构均一、高载流子迁移率、工艺温度低、易于大面积成膜等优点而特别适用于柔性显示技术。为了进一步拓展TCO薄膜在柔性电子学领域的应用空间,需要制备由该类材料构成的有源光电功能器件。这里利用反应直流磁控溅射法和PPD技术,并结合掩膜,在室温下生长基于α-IWO/n-IZO/p-Ni0.9Cu0.1O/α-IWO四层结构的全透明非晶氧化物薄膜二极管。通过逐层摸索寻找各层薄膜的最优化工艺。制备的α-IWO薄膜电极的最低电阻率达到5.75×10-4Ωcm,可见光与近红外透射率均大于80%;n型半导体层采用铟锌氧化物(IZO),IZO薄膜具有随沉积过程中氧分压变化的可控电阻率;整个薄膜二极管的各层薄膜均为非晶结构,且表面均匀平整。I-V测试结果显示,载流子浓度与电导率相接近的p型Ni0.9Cu0.1O和n型IZO薄膜的组合获得了较好的整流曲线,整流比达到40;整个二极管在可见光范围内的平均透射率接近50%,属于半透明状态,在柔性透明电子器件领域具有良好的应用前景。
The p-type transparent conducting oxide (TCO) thin films have been widely researched in recent years. However, until now, the properties of reported p-type TCO films can't meet the commercial applications yet. The condution mechanism, synthetization method of the materials and device fabrication need to be further studied. In this paper, we study Cu-doped and K-doped NiO p-type transparent conducting films by a newly pulsed plasma deposition (PPD) method, and further the diodes composed of the p-type NiO-based thin films. NiO is a kind of typical wide band gap p-type semiconductor. The conductivity of NiO could be increased by doping with appropriate elements. PPD is a kind of deposition technique based on the ablation of the target. The study on p-type doped NiO films by PPD method is a meaningful work for exploring newly p-type TCO materials systems and preparation methods. Main experimental results and conclusions are as follows:
     The energy level of Cu 3d10 is comparable to that of O 2p6 and the formation of covalent bonding is possible, which could lead to large dispersion in the valence band and reduction in localization of positive holes. The study on Cu-doped NiO transparent p-type conducting films was first performed. The Ni1-xCuxO(x=0~0.9) thin films were prepared by PPD method. The conductivity will be improved with high content of dopant while the transparency will be deteriorated. The conduction mechanism of NiO was mainly ascribed to the existence of Ni3+. Ni3+ could be formed by the excess oxygen in films. The conductivity would be decreased due to the decreased amount of Ni3+, which is mainly caused by low depositon temperature and working pressure. The Ni0.9Cu0.1O film exhibits the highest conductivity of 5.17 S cm-1, with an average transmittance of 60% in the visible region (400~700 nm).
     K-doped NiO transparent p-type conducting films was studied. The Nii-xKxO (x =0~0.4) films were prepared by PPD method. There was no impurity peaks detected in films. With the deposition temperature increased, the diffraction peaks would become stronger, which indicate the better crystalline structure. The conductivty of the films were promoted due to the K doping. The transparency was improved with the increase of deposition temperature while the conductivity was deteriorated due to the decrease amount of Ni3+. Both the electrical and optical properties of the films would be improved if deopsited in a high oxygen atmosphere. The Ni0.75K0.25O film deposited at room temperature exhibits the highest conductivity of 4.25 S cm-1, with an average transmittance of~60% in the visible region.
     First principles based density functional theory have been performaned for Cu-doped and K-doped NiO supercells, respectively. The calculation results showed that both the two doped elements make the fermi level of NiO into the valence band maxium (VBM), which was a typical characteristic of the p-type semiconductors. Besides, the doped elements didn't introduce the deep level in the gap. The VBM of Cu-doped NiO was mainly composed of Ni 3d, Cu 3d and O 2p states, respectively, while the conduction band minimun (CBM) consisted mainly of Ni 4s states; The VBM of K-doped NiO was mainly composed of Ni 3d, K 2p and O 2p states, respectively. The impurity level introduced by the K doping contributed less to the states of density near the fermi level in contrast to Cu doping. The 3d level introduced by Cu doping were hybridized with the energy levels from VBM. The formed hybridized orbits would weaken the localization of O 2p level. The results indicate that Cu doping have a better effect on the increase of p-type conductivity.
     Transparent oxide hetero-junction of P-Ni0.9Cu0.1O/n-IWO was investigated. Tungsten doped indium oxide (IWO) is a newly kind of TCO material with low resistivity, high mobility and high transparency in both visible and near infrared region (700~2500nm). IWO films have potential applications in solar cells and near infrared sensors. The resistivity of IWO film could be controlled to match the p-Ni0.9Cu0.1O layer by adjusting the oxygen partial pressure during the sputtering process, with an average transmittance of 85% in visible region and energy band gap of 3.65 eV. The diode with the structure of IWO/n-IWO/p-Ni0.9Cu0.1O/Al was fabricated by dc magnetron sputtering, PPD method and thermal evaporation. Current-voltage (Ⅰ-Ⅴ) curve of the diode exhibits nonlinear and rectifying characteristics. The ratio of forward current to the reverse current is about 90. The ohmic nature of the contacts between electrode layer and semiconductive layer was confirmed. The equilibrium energy band diagram of the pn heterojunction was given. The value of the built-in voltage calculated theoretically is approximately identical with the threshold voltage. The results give the reference for the next step of fabrication of amorphous transparent all oxide film diode at room temperature.
     Amorphous tranparent conducting oxides are highly favorable for applications in flexible displays because they have many inherent advantages such as robust properties with regard to lattice mismatch and low temperature deposition on large substrates. The optoelectronic devices composed of such materials should be fabricated to enlarge the applications in the field of flexible electronics. In this paper, amorphous transparent all oxide film diode with structure ofα-IWO/n-IZO/p-Ni0.9Cu0.1O/α-IWO was fabricated at room temperature by dc magnetron sputtering and PPD technique. Each layer was studied respectively to obtain the optimal deposition condition. IWO film as electrode layer showed a resistivity of 5.75×10-4Ω. cm, with an average transmittance over 80% in both visible and near infrared region. Indium zinc oxide (IZO) was used as n-type semiconductive layer. The resistivity of IZO films could be adjusted by the oxygen partial pressure during deposition. Each layer of the diode showed amorphous structure and smooth surface. Diode composed of p-Ni0.9Cu0.1O and n-IZO layers with matched properties obtained the better nonlinear and rectifyingⅠ-Ⅴcharacteristics, with a ratio of 40 of forward current to the reverse current and an average transmittance of~50% in visible region. The results indicate a promosing application in flexible transparent electronic devices.
引文
[1]Badeker K. Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds[J]. Ann Phys-berlin,1907,22(4):749-766.
    [2]Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of CuAlO2[J]. Nature,1997, 389(6654):939-942.
    [3]Kawazoe H, Yanagi H, Ueda K, Hosono H. Transparent p-type conducting oxides:Design and fabrication of p-n heterojunctions[J]. Mrs Bull,2000, 25(8):28-36.
    [4]Yanagi H, Inoue S, Ueda K, Kawazoe H, Hosono H, Hamada N. Electronic structure and optoelectronic properties of transparent p-type conducting CuA102[J]. J Appl Phys,2000,88(7):4159-4163.
    [5]Ueda K, Hase T, Yanagi H, Kawazoe H, Hosono H, Ohta H, Orita M, Hirano M. Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition[J]. J Appl Phys,2001, 89(3):1790-1793.
    [6]Kakehi Y, Nakao S, Satoh K, Yotsuya T. Properties of copper-scandium oxide thin films prepared by pulsed laser deposition[J]. Thin Solid Films,2003, 445(2):294-298.
    [7]Stauber R E, Perkins J D, Parilla P A, Ginley D S. Thin film growth of transparent p-type CuAlO2[J]. Electrochem Solid St,1999,2(12):654-656.
    [8]Banerjee A N, Kundoo S, Chattopadhyay K K. Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering [J]. Thin Solid Films,2003,440(1-2):5-10.
    [9]Banerjee A N, Maity R, Chattopadhyay K K. Preparation of p-type transparent conducting CuAlO2 thin films by reactive DC sputtering[J]. Mater Lett,2004, 58(1-2):10-13.
    [10]Ong C H, Gong H. Effects of aluminum on the properties of p-type Cu-Al-O transparent oxide semiconductor prepared by reactive co-sputtering[J]. Thin Solid Films,2003,445(2):299-303.
    [11]Wang Y, Gong H. High-conductivity p-type transparent copper aluminum oxide film prepared by plasma-enhanced MOCVD[J]. Chem Vapor Depos,2000, 6(6):285-+.
    [12]Nagarajan R, Draeseke A D, Sleight A W, Tate J. p-type conductivity in CuCr1-xMgxO2 films and powders[J]. J Appl Phys,2001,89(12):8022-8025.
    [13]Jayaraj M K, Draeseke A D, Tate J, Sleight A W. p-type transpaient thin films of CuY1-xCaxO2[J]. Thin Solid Films,2001,397(1-2):244-248.
    [14]Kykyneshi R, Nielsen B C, Tate J, Li J, Sleight A W. Structural and transport properties of CuSc1-xMgxO2+y delafossites[J]. J Appl Phys,2004, 96(11):6188-6194.
    [15]Tate J, Jayaraj M K, Draeseke A D, Ulbrich T, Sleight A W, Vanaja K A, Nagarajan R, Wager J F, Hoffman R L. p-Type oxides for use in transparent diodes[J]. Thin Solid Films,2002,411(1):119-124.
    [16]Otabe T, Ueda K, Kudoh A, Hosono H, Kawazoe H. n-type electrical conduction in transparent thin films of delafossite-type AgInO2[J]. Appl Phys Lett,1998,72(9):1036-1038.
    [17]Nagarajan R, Duan N, Jayaraj M K, Li J, Vanaja K A, Yokochi A, Draeseke A, Tate J, Sleight A W. p-Type conductivity in the delafossite structure[J]. Int J Inorg Mater,2001,3(3):265-270.
    [18]Kudo A, Yanagi H, Hosono H, Kawazoe H. SrCu2O2:A p-type conductive oxide with wide band gap[J]. Appl Phys Lett,1998,73(2):220-222.
    [19]Ohta H, Orita M, Hirano M, Yagi I, Ueda K, Hosono H. Electronic structure and optical properties of SrCu2O2[J]. J Appl Phys,2002,91(5):3074-3078.
    [20]Bobeico E, Varsano E, Minarini C, Roca F. P-type strontium-copper mixed oxide deposited by e-beam evaporation[J]. Thin Solid Films,2003, 444(1-2):70-74.
    [21]Sheng S, Fang G J, Li C, Chen Z Q, Ma S, Fang L G, Zhao X Z. Oriented growth of p-type transparent conducting Ca-doped SrCu2O2 thin films by pulsed laser deposition[J]. Semicond Sci Tech,2006,21(5):586-590.
    [22]Roy B, Perkins J D, Kaydanova T, Young D L, Taylor M, Miedaner A, Curtis C, Kleebe H J, Readey D W, Ginley D S. Preparation and characterization of sol-gel derived copper-strontium-oxide thin films[J]. Thin Solid Films,2008, 516(12):4093-4101.
    [23]Ueda K, Hosono H, Hamada N. Valence-band structures of layered oxychalcogenides, LaCuOCh (Ch=S, Se, and Te), studied by ultraviolet photoemission spectroscopy and energy-band calculations[J]. J Appl Phys, 2005,98(4).
    [24]Ueda K, Hiramatsu H, Hirano M, Kamiya T, Hosono H. Wide-gap layered oxychalcogenide semiconductors:Materials, electronic structures and optoelectronic properties[J]. Thin Solid Films,2006,496(1):8-15.
    [25]Ueda K, Inoue S, Hirose S, Kawazoe H, Hosono H. Transparent p-type semiconductor:LaCuOS layered oxysulfide[J]. Appl Phys Lett,2000, 77(17):2701-2703.
    [26]Hiramatsu H, Ueda K, Ohta H, Hirano M, Kamiya T, Hosono H. Degenerate p-type conductivity in wide-gap LaCuOS1-xSex(x=0-1) epitaxial films[J]. Appl Phys Lett,2003,82(7):1048-1050.
    [27]Huang F Q, Brazis P, Kannewurf C R, Ibers J A. Synthesis, structure, electrical conductivity, and band structure of the rare-earth copper oxychalcogenide La5Cu6O4S7[J]. J Solid State Chem,2000,155(2):366-371.
    [28]Park S, Keszler D A, Valencia M M, Hoffman R L, Bender J P, Wager J F. Transparent p-type conducting BaCu2S2 films[J]. Appl Phys Lett,2002, 80(23):4393-4394.
    [29]Service R E. Materials science-Will UV lasers beat the blues?[J]. Science, 1997,276(5314):895-895.
    [30]Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B, Cantwell G. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Appl Phys Lett,2002,81(10):1830-1832.
    [31]Guo X L, Tabata H, Kawai T. Epitaxial growth and optoelectronic properties of nitrogen-doped ZnO films on Al2O3 substrate[J]. J Cryst Growth,2002, 237:544-547.
    [32]Li X, Yan Y, Gessert T A, DeHart C, Perkins C L, Young D, Coutts T J. p-type ZnO thin films formed by CVD reaction of diethylzinc and NO gas[J]. Electrochem Solid St,2003,6(4):C56-C58.
    [33]Joseph M, Tabata H, Saeki H, Ueda K, Kawai T. Fabrication of the low-resistive p-type ZnO by codoping method[J]. Physica B,2001, 302:140-148.
    [34]Aoki T, Hatanaka Y, Look D C. ZnO diode fabricated by excimer-laser doping[J]. Appl Phys Lett,2000,76(22):3257-3258.
    [35]Kim K K, Kim H S, Hwang D K, Lim J H, Park S J. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant[J]. Appl Phys Lett,2003,83(1):63-65.
    [36]Ryu Y R, Zhu S, Look D C, Wrobel J M, Jeong H M, White H W. Synthesis of p-type ZnO films[J]. J Cryst Growth,2000,216(1-4):330-334.
    [37]Ryu Y R, Zhu S, Budai J D, Chandrasekhar H R, Miceli P F, White H W. Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition[J]. J Appl Phys,2000,88(1):201-204.
    [38]Ryu Y R, Kim W J, White H W. Fabrication of homostructural ZnO p-n junctions[J]. J Cryst Growth,2000,219(4):419-422.
    [39]Xiu F X, Yang Z, Mandalapu L J, Zhao D T, Liu J L, Beyermann W P. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy[J]. Appl Phys Lett,2005,87(15).
    [40]Yamamoto T, Katayama-Yoshida H. Physics and control of valence states in ZnO by codoping method[J]. Physica B,2001,302:155-162.
    [41]Joseph M, Tabata H, Kawai T. p-type electrical conduction in ZnO thin films by Ga and N codoping[J]. Japanese Journal of Applied Physics Part 2-Letters, 1999,38(11A):L1205-L1207.
    [42]Singh A V, Mehra R M, Wakahara A, Yoshida A. p-type conduction in codoped ZnO thin films[J]. J Appl Phys,2003,93(1):396-399.
    [43]Bian J M, Li X M, Gao X D, Yu W D, Chen L D. Deposition and electrical properties of N-In codoped p-type ZnO films by ultrasonic spray pyrolysis[J]. Appl Phys Lett,2004,84(4):541-543.
    [44]Wang L G, Zunger A. Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO[J]. Phys Rev Lett,2003,90(25).
    [45]Ye Z Z, Fei Z G, Lu J G, Zhang Z H, Zhu L P, Zhao B H, Huang J Y. Preparation of p-type ZnO films by Al plus N-codoping method[J]. J Cryst Growth,2004,265(1-2):127-132.
    [46]Yuan G D, Ye Z Z, Zhu L P, Zeng Y J, Huang J Y, Qian Q, Lu J G. P-Type conduction in Al-N co-doped ZnO films[J]. Mater Lett,2004, 58(29):3741-3744.
    [47]Lu J G, Zhu L P, Ye Z Z, Zeng Y J, Zhuge F, Zhao B H, Ma D W. Improved N-Al codoped p-type ZnO thin films by introduction of a homo-buffer layer[J]. J Cryst Growth,2005,274(3-4):425-429.
    [48]Lu J G, Zhu L P, Ye Z Z, Zhuge F, Zeng Y J, Zhao B H, Ma D W. Dependence of properties of N-Al codoped p-type ZnO thin films on growth temperature[J]. Appl Surf Sci,2005,245(1-4):109-113.
    [49]Lu J G, Zhu L P, Ye Z Z, Zhuge F, Zhao B H, Huang J Y, Wang L, Yuan J. p-type ZnO films by codoping of nitrogen and aluminum and ZnO-based p-n homojunctions[J]. J Cryst Growth,2005,283(3-4):413-417.
    [50]Lu J G, Ye Z Z, Zhuge F, Zeng Y J, Zhao B H, Zhu L P. p-type conduction in N-Alco-doped ZnO thin films[J]. Appl Phys Lett,2004,85(15):3134-3135.
    [51]Yuan G D, Ye Z Z, Zhu L P, Qian Q, Zhao B H, Fan R X, Perkins C L, Zhang S B. Control of conduction type in Al- and N-codoped ZnO thin films[J]. Appl Phys Lett,2005,86(20):202106.
    [52]Zhuge F, Zhu L P, Ye Z Z, Ma D W, Lu J G, Huang J Y, Wang F Z, Ji Z G, Zhang S B. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO[J]. Appl Phys Lett,2005,87(9):092103.
    [53]Lu J G, Ye Z Z, Yuan G D, Zeng Y J, Zhuge F, Zhu L P, Zhao B H, Zhang S B. Electrical characterization of ZnO-based homojunctions [J]. Appl Phys Lett, 2006,89(5):053501.
    [54]Ye Z Z, Lu J G, Zhang Y Z, Zeng Y J, Chen L L, Zhuge F, Yuan G D, He H P, Zhu L P, Huang J Y, Zhao B H. ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers[J]. Appl Phys Lett,2007,91(11):113503.
    [55]He H P, Fei Z G, Ye Z Z, Zhu L P, Zhao B H, Huang J Y. Defect-related vibrational and photoluminescence spectroscopy of a codoped ZnO:Al:N film[J]. J Phys D:Appl Phys,2006,39(11):2339-2342.
    [56]Bagheri-Mohagheghi M M, Shokooh-Saremi M. Electrical, optical and structural properties of Li-doped SnO2 transparent conducting films deposited by the spray pyrolysis technique:a carrier-type conversion study[J]. Semicond Sci Tech,2004,19(6):764-769.
    [57]Bagheri-Mohagheghi M M, Shokooh-Saremi M. The influence of Al doping on the electrical, optical and structural properties of SnO2 transparent conducting films deposited by the spray pyrolysis technique[J]. J Phys D:Appl Phys,2004, 37(8):1248-1253.
    [58]Ahmed S F, Khan S, Ghosh P K, Mitra M K, Chattopadhyay K K. Effect of Al doping on the conductivity type inversion and electro-optical properties of SnO2 thin films synthesized by sol-gel technique[J]. J Sol-gel Sci Techn,2006, 39(3):241-247.
    [59]Chen C, Ji Z G, Wang C, Zhao L, Zhou Q. P-type tin-indium oxide films prepared by thermal oxidation of metallic InSn alloy films[J]. Mater Lett,2006, 60(25-26):3096-3099.
    [60]Ji Z, Zhao L, He Z P, Zhou Q, Chen C. Transparent p-type conducting indium-doped SnO2 thin films deposited by spray pyrolysis[J]. Mater Lett, 2006,60(11):1387-1389.
    [61]Huang Y X, Ji Z G, Chen C. Preparation and characterization of p-type transparent conducting tin-gallium oxide films[J]. Appl Surf Sci,2007, 253(11):4819-4822.
    [62]Ni J, Zhao X, Zheng X, Zhao J, Liu B. Electrical, structural, photoluminescence and optical properties of p-type conducting, antimony-doped SnO2 thin films[J]. Acta Mater,2009,57(1):278-285.
    [63]Gouda W, Shiiki K. Giant magnetoresistance effect of spin valve Co/Pd/Co/NiO[J]. J Magn Magn Mater,1999,205(2-3):136-142.
    [64]Anthony T C, Brug J A. MAGNETORESISTANCE OF SYMMETRICAL SPIN-VALVE STRUCTURES[J]. IEEE T Magn,1994,30(6):3819-3821.
    [65]Zhang X P, Zhang H K, Li Q, Luo H L. An all-solid-state inorganic electrochromic display of WO3 and NiO films with LiNbO3 ion conductor[J]. IEEE Electr Device L,2000,21 (5):215-217.
    [66]Hotovy I, Huran J, Spiess L, Hascik S, Rehacek V. Preparation of nickel oxide thin films for gas sensors applications[J]. Sensor Actuat B-chem,1999, 57(1-3):147-152.
    [67]Ohta H, Kamiya M, Kamaiya T, Hirano M, Hosono H. UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO[J]. Thin Solid Films,2003,445(2):317-321.
    [68]Norman M R. Orbital polarization and the insulating gap in the transition-metal oxides[J]. Phys Rev Lett,1990,64(10):1162.
    [69]Sasi B, Gopchandran K G, Manoj P K, Koshy P, Rao P P, Vaidyan V K. Preparation of transparent and semiconducting NiO films[J]. Vacuum,2002, 68(2):149-154.
    [70]Sato H, Minami T, Takata S, Yamada T. TRANSPARENT CONDUCTING P-TYPE NIO THIN-FILMS PREPARED BY MAGNETRON SPUTTERING[J]. Thin Solid Films,1993,236(1-2):27-31.
    [71]Lu Y M, Hwang W S, Yang J S. Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films[J]. Surf Coat Technol, 2002,155(2-3):231-235.
    [72]Chen H L, Lu Y M, Hwang W S. Characterization of sputtered NiO thin films[J]. Surf Coat Technol,2005,198(1-3):138-142.
    [73]Chen H L, Lu Y M, Hwang W S. Thickness dependence of electrical and optical properties of sputtered nickel oxide films[J]. Thin Solid Films,2006, 498(1-2):266-270.
    [74]Ai L, Fang G, Yuan L, Liu N, Wang M, Li C, Zhang Q, Li J, Zhao X. Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering[J]. Appl Surf Sci,2008,254(8):2401-2405.
    [75]Hotovy I, Huran J, Janik J, Kobzev A P. Deposition and properties of nickel oxide films produced by DC reactive magnetron sputtering[J]. Vacuum,1998, 51(2):157-160.
    [76]Joshi U S, Matsumoto Y, Itaka K, Sumiya M, Koinuma H. Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties[J]. Appl Surf Sci,2006,252(7):2524-2528.
    [77]Thomas G. Materials science-Invisible circuits[J]. Nature,1997, 389(6654):907-908.
    [78]Kudo A, Yanagi H, Ueda K, Hosono H, Kawazoe H, Yano Y. Fabrication of transparent p-n heterojunction thin film diodes based entirely on oxide semiconductors[J]. Appl Phys Lett,1999,75(18):2851-2853.
    [79]Yanagi H, Ueda K, Ohta H, Orita M, Hirano M, Hosono H. Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure[J]. Solid State Commun,2002,121(1):15-17.
    [80]Jang S, Chen J J, Kang B S, Ren F, Norton D P, Pearton S J, Lopata J, Hobson W S. Formation of p-n homojunctions in n-ZnO bulk single crystals by diffusion from a Zn3P2 source[J]. Appl Phys Lett,2005,87(22).
    [81]Hwang D K, Bang K H, Jeong M C, Myoung J M. Effects of RF power variation on properties of ZnO thin films and electrical properties of p-n homojunction[J]. J Cryst Growth,2003,254(3-4):449-455.
    [82]Zhuge F, Zhu L P, Ye Z Z, Ma D W, Lu J G, Huang J Y, Wang F Z, Ji Z G, Zhang S B. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO[J]. Appl Phys Lett,2005,87(9).
    [83]Tonooka K, Bando H, Aiura Y. Photovoltaic effect observed in transparent p-n heterojunctions based on oxide semiconductors[J]. Thin Solid Films,2003, 445(2):327-331.
    [84]Ohta H, Kawamura K, Orita M, Hirano M, Sarukura N, Hosono H. Current injection emission from a transparent p-n junction composed of p-SrCu202/n-Zn0[J]. Appl Phys Lett,2000,77(4):475-477.
    [85]Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X, Fan X W, Tang Z K. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J]. Appl Phys Lett,2006,88(3).
    [86]Tsukazaki A, Kubota M, Ohtomo A, Onuma T, Ohtani K, Ohno H, Chichibu S F, Kawasaki M. Blue light-emitting diode based on ZnO[J]. Jpn J Appl Phys, 2005,44(20-23):L643-L645.
    [87]Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materials,2005,4(1):42-46.
    [88]Ryu Y R, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S, Youn C J. Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes[J]. Appl Phys Lett,2006,88(24).
    [89]Ryu Y R, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J, Kim B J. Excitonic ultraviolet lasing in ZnO-based light emitting devices[J]. Appl Phys Lett,2007,90(13):131115.
    [90]Carcia P F, McLean R S, Reilly M H, Malajovich I, Sharp K G, Agrawal S, Nunes G, ZnO thin film transistors for flexible electronics, in Flexible Electronics-Materials and Device Technology, N.C.B.R.G.B.E.J.J. Fruehauf, Editor.2003. p.233-238.
    [91]Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature,2004,432(7016):488-492.
    [92]Matsuzaki K, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H. Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor[J]. Appl Phys Lett,2008,93:202107.
    [93]Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Kimura M, Hirano M, Hosono H. Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application[J]. Physica Status Solidi a-Applications and Materials Science,2009,206(9):2187-2191.
    [94]Ishizuka S, Maruyama T, Akimoto K. Thin-film deposition of Cu2O by reactive radio-frequency magnetron sputtering[J]. Japanese Journal of Applied Physics Part 2-Letters,2000,39(8A):L786-L788.
    [95]Fortunato E, Figueiredo V, Barquinha P, Elamurugu E, Barros R, Goncalves G, Park S H K, Hwang C S, Martins R. Thin-film transistors based on p-type Cu2O thin films produced at room temperature[J]. Appl Phys Lett,2010,96(19).
    [96]Sung S Y, Kim S Y, Jo K M, Lee J H, Kim J J, Kim S G, Chai K H, Pearton S J, Norton D P, Heo Y W. Fabrication of p-channel thin-film transistors using CuO active layers deposited at low temperature [J]. Appl Phys Lett,2010,97(22).
    [97]Fortunato E, Barros R, Barquinha P, Figueiredo V, Park S H K, Hwang C S, Martins R. Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing[J]. Appl Phys Lett,2010,97(5).
    [98]Togo A, Oba F, Tanaka I, Tatsumi K. First-principles calculations of native defects in tin monoxide[J]. Phys Rev B,2006,74(19).
    [99]Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H. p-channel thin-film transistor using p-type oxide semiconductor, SnO[J]. Appl Phys Lett,2008,93(3).
    [100]Liang L Y, Liu Z M, Cao H T, Yu Z, Shi Y Y, Chen A H, Zhang H Z, Fang Y Q, Sun X L. Phase and Optical Characterizations of Annealed SnO Thin Films and Their p-Type TFT Application [J]. J Electrochem Soc,2010, 157(6):H598-H602.
    [101]Liang L Y, Liu Z M, Cao H T, Pan X Q. Microstructural, Optical, and Electrical Properties of SnO Thin Films Prepared on Quartz via a Two-Step Method[J]. Acs Applied Materials & Interfaces,2010,2(4):1060-1065.
    [102]Yanagi H, Hase T, Ibuki S, Ueda K, Hosono H. Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure[J]. Appl Phys Lett,2001,78(11):1583-1585.
    [103]Duan N, Sleight A W, Jayaraj M K, Tate J. Transparent p-type conducting CuScO2+x films[J]. Appl Phys Lett,2000,77(9):1325-1326.
    [104]Hiramatsu H, Ueda K, Ohta H, Orita M, Hirano M, Hosono H. Preparation of transparent p-type (La1-xSrxO)CuS thin films by r.f. sputtering technique[J]. Thin Solid Films,2002,411 (1):125-128.
    [105]Guo X L, Tabata H, Kawai T. p-type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma[J]. Opt Mater,2002,19(1):229-233.
    [106]Ji Z G, He Z J, Song Y L, Liu K, Ye Z Z. Fabrication and characterization of indium-doped p-type SnO2 thin films[J]. J Cryst Growth,2003, 259(3):282-285.
    [1]Witke T, Lenk A, Schultrich B, Schultheiss C. Investigation of plasma prouduced by Laser and electron pulse ablation[J]. Surf Coat Technol,1995, 74-5(1-3):580-585.
    [2]Witke T, Lenk A, Schultrich B. Investigation of plasma produced by electron pulse ablation[J]. IEEE T Plasma Sci,1996,24(1):61-62.
    [3]Hobel M, Geerk J, Linker G, Schultheiss C. Dsposition of superconducting YBaCuO thin-films by pseudospark ablation[J]. Appl Phys Lett,1990, 56(10):973-975.
    [4]Jiang Q D, Matacotta F C, Masciarelli G, Fuso F, Arimondo E, Konijnenberg M C, Muller G, Schultheiss C, Sandrin G. Characterization and in situ fluorescence diagnostic of the deposition of YBa2Cu3O7-x thin films by pseudo-spark electron beam ablation[J]. Supercond Sci Tech,1993, 6(8):567-572.
    [5]Huang L, Li X F, Zhang Q, Miao W N, Zhang L, Yan X J, Zhang Z J, Hua Z Y. Properties of transparent conductive In2O3:Mo thin films deposited by Channel Spark Ablation[J]. J Vac Sci Technol A,2005,23(5):1350-1353.
    [6]Huang Y W, Zhang Q, Li G F, Yang M. Tungsten-doped tin oxide thin films prepared by pulsed plasma deposition[J]. Mater Charact,2009,60(5):415-419.
    [7]Li G F, Zhou J, Huang Y W, Yang M, Feng J H, Zhang Q. Indium zinc oxide semiconductor thin films deposited by dc magnetron sputtering at room temperature [J]. Vacuum,2010,85(1):22-25.
    [1]Banerjee A N, Chattopadhyay K K. Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films[J]. Prog Cryst Growth Ch,2005,50(1-3):52-105.
    [2]Sasi B, Gopchandran K G. Nanostructured mesoporous nickel oxide thin films[J]. Nanotechnology,2007,18(11).
    [3]Ghijsen J, Tjeng L H, Vanelp J, Eskes H, Westerink J, Sawatzky G A, Czyzyk M T. Electronic structure of Cu2O and CuO[J]. Phys Rev B,1988, 38(16):11322-11330.
    [4]Espinos J P, Morales J, Barranco A, Caballero A, Holgado J P, Gonzalez-Elipe A R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts[J]. J Phys Chem B,2002,106(27):6921-6929.
    [5]Yang J L, Lai Y S, Chen J S. Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering[J]. Thin Solid Films,2005,488(1-2):242-246.
    [6]Banerjee A N, Ghosh C K, Chattopadhyay K K. Effect of excess oxygen on the electrical properties of transparent p-type conducting CuAlO2+x thin films[J]. Sol Energy Mater Sol Cells,2005,89(1):75-83.
    [7]Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of CuAlO2[J]. Nature,1997, 389(6654):939-942.
    [8]Kroger F A, Vink H J. Relations between the concentrations of imoerfections in crystalline solids[J]. Solid State Phys,1956,3:307-435.
    [9]Chen H L, Lu Y M, Hwang W S. Characterization of sputtered NiO thin films[J]. Surf Coat Technol,2005,198(1-3):138-142.
    [10]Ai L, Fang G, Yuan L, Liu N, Wang M, Li C, Zhang Q, Li J, Zhao X. Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering[J]. Appl Surf Sci,2008,254(8):2401-2405.
    [11]Sasi B, Gopchandran K G, Manoj P K, Koshy P, Rao P P, Vaidyan V K. Preparation of transparent and semiconducting NiO films[J]. Vacuum,2002, 68(2):149-154.
    [12]Reguig B A, Regragui M, Morsli M, Khelil A, Addou M, Bernede J C. Effect of the precursor solution concentration on the NiO thin film properties deposited by spray pyrolysis[J]. Sol Energy Mater Sol Cells,2006,90(10):1381-1392.
    [13]Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films:basic optical properties and applications to energy-efficient windows[J]. J Appl Phys,1986, 60(11):R123-R159.
    [14]Sivaramasubramaniam R, Muhamad M R, Radhakrishna S. Optical-properties of annealed tin(II) oxide in different ambients[J]. Phys Status Solidi A,1993, 136(1):215-222.
    [15]Natsume Y, Sakata H. Zinc oxide films prepared by sol-gel spin-coating[J]. Thin Solid Films,2000,372(1-2):30-36.
    [16]Tauc J, Grigorov.R, Vancu A. Optical properties and electronics structure of amorphous germanum[J]. Physica Status Solidi,1966,15(2):627-&.
    [1]Kudo A, Yanagi H, Hosono H, Kawazoe H. SrCu2O2:A p-type conductive oxide with wide band gap[J]. Appl Phys Lett, 1998,73(2):220-222.
    [2]Ueda K, Yanagi H, Hosono H, Kawazoe H. Carrier compensation and generation in Ca1-xYxTiO3 and CaTi1-xNbxO3 single crystals[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 1998,54(1-2):60-63.
    [3]Hakim M O. Carrier compensation and activation-energy studies in pyrolytic In2O3 thin-film[J]. J Mater Sci,1990,25(2B):1294-1298.
    [4]Kikuchi N, Kusano E, Nanto H, Kinbara A, Hosono H. Phonon scattering in electron transport phenomena of ITO films[J]. Vacuum,2000,59(2-3):492-499.
    [5]Ambrosini A, Duarte A, Poeppelmeier K R, Lane M, Kannewurf C R, Mason T O. Electrical, optical, and structural properties of tin-doped In2O3-M2O3 solid solutions (M=Y, Sc)[J]. J Solid State Chem,2000,153(1):41-47.
    [6]Lee B H, Kim I G, Cho S W, Lee S H. Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application[J]. Thin Solid Films,1997,302(1-2):25-30.
    [1]Inden G. Introduction to the following papers presented at the Symposium "Computational Thermodynamics and Materials Design"[J]. Acta Mater,2002, 50(9):2185-2186.
    [2]Gunton J D. Opportunities for computational science in materials science[J]. Comput Phys Commun,2002,146(1):131-131.
    [3]Hohenberg P, Kohn W. INHOMOGENEOUS ELECTRON GAS[J]. Phys Rev B,1964,136(3B):B864-&.
    [4]Kohn W, Sham L J. SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS[J]. Physical Review,1965, 140(4A):1133-&.
    [5]Blochl P E. PROJECTOR AUGMENTED-WAVE METHOD[J]. Phys Rev B, 1994,50(24):17953-17979.
    [6]Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B,1999,59(3):1758-1775.
    [7]Monkhorst H J, Pack J D. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS[J]. Phys Rev B,1976,13(12):5188-5192.
    [1]Ho J K, Jong C S, Chiu C C, Huang C N, Chen C Y, Shih K K. Low-resistance ohmic contacts to p-type GaN[J]. Appl Phys Lett,1999,74(9):1275-1277.
    [2]Thomas G. Materials science-Invisible circuits[J]. Nature,1997, 389(6654):907-908.
    [3]Li X F, Zhang Q, Miao W N, Huang L, Zhang Z J. Transparent conductive oxide thin films of tungsten-doped indium oxide[J]. Thin Solid Films,2006, 515(4):2471-2474.
    [4]Yang M, Wang Y H, Li G F, Shi Z, Zhang Q. Zn-doped CuAlS2 transparent p-type conductive thin films deposited by pulsed plasma deposition[J]. J Vac Sci Technol A,2009,27(6):1316-1319.
    [5]Sun S Y, Huang J L, Lii D F. Effects of H2 in indium-molybdenum oxide films during high density plasma evaporation at room temperature [J]. Thin Solid Films,2004,469:6-10.
    [6]Wu W F, Chiou B S, Hsieh S T. Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films[J]. Semicond Sci Tech, 1994,9(6):1242-1249.
    [7]Kim H J, Bae J W, Kim J S, Kim K S, Jang Y C, Yeom G Y, Lee N E. Properties of amorphous tin-doped indium oxide thin films deposited by O2/Ar mixture ion beam-assisted system at room temperature[J]. Surf Coat Technol, 2000,131(1-3):201-205.
    [8]Wong H Y, Ong C W, Kwok R W M, Wong K W, Wong S P, Cheung W Y. Effects of ion beam bombardment on electrochromic tungsten oxide films studied by X-ray photoelectron spectroscopy and Rutherford back-scattering[J]. Thin Solid Films,2000,376(1-2):131-139.
    [9]Ku D Y, Kim I H, Lee I, Lee K S, Lee T S, Jeon J H, Cheong B, Baik Y J, Kim W M. Structural and electrical properties of sputtered indium-zinc oxide thin films[J]. Thin Solid Films,2006,515(4):1364-1369.
    [10]Lee H C, Park O O. Behaviors of carrier concentrations and mobilities in indium-tin oxide thin films by DC magnetron sputtering at various oxygen flow rates[J]. Vacuum,2004,77(1):69-77.
    [11]Levinson R, Berdahl P, Akbari H. Solar spectral optical properties of pigments-Part I:model for deriving scattering and absorption coefficients from transmittance and reflectance measurements[J]. Sol Energy Mater Sol Cells, 2005,89(4):319-349.
    [12]Coutts T J, Young D L, Li X N. Characterization of transparent conducting oxides[J]. Mrs bull,2000,25(8):58-65.
    [13]Yang M, Feng J H, Li G F, Zhang Q. Tungsten-doped In2O3 transparent conductive films with high transmittance in near-infrared region[J]. J Cryst Growth,2008,310(15):3474-3477.
    [14]Kobayashi K, Yamaguchi M, Tomita Y, Maeda Y. Fabrication and characterization of In-Ga-Zn-O/NiO structures[J]. Thin Solid Films,2008, 516(17):5903-5906.
    [15]Woo S, Kim J, Cho G, Kim K, Lyu H, Kim Y. Influence of nickel oxide nanolayer and doping in organic light-emitting devices[J]. J Ind Eng Chem, 2009,15(5):716-718.
    [16]Olivier J, Servet B, Vergnolle M, Mosca M, Garry G. Stability/instability of conductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum-Measurements by the four-probe method and by Kelvin force microscopy [J]. Synthetic Met,2001,122(1):87-89.
    [1]Hosono H. Recent progress in transparent oxide semiconductors:Materials and device application[J]. Thin Solid Films,2007,515(15):6000-6014.
    [2]Bellingham J R, Phillips W A, Adkins C J. Electrical and optical properties of amorphous indium 6xide[J]. J Phys-condens Mat,1990,2(28):6207-6221.
    [3]Hosono H, Kikuchi N, Ueda N, Kawazoe H. Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples[J]. J Non-cryst Solids,1996,200:165-169.
    [4]Feng J H, Yang M, Li G F, Zhang Q. Amorphous tungsten-doped In2O3 transparent conductive films deposited at room temperature from metallic target[J]. J Non-cryst Solids,2009,355(14-15):821-825.
    [5]Jung Y S, Seo H Y, Lee D W, Jeon D Y. Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film[J]. Thin Solid Films,2003,445(1):63-71.
    [6]Minami T, Kumagai H, Kakumu T, Takata S, Ishii M. Highly transparent and conductive ZnO-In2O3 thin films prepared by atmospheric pressure chemical vapor deposition[J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1997,15(3):1069-1073.
    [7]Minami T, Kakumu T, Takeda Y, Takata S. Preparation of transparent conducting Zn2In2O5 films by d.c. magnetron sputtering[J]. Thin Solid Films, 1998,317(1-2):326-329.
    [8]Naghavi N, Marcel C, Dupont L, Rougier A, Leriche J B, Guery C. Structural and physical characterisation of transparent conducting pulsed laser deposited In2O3-ZnO thin films[J]. J Mater Chem,2000,10(10):2315-2319.
    [9]Naghavi N, Rougier A, Marcel C, Guery C, Leriche J B, Tarascon J M. Characterization of indium zinc oxide thin films prepared by pulsed laser deposition using a Zn3In2O6 target[J]. Thin Solid Films,2000, 360(1-2):233-240.
    [10]Dehuff N L, Kettenring E S, Hong D, Chiang H Q, Wager J F, Hoffman R L, Park C H, Keszler D A. Transparent thin-film transistors with zinc indium oxide channel layer[J]. J Appl Phys,2005,97(6).
    [11]Song J I, Park J S, Kim H, Heo Y W, Lee J H, Kim J J, Kim G M, Choi B D. Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature[J]. Appl Phys Lett,2007,90(2).
    [12]Barquinha P, Pimentel A, Marques A, Pereira L, Martins R, Fortunato E. Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide[J]. J Non-cryst Solids,2006, 352(9-20):1749-1752.
    [13]Lim W, Wang Y L, Ren F, Norton D P, Kravchenko, Ⅱ, Zavada J M, Pearton S J. Indium zinc oxide thin films deposited by sputtering at room temperature [J]. Appl Surf Sci,2008,254(9):2878-2881.
    [14]Martins R, Barquinha P, Ferreira I, Pereira L, Goncalves G, Fortunato E. Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors[J]. J Appl Phys,2007,101 (4).
    [15]Yaglioglu B, Yeom H Y, Beresford R, Paine D C. High-mobility amorphous In2O3-10 wt%ZnO thin film transistors[J]. Appl Phys Lett,2006,89(6).
    [16]Burstein E. Anomalous optical absorption limit in InSb[J]. Physical Review, 1954,93(3):632-633.
    [17]Hamberg I, Granqvist C G. Evaporated Sn-doped In2O3 films:basic optical properties and applications to energy-efficient windows[J]. J Appl Phys,1986, 60(11):R123-R159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700