PLD制备InGaZnO薄膜及其物理性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,半导体材料由于其独特的性质和广泛的应用,引起了世界范围的关注并得到了蓬勃发展。InGaZnO(IGZO)是一种透明氧化物半导体材料,导电类型为n型。由于其具有高迁移率、较强稳定性和制备的工艺相对简单等优点,备受科研工作者的关注。由于在元素周期表中,In、Ga和Zn等金属元素阳离子具有这样的电子结构:(n-1)d~(10)ns~0(其中n≥5),而透明非晶氧化物半导体(TAOS)的导带底(CBM)主要由于金属元素的ns轨道的未被占据态组成。金属阳离子s电子轨道呈球对称分布,并具有较大的半径,所以s轨道相互交叠形成电子的导通路径,这样就会非常有利于电子的传输。国内外研究者已经对IGZO材料进行了相关的理论和实验分析,但仍有一些问题尚不明确,需要逐步地深入探索。该薄膜的制备方法有多种,如脉冲激光沉积(PLD)、等离子体增强化学气相沉积(PECVD)、磁控溅射(Magnetron sputtering)、溶胶-凝胶法(Sol-Gel)等,本文采用的薄膜制备技术为PLD的方法。
     本文以IGZO的第一性原理计算为理论依据,以IGZO靶材和薄膜的制备原理与方法为主线,兼具靶材和薄膜的测试与表征,对IGZO体系材料进行较为系统的理论分析与实验测试。本文主要的主要研究内容及结果如下:
     (1)以理想ZnO的第一性原理计算为基础,进行理想ZnO能带结构、态密度和电荷密度等计算,并通过设置氧空位缺陷研究O缺陷对ZnO电子结构的影响;采用第一性原理计算不同构型下的InGaZnO_4材料的电子结构,从理论上分析IGZO材料应当具备的优势与特点。
     本文采用平面波超软赝势方法,通过广义梯度近似(GGA)中的PBE为交换相关势,分别计算出理想ZnO和氧空位型ZnO的电子结构。计算结果表明,理想ZnO是一种离子性较强、共价键较弱的混合键金属氧化物,并且为直接带隙宽禁带半导体材料;ZnO的禁带宽度为0.805eV,由于过高地估计了Zn3d态的贡献,造成Zn3d态与O2p态的相互作用增大,使得理论值低于实验值。通过氧空位模型ZnO的构建,氧空位的存在使Zn-O相互作用增强,从而导致价带的主要组成部分Zn3d态与O2p态向低能方向移动,而导带的主要组成部分Zn4s态向低能方向的移动相对较小,导致禁带宽度增大;带隙类型由理想ZnO的直接带隙变为间接带隙,氧空位形成了深施主能级。
     我们通过分别建立列交替型和原子交替型的两种不同单晶(sc-)InGaZnO_4,计算结果表明sc-InGaZnO_4为直接带隙半导体;导带底主要由金属阳离子的s轨道贡献,特别是In-s轨道贡献最大,Ga、Zn原子的随机排列不会对导带内的电荷传输特性产生较大影响;同时使用虚拟晶体近似(VCA)方法计算了InGaZnO_4的电子结构,计算结果具有一定的合理性。
     (2)调节制靶时In_2O_3、Ga_2O_3和ZnO粉末的摩尔比例,采用固相反应烧结法制备不同组分的IGZO陶瓷靶材,并对靶材进行物相分析、光致发光光谱分析以及拉曼光谱分析等,研究所制备出靶材质量的优劣。
     随着In_2O_3在起始原料成分比例的不断增大,烧结完成的靶材径向收缩率增大,较高的径向收缩率也显示出固相反应完全的程度与孔隙率的降低。通过对不同组成成分的IGZO陶瓷靶材进行XRD测试,表明各靶材几乎不含原始In_2O_3、Ga_2O_3和ZnO的物相,说明固相反应的进行具有完全性。T_1靶材具有InGaZn_4O_7、InGaZn_5O_8和InGaZn_2O_5不同物相,产生该现象的原因是固相反应中发生相分离和烧结过程中元素的质量损失等。随着ZnO含量的减少和In_2O_3含量的增加,主物相从InGaZn_2O_5逐渐过渡到斜六面体相的InGaZnO_4;当In_2O_3摩尔比例x≥0.6时,物相构成不能确定。通过Raman光谱测试,观察到各靶材几乎不含ZnO块体材料E_(2H)-E_(2L)的振动模式,也没有发现具有Raman活性436cm~(-1)的特征峰,并且只观察到Ga-O、In-O、Zn-O键的振动模式。但随着In_2O_3含量的不断增加,当In_2O_3的含量处于明显的优势地位时,In_2O_3成分的进一步增加不再对晶格的振动特性产生影响,说明虽然物相改变,In_2O_3仍保持着原有的内部结构。然后,对不同靶材采用波长为325nm的He-Cd激光器进行激发,测试靶材的荧光光谱。仅观察到以614~639nm范围内为发光中心的350~900nm宽发光带,荧光峰值强度随着In_2O_3升高而逐渐减弱,荧光中心波长的改变很可能是由于氧空位缺陷的变化引起带隙结构变化导致的,但具体的发光机制需要进一步研究。
     (3)采用PLD技术,利用不同成分IGZO陶瓷靶材,改变沉积参数(如衬底温度、氧分压等)制备不同成分IGZO薄膜。通过表面轮廓仪、X射线衍射仪(XRD)、原子力显微镜(AFM)、Hall效应测试和X射线光电子能谱(XPS)等表征手段,分别对IGZO薄膜的薄膜厚度、晶体结构、表面形貌、元素成分和光学、电学性质等进行测试与分析,通过薄膜的测试结果分析,反馈并优化薄膜制备技术参数与工艺。
     采用T_1靶材样品[(Ga_2O_3)0.1(In_2O_3)_(0.1)(ZnO)_(0.8)],在真空室的氧分压为0.5~44.0Pa变化的条件下进行薄膜制备实验。通过XRD测试确认所制备薄膜为非晶结构;通过AFM测试薄膜的表面形貌,表明薄膜均方根粗糙度(RMS)值随着氧分压的增大而增大,在相对较高氧压下RMS值呈现出饱和的趋势;透射光谱测试表明氧空位缺陷或者金属间隙缺陷会占据导带底,而导致带隙的减小;在0.5Pa氧分压下制备的IGZO薄膜载流子浓度为4.3×10~(19)cm~(-3),而其他研究者报道的在氧分压1.0Pa下制备(In_2O_3)0.1(Ga_2O_3)_(0.1)(ZnO)_(0.4)薄膜载流子浓度为5.0×10~(19)cm~(-3);从XPS测试结果推断薄膜中的金属元素是以各自氧化态形式存在于薄膜表面,薄膜中In、Ga和Zn的金属间隙的影响可以忽略。采用T8靶材样品[(Ga_2O_3)_(0.1)(In_2O_3)_(0.1)(ZnO)_(0.8)]在室温、氧分压为1.0~15.0Pa变化的的条件下,制备的IGZO薄膜与T_1靶材相关结果极其类似,但当氧分压增大到10.0Pa的时候,薄膜的电学性质极佳,特别是载流子迁移率均取得最大值28.6cm~2/(V·s)。比文献报道的载流子浓度1.0×10~(20)cm~(-3)和迁移率26.0cm~2/(V·s)还要高,而且也比我们小组在前期工作中报道的高Zn含量的IGZO薄膜载流子浓度和迁移率高,通过In含量的增加可以明显提高薄膜的载流子浓度和迁移率。我们认为氧空位缺陷在调制薄膜的光学、电学性质上起了非常重要的作用。
     采用T1靶材样品,在氧分压保持5.0Pa下,在RT和800°C范围内改变衬底温度制备IGZO薄膜。薄膜即使在200°C条件下生长仍为非晶结构;随着基片温度的提升,粒子可以通过较高的基片温度获得更高的能量,最终移动到晶格的适当位置,形成C轴的择优取向,并获得较高的结晶度;制备的IGZO薄膜在可见光光谱范围内都具有比较高的透射率,最高能达到90%;采用van der Pauw法进行Hall效应测试,衬底温度从RT升至400°C,电阻率从0.148Ω·cm降至3.96×10~(-3)Ω·cm,同时载流子浓度和载流子迁移率分别都有不同程度的提升,这应归因于晶体质量的优化,同时晶粒尺寸的增大减少了薄膜中的晶界,减少了对载流子的散射或捕获。所以基片温度也会对IGZO薄膜的物理性质产生较大影响。
     通过对IGZO材料理论计算、靶材制备和薄膜制备三方面的研究,探索IGZO或与之相关材料的研究方法,得出的靶材制备和薄膜制备的优化条件可以最终应用于生产与生活当中,特别是对于IGZO薄膜作为沟道层的薄膜晶体管,乃至平板显示与柔性显示技术均具有一定的现实意义与实用价值。
Recently, since the semiconductor materials have unique properties and widelyapplications, it attracted more attention all over the world, and obtained greatdevelopment. InGaZnO (IGZO) is a kind of transparent oxide semiconductor, with ntype conductivity. It gradually drew the attentions of many scientists due to highcarrier mobility, better stability, and relatively simple fabrication processes, etc. Inperiodic table, In, Ga, Zn and other metal cations have the electronic structure:(n-1)d~(10)ns~0(n≥5). The conduction band maximum (CBM) were consisted ofunoccupied state in ns-orbital of metal elements for transparent amorphous oxidesemiconductor (TAOS). The s-orbital of cation performed a spherical symmetry, withlarge radius, so that the overlap among the s-orbital forms of the conductive path, andthis will do good to the transportation of electrons. Although many scientists fromdomestic and abroad investigated in the relative theoretical and experimental analysis,still, there are some questions not clear, needs to be solved. There are many methodsto prepare in the IGZO thin films, such as pulsed laser deposition (PLD), plasmaenhanced chemical vapor deposition (PECVD), magnetron sputtering, sol-gel and etc.In the present research, the PLD method was preformed.
     In this thesis, the research was based on the first principle calculation of IGZO,while the theory and method in the fabrication of IGZO ceramic targets and thin filmsacted as a clue. We did a relatively systematic theoretical analysis and experimentalexaminations. The contents and results of this thesis are as followed:
     (1) Based on the first principle calculation of ideal ZnO, the band structure,density of state and electron density were calculated out, and by means of introduceoxygen vacancy, we evaluated the effect on the electronic structure of ZnO. TheInGaZnO_4in different model was calculated, we analyzed the advantages andcharacters that IGZO should have.
     The plane wave pseudo potential method was applied in the electron structurecalculation of ideal ZnO and ZnO with oxygen vacancy. We use thePerdew-Burke-Ernzerhof exchange correlation functional (PBE) approach utilizingthe generalized gradient approximation (GGA) scheme. It indicates that ideal ZnO is akind of mix bonds metal oxide, with stronger electrovalent bond and weaker covalentbond. ZnO is a semiconductor with direct bandgap and wide forbidden band. Theideal ZnO was evaluated a bandgap of0.805eV. Because of overrating thecontribution of Zn3d state, the correlation between Zn3d state and O2p state, thetheoretical value of bandgap is lower than the experimental one. Furthermore, webuilt a model of ZnO with oxygen vacancy. The existence of oxygen vacancy makesthe interaction between Zn and O increase, which will induce the Zn3d state and O2p state shifts into lower energy in the valence band, while the Zn4s state shift to lowerenergy too, but the change is relatively small. This will make the bandgap increase.The direct band changed into indirect band, and finally the oxygen vacancy forms thedeep donor state.
     We built two different single crystalline (sc-) InGaZnO_4,line alternated modeland atom alternated model. In describing the relationship between valence state andcore state, we utilized pseudopotential method. The valence electron of In, Ga, Zn andO is4d~(10)5s~25p~1,3d~(10)4s~24p~1,3d~(10)4s~2and2s~22p~4, respectively, while the other orbitalelectrons were treated as core electrons. Sc-InGaZnO_4is a direct bandgapsemiconductor, and the CBM is manly contributed by s-orbit of metal ionic, especiallyfor the In-s orbit. The Ga and ZnO randomly arrange will not seriously affect thetransportation of charges in the conduction band. We also use the virtual crystalapproximation (VCA) method to calculate the electron structure of sc-InGaZnO_4, andthe results have certain rationality.
     (2) The molecular ratio of In_2O_3, Ga_2O_3and ZnO powders were tuned, theIGZO targets with different chemical stoichiometric were prepared by means of solidstate reaction. We did phase analysis, photoluminescence and Raman spectrumdiagnosis to make sure the targets have good quality.
     The shrinkage in diameter of product IGZO target increased with the In_2O_3content in the starting material increased. The large shrinkage in diameter shows thewell-reacted process and lower amount of porosity. The X-ray diffraction (XRD) wereutilized to measure the samples, and it indicates that all of the ceramic targets almostdon’t contain the starting phase, such as In_2O_3, Ga_2O_3and ZnO. That means theprocess of solid state reaction was thorough. The T1target,(Ga_2O_3)0.1(In_2O_3)_(0.1)(ZnO)_(0.8), has InGaZn_4O_7, InGaZn_5O_8and InGaZn_2O_5phase,which was attributed to phase separation and the loss of each elements in hightemperature, etc. With the increase of In_2O_3content and decrease of ZnO content, themain phase changed from InGaZn_2O_5phase into rhombohedral InGaZnO_4. Whenx≥0.6, the phase can’t be recognize by the present JCPDS cards database. Insuccession, Raman spectrum result shows that we can nearly observe the E_(2H)-E_(2L)vibration mode, which should be obvious in bulk ZnO, also can’t find the symbolpeak at about436cm~(-1) which should be related to Raman active. There were onlyGa-O, In-O and Zn-O vibration mode we could observe. With the increasing In_2O_3content, while the In_2O_3content is the main starting material, the further increase willnot affect the vibration mode any more. It indicates that the In_2O_3will maintainprevious internal structure. The photoluminescence (PL) properties of each target wasexcited by the He-Cd laser, with the wavelength of325nm, the board luminescenceband in350~900nm was the only observation, which is centered at614~639nm. The PL intensity became weak while the content of In_2O_3increase, and the centerwavelength altered may be attributed to band structure change due oxygen vacancy,but the luminescence mechanism need further investigating.
     (3) The PLD technique was applied in IGZO thin film preparation. Throughtuning the deposited parameters (e.g. substrate temperature, oxygen partial pressureand etc.), the thin film with different chemical stoichiometric were obtained. Thethickness, crystal structure, surface morphology, proportion of each element, opticaland electrical properties were performed by step profiler, X-ray diffraction (XRD),atomic force microscopy (AFM), Hall-effect measurement and X-ray photoelectronSpectroscopy (XPS), and etc, respectively. The optimized technical parameters wereacquired by means of results evaluation.
     Using target T_1,(Ga_2O_3)_(0.1)(In_2O_3)_(0.1)(ZnO)_(0.8), we produced a series of IGZO thinfilms at the oxygen partial pressure of0.5~44.0Pa under room temperature. ThroughXRD examination, it was confirmed that all the films were amorphous. AFMobservation results indicate that surface root mean square (RMS) roughness valueincreased with oxygen pressure. Although the RMS changes rapidly at lowerdeposition pressure and seems to be saturated at higher deposition pressure. It indicatefrom transmittance spectrum that a number of oxygen vacancies or metallicinterstitials might occupy the bottom of conduction band, leading to a decreasedbandgap. The carrier concentration for the films with the composition of(In_2O_3)_(0.1)(Ga_2O_3)_(0.1)(ZnO)_(0.4)deposited at1.0Pa oxygen partial pressure is5.0×10~(19)cm~(-3), which is almost same as that for our films deposited at0.5Pa oxygen partialpressure being4.3×10~(19)cm~(-3). Therefore the present XPS results indicated that the In,Ga, Zn elements exist in their oxidized states on the surface of the film, and thenumber of metallic interstitials are negligible in the films. The situation is quitesimilar for the IGZO film fabricated using T_8target,(Ga_2O_3)_(0.1)(In_2O_3)_(0.1)(ZnO)_(0.8).We acquired good electronic features at an oxygen pressure of10.0Pa, especially forthe maximum carrier mobility of28.6cm~2/(V·s), is higher than the relative literature.The quality is better than our previous work, which contributed to high Zn contentfilms. Controlling In content could sharply increase the carrier concentration andmobility of IGZO thin films. Oxygen vacancies could play an important role indetermining the electrical properties ofthe films.
     T_1target was adopted to grow IGZO film, and oxygen pressure maintained at5.0Pa, while the substrate temperature altered from room temperature (RT) to800°C.The film grown at substrate temperature of200°C has amorphous structure. With thetemperature increased, species could gain higher energy and finally shifted to properposition of crystal site. In visible spectrum range, the transmittance could achieve at90%. In van der Paw configuration, the hall-effect examination shows that theresistivity dropped from3.96×10~(-3)Ω·cm to0.148Ω·cm, when the temperature increased from RT to400°C, furthermore, the carrier concentration and mobility haveaugmentation to some extent. This could be attributed to crystal quality optimization,while the grain size increase will reduce the gain boundary, in order to minimize thescattering and capture mechanism. So the substrate temperature could affect thephysical properties of IGZO thin film.
     We performed three aspects of research, theoretical calculation on IGZO material,target preparation and thin film fabrication, in order to explore the investigationmethods on different subject. The optimized condition in target preparation and thinfilm fabrication will not only be utilized in daily life and production, but also benefitthe thin film transistor fabrication, even in flat panel display and flexiable display,with short and long term interest.
引文
[1]杨义发.脉冲激光沉积ZnO薄膜及其性质研究.华中科技大学博士学位论文,2008:1-19
    [2] G. A. Hirata, J. McKittrick, T. Cheeks, et al. Synthesis and Optelectronic Characterization ofGallium Doped Zinc Oxide Transparent Electrodes. Thin Solid Films,1996,288(1-2):29-31
    [3] S. Major, K. L. Chopra. Indium-doped Zinc-Oxide Films as Transparent Electrodes forSolar-cells. Solar Energy Materials,1988,17(5):319-327
    [4] X. Q. Su, L. Wang, J. B. Chen, et al. Role of Cobalt in ZnO:Co Thin Films. J. Phys. D: Appl.Phys.,2011,44(26):265002-1-4
    [5] K. Potzger, S. Zhou, H. Reuther, et al. Fe Implanted Ferromagnetic ZnO. Appl. Phys. Lett.,2006,88(5):052508-1-4
    [6] P. Sharma, A. Gupta, K. V. Rao, et al. Ferromagnetism Above Room Temperature in Bulk andTransparent Thin Films of Mn-doped ZnO. Nature Mater.,2003,2(10):673-677
    [7] S. Gautam, S. Kumar, P. Thakur, et al. Electronic Structure Studies of Fe-doped ZnO Nanorodsby X-ray Absorption Fine Structure. J. Phys. D: Appl. Phys.,2009,42(11):175406-1-4
    [8] Q. Y. Xu, H. Schmidt, H. Hochmuth, et al. Room temperature Ferromagnetism in Nd-andMn-codoped ZnO Films. J. Phys. D: Appl. Phys.,2008,41(10):105012-1-4
    [9] G. P. Das, B. K. Rao and P. Jena. Ferromagnetism in Cr-Doped GaN: A First-PrinciplesCalculation. Phys. Rev. B,2004,69(21):214422-1-4
    [10] Q. Y. Xu, S. Q. Zhou, M. Daniel et al. Paramagnetism in Co-Doped ZnO Films. J. Phys. D:Appl. Phys.,2009,42(8):085001-1-4
    [11] M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, et al. Anisotropic Ferromagnetism inSubstituted Zinc Oxide. Phys. Rev. Lett.,2004,93(17):177206-1-4
    [12] J. T. Luo, X. Y. Zhu, B. Fan, et al. Microstructure and Photoluminescence Study ofVanadium-doped ZnO Films. J. Phys. D: Appl. Phys.,2009,42(11):115109-1-4
    [13] H. T. Lin, T. S. Chin, J. C. Shih, et al. Enhancement of Ferromagnetic Properties inZn1XCoxO by Additional Cu Doping. Appl. Phys. Lett.,2004,85(4):621-623
    [14] H. Kawazoe, M. Yasukawa, H. Hyodo, et al. P-Type Electrical Conduction in TransparentThin Films of CuAlO2. Nature,1997,389(6654):939-942
    [15] M. H. F. Sluiter, Y. Kawazoe, P. Sharma, et al. First Principles Based Design andExperimental Evidence for A ZnO-Based Ferromagnet at Room Temperature. Phys. Rev. Lett.2005,94(18):187204-1-4
    [16]王文娜,张大伟,黄元申等.绒面AZO最新研究进展及应用.激光杂志,2012,33(1):1-4
    [17]李军,兰伟,张铭等. P型透明导电氧化物CuAlO2薄膜的研究进展.材料导报,2007,21(3):115-118
    [18] H. Ohta, K. Kawamura, M. Orita, et al. Current Injection Emission from a Transparent P/NJunction Composed of P-SrCu2O2/N-ZnO. Appl. Phys. Lett.2000(77):475-477
    [19] S. Watauchi, I. Tanaka, K. Hayashi, et al. Crystal Growth of Ca12Al14O33by the FloatingZone Method. J. Cryst. Growth,2002,237:496-502
    [20] K. Tonooka K, H. Bando, Y. Aiura. Photovoltaic Effect Observed in Transparent P-NHeterojunctions Based on Oxide Semiconductors. Thin Solid Films,2003,445(2):327-331
    [21] X. G. Zheng, K. Taniguchi, A. Takahashi, et al. Room Temperature Sensing of Ozone byTransparent P-Type Semiconductor CuAlO2. Appl. Phys. Lett.,2004,85(10):1728-1-4
    [22] K. Nomura, H. Ohta, K. Ueda, et al. Thin-Film Transistor Fabricated in Single-CrystallineTransparent Oxide Semiconductor. Science,2003,300(5623):1269-1272
    [23] K. Nomura, H. Ohta, A. Takagi, et al. Room-Temperature Fabrication of Transparent FlexibleThin-Film Transistors Using Amorphous Oxide Semiconductors. Nature,2004,432(7016):488-492
    [24] B. L. Zhu, X. H. Sun, X. Z. Zhao, et al. The Effects of Substrate Temperature on the Structureand Properties of ZnO Films Prepared by Pulsed Laser Deposition. Vacuum,2008,82(5):495-500
    [25] J. F. Wager. Amorphous Oxide Semiconductor Thin-Film Transistors: Performance&Manufacturability for Display Applications. SID Digest,2009,40(1):181-183
    [26]兰林锋.薄膜晶体管及其在有源矩阵有机发光二极管中的应用.华南理工大学博士学位论文,2010:19-21
    [27] H. Hosono, M. Yasukawa, H. Kawazoe. Novel Oxide Amorphous Semiconductors:Transparent Conducting Amorphous Oxides. J. Non-Cryst. Solid.,1996,203(9-20):334-344
    [28] Y. Takedaa, K. Nomurab, H.Ohta, et al. Growth of Epitaxial ZnO Thin Films onLattice-Matched Buffer Layer: Application of InGaO3(ZnO)6Single-Crystalline Thin Film.Thin Solid Films,2005,486(1-2):28-32
    [29] H. Yabuta, M. Sano, K. Abe, et al. High-Mobility Thin-Film Transistor with AmorphousInGaZnO4Channel Fabricated by Room Temperature RF-Magnetron Sputtering. Appl. Phys.Lett.,2006,89(11):112123-1-4
    [30] K. Nomura, H. Ohta, K. Ueda, et al. Growth Mechanism for Single-Crystalline Thin Film ofInGaO3ZnO5by Reactive Solid-Phase Epitaxy. J. Appl. Phys.,2004,95(10):5532-5539
    [31] A. Takagi, K. Nomura, H. Ohta, et al. Carrier Transport and Electronic Structure inAmorphous Oxide Semiconductor, A-InGaZnO4. Thin Solid Films,2005,486(1-2):38-41
    [32] M. Kim, J. H. Jeong, H. J. Lee, et al. High Mobility Bottom Gate InGaZnO Thin FilmTransistors with SiOxEtch Stopper. Appl. Phys. Lett.,2007,90(21):212114-1-4
    [33] J. K. Jeong, J. H. Jeong, H. W. Yang, et al. High Performance Thin Film Transistors withCosputtered Amorphous Indium Gallium Zinc Oxide Channel. Appl. Phys. Lett.,2007,91(11):113505-1-4
    [34] D. Kang, H. Lim, C. Kim, et al. Amorphous Gallium Indium Zinc Oxide Thin FilmTransistors: Sensitive to Oxygen Molecules. Appl. Phys. Lett.,2007,90(19):192101-1-4
    [35] M. Ofuji, K. Abe, H. Shimizu, et al. Fast Thin-Film Transistor Circuits Based on AmorphousOxide Semiconductor. IEEE Electron Dev. Lett.,2007,28(4):273-275
    [36] J.-S. Park, J. K. Jeong, Y.-G. Mo, et al. Improvements in the Device Characteristics ofAmorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment, Appl.Phys. Lett.,2007,90(26):262106-1-4
    [37] K. Nomura, T. Kamiya, H. Ohta, et al. Local Coordination Structure and Electronic Structureof the Large Electron Mobility Amorphous Oxide Semiconductor In-Ga-Zn-O: Experimentand Ab Initio Calculations. Phys. Rev. B,2007,75(3):035212-1-4
    [38] H. Yin, S. Kim, C. J. Kim, et al. Fully Transparent Nonvolatile Memory EmployingAmorphous Oxides as Charge Trap and Transistor’s Channel Layer. Appl. Phys. Lett.,2008,93(17):172109-1-4
    [39] M. Ito, C. Miyazaki, M. Ishizaki, et al. Application of Amorphous Oxide TFT toElectrophoretic Display. J. Non-Cryst. Solid.,2008,354(27):2777-2782
    [40] H. Lim, H. Yin, J.-S. Park, et al. Double Gate Gain ZnO Thin Film Transistors, Appl. Phys.Lett.,2008,93(6):063505-1-4
    [41] P. Barquinha, A. M. Vilà, G. Gon alves, et al. Gallium-Indium-Zinc-Oxide-Based Thin-FilmTransistors: Influence of the Source/Drain Material. IEEE Transactions on Electron Devices,2008,55(4):954-960
    [42] M. Kimura, T. Nakanishi, K. Nomura, et al. Trap Densities in Amorphous-InGaZnO4Thin-Film Transistors. Appl. Phys. Lett.,2008,92(13):133512-1-4
    [43] A. Suresh, P. Gollakota, P. Wellenius, et al. Transparent, High Mobility InGaZnO Thin FilmsDeposited by PLD. Thin Solid Films,2008,516(13):1326-1329
    [44] P. Barquinha, A. Vilà, G. Gon alves, et al. The Role of Source and Drain Material in thePerformance of GIZO Based Thin-Film Transistors. Phys. Stat. Sol.(A),2008,205(8):1905-1909
    [45] W. Lim, S.-H. Kim, Y.-L. Wang, et al. Stable Room Temperature Deposited AmorphousInGaZnO4Thin Film Transistors. J. Vac. Sci. Technol. B,2008,26:959-962
    [46] J. Park, C. Kim, S. Kim, et al. Source/Drain Series-Resistance Effects in AmorphousGallium-Indium-Zinc-Oxide Thin Film Transistors. IEEE Electron Dev. Lett.,2008,29(8):879-881
    [47] I. Song, S. Kim, H. X. Yin, et al. Short Channel Characteristics ofGallium-Indium-Zinc-Oxide Thin Film Transistors for Three-Dimensional Stacking Memory.IEEE Electron Dev. Lett.,2008,29(6):549-552
    [48] J. Park, I. Song, S. Kim, et al. Self-Aligned Top-Gate Amorphous Gallium Indium ZincOxide Thin Film Transistors. Appl. Phys. Lett.,2008,93(5):053501-1-4
    [49] H. Yin, S. Kim, H. Lim, et al. Program/Erase Characteristics of Amorphous Gallium IndiumZinc Oxide Nonvolatile Memory. IEEE Transactions on Electron Devices,2008,55(8):2071-2077
    [50] H. Q. Chiang, B. R. McFarlane, et al. Processing Effects on the Stability of AmorphousIndium Gallium Zinc Oxide Thin-Film Transistors. J. Non-Cryst. Solid.,2008,354(19-25):2826-2830
    [51] J. K. Jeong, H. W. Yang, J. H. Jeong, et al. Origin of Threshold Voltage Instability inIndium-Gallium-Zinc Oxide Thin Film Transistors. Appl. Phys. Lett.,2008,93(12):123508-1-4
    [52] H.-H. Hsieh, T. Kamiya, K. Nomura, et al. Modeling of Amorphous InGaZnO4Thin FilmTransistors and Their Subgap Density of States. Appl. Phys. Lett.,2008,92(13):133503-1-4
    [53] J. Park, S. Kim, C. Kim, et al. High-Performance Amorphous Gallium Indium Zinc OxideThin-Film Transistors through N2O Plasma Passivation. Appl. Phys. Lett.,2008,93(5):053505-1-4
    [54] T. Kamiya, K. Nomura, H. Hosono, et al. Electronic Structure of the Amorphous OxideSemiconductor A-InGaZnO4-x: Tauc-Lorentz Optical Model and Origins of Subgap States.Phys. Status Solidi A,2009,206(5):860-867
    [55] R. K. Sahu, R. D. Vispute, S. Dhar, et al. Enhanced Conductivity of Pulsed Laser DepositedN-InGaZn6O9Films and Its Rectifying Characteristics with P-SiC. Thin Solid Films,2009,517(14):1829-1832
    [56] C. H. Jung, D. J. Kim, Y. K. Kang, et al. Transparent Amorphous In-Ga-Zn-O Thin Film asFunction of Various Gas Flows for TFT Applications. Thin Solid Films,2009,517(14):4078-4081
    [57] K. W. Lee, K. Y. Heo, S. H. Oh, et al. Thin Film Transistors by Solution-Based IndiumGallium Zinc Oxide/Carbon Nanotubes Blend. Thin Solid Films,2009,517(14):4011-4014
    [58] S. Kim, J. Park, C. Kim, et al. Source/Drain formation of Self-Aligned Top-Gate AmorphousGaInZnO Thin-Film Transistors by NH3Plasma Treatment. IEEE Electron Dev. Lett.,2009,30(4):374-376
    [59] S. M. Bobade, J.-H. Shin, Y.-J. Cho, et al. Room Temperature Fabrication Oxide TFT withY2O3as A Gate Oxide and Mo Contact. Applied Surface Science,2009,255(17):7831-7833
    [60] W.-S. Cheong, Y.-S. Yoon, J.-H. Shin, et al. Process Development of ITO Source/DrainElectrode for the Top-Gate Indium-Gallium-Zinc Oxide Transparent Thin-Film Transistor.Thin Solid Films,2009,517(14):4094-4099
    [61] S.-J. Liu, H.-W. Fang, S.-H. Su, et al. Physical Properties of Amorphous InGaZnO4FilmsDoped with Mn. Appl. Phys. Lett.,2009,94(9):092504
    [62] K. W. Lee, K. Yi. Heo, H. J. Kima. Photosensitivity of Solution-Based Indium Gallium ZincOxide Single-Walled Carbon Nanotubes Blend Thin Film Transistors. Appl. Phys. Lett.,2009,94(10):102112-1-4
    [63] M.-J. Lee, S. I. Kim, C. B. Lee, et al. Low-Temperature-Grown Transition Metal OxideBased Storage Materials and Oxide Transistors for High-Density Non-volatile Memory. Adv.Funct. Mater.,2009,19(10):1587-1593
    [64] J.-M. Lee, W.-S. Cheong, C.-S. Hwang, et al. Low-Frequency Noise in AmorphousIndium-Gallium-Zinc-Oxide Thin-Film Transistors. IEEE Electron Dev. Lett.,2009,30(5):505-507
    [65] G. H. Kim, H. S. Kim, H. S. Shin, et al. Inkjet-Printed InGaZnO Thin Film Transistor. ThinSolid Films,2009,517(14):4007-4010
    [66] J.-S. Park, J. K. Jeong, Y.-G. Mo, et al. Impact of High-K TiOxDielectric on DevicePerformance of Indium-Gallium-Zinc Oxide Transistors. Appl. Phys. Lett.,2009,94(4):042105-1-4
    [67] J. B. Kim, C. Fuentes-Hernandez, B. Kippelen. High-Performance InGaZnO Thin-FilmTransistors with High-K Amorphous Ba0.5Sr0.5TiO3Gate Insulator. Appl. Phys. Lett.,2008,93(24):242111-1-4
    [68] J.-H. Park, K. Jeon, S. Lee, et al. Extraction of Density of States in Amorphous GaInZnOThin-Film Transistors by Combining an Optical Charge Pumping and Capacitance-VoltageCharacteristics. IEEE Electron Dev. Lett.,2008,29(12):1292-1295
    [69] Y.-J. Cho, J.-H. Shin, S. M. Bobade, et al. Evaluation of Y2O3Gate Insulators for A-IGZOThin Film Transistors. Thin Solid Films,2009,517(14):4115-4118
    [70] A. Sato, K. Abe, R. Hayashi, et al. Amorphous In-Ga-Zn-O Coplanar HomojunctionThin-Film Transistor. Appl. Phys. Lett.,2009,94(13):133502-1-4
    [71]林明通,余峰,张志林等.氧化锌基薄膜晶体管最新研究进展.光电子技术,2008,28(4):217-226
    [72] X. A. Zhang, J. W. Zhang, W. F. Zhang, et al. Enhancement Mode Thin Film Transistor withNitrogen-Doped ZnO Channel Layer Deposited by Laser Molecular Beam Epitaxy. ThinSolid Films,2008,516(10):3305-3308
    [73] X. Zou, G. J. Fang, J. W. Wan, et al. Enhanced Performance of A-IGZO Thin-Film Transistorsby Forming AZO/IGZO Heterojunction Source/Drain Contacts. Semicond. Sci. Technol.,2011,26(5):055003-1-4
    [74] J. F. Shi, L. L. Chen, Q. Li, et al. Dependence of Electrical and Optical Properties of IGZOFilms on Oxygen Flow. J. Shanghai Univ.(English Edition),2011,15(4):242-244
    [75]吴为敬,颜骏,许志平等. IGZO TFT与ZnO TFT的性能比较.液晶与显示,2011,26(2):147-153
    [76]王东,张景文,种景等.非晶IGZO透明导电薄膜的L-MBE制备.微电子学与计算机,2009,26(6):133-136
    [77]张安,赵小如,段利兵等.基于表面势的非晶IGZO薄膜晶体管分析模型.半导体技术,2011,36(4):257-260
    [78]刘翔,薛建设,贾勇等.金属氧化物IGZO薄膜晶体管的最新研究进展.现代显示,2010,(117):28-32
    [79]吴自勤,王兵.薄膜生长.科学出版社,2001:320
    [80] A. Y. Cho, J. R. Arthur. Molecular Beam Epitaxy. Prog. Solid State Chem.,1975,10:157-192
    [81] J. Cheng, V. K. Lazarov, et al, Synthesis, Structural And Magnetic Properties Of EpitaxialMgFe2O4Thin Films by Molecular Beam Epitaxy. J. of Vacuum Science&Technology B,2009,27(1):148-151
    [82]郑伟涛.薄膜材料与薄膜技术.北京:化学工业出版社,2007:54-58
    [83]薛晨阳,张文栋等.半导体薄膜光谱学.科学出版社,2008:3-4
    [84]张端明,赵修建,李智华等.脉冲激光沉积动力学与玻璃基薄膜.湖北科学技术出版社,2006:23
    [85] M. Lee and J. Dho. Controlling the Electrical and the Optical Properties of Amorphous IGZOFilms Prepared by Using Pulsed Laser Deposition. Journal of the Korean Physical Society,2011,58(3):492-497
    [86] M. Kim, J. H. Jeong, H. Jung Lee, et al. High Mobility Bottom Gate InGaZnO Thin FilmTransistors with SiOxEtch Stopper. Appl. Phys. Lett.,2007,90(21):212114-1-4
    [87] J. H. Choi, S. M. Hwang, C. M. Lee, et al. Effect of Ga Content and Sintering Time onElectrical Properties of InGaZnO Thin Film Transistors Fabricated by Sol-Gel Process. J.Cryst. Growth,2011,326(1):175-178
    [88]张跃,古景华,尚佳香等.计算材料学基础.北京航天航空大学出版社,2007:1-30
    [89]刘雷.高温高压下镁橄榄石物性第一性原理研究.中国地震局地震研究所博士学位论文,2008:42
    [90]张富春,邓周虎,阎军锋等. ZnO电子结构与光学性质的第一性原理计算.光学学报,2006,26(8):1203-1209
    [91] A. Janotti, Chris G. Van de Walle. New Insights into the Role of Native Point Defects in ZnO.J. Cryst. Growth,2006,287(1):58-65
    [92] S. J. Pearton, D. P. Norton, K. Ip, et al. Recent Progress in Processing and Properties of ZnO.Progress in Materials Science,2005,50(3):293-340
    [93] ü. zgür, Ya. I. Alivov, C. Liu, et al. A Comprehensive Review of ZnO Materials andDevices. J. Appl. Phys.,2005,98(4):041301-1-4
    [94] A. Walsh, Juarez L. F. Da Silva, and S.-H. Wei. Theoretical Description of Carrier MediatedMagnetism in Cobalt Doped ZnO. Phys. Rev. Lett.,2008,100(5):256401-1-4
    [95] Y. Kuroiwa, S. Aoyagi, A. Sawada, et al. Evidence for Pb-O Covalency in Tetragonal PbTiO3.Phys. Rev. Lett.,2001,87(21):217601-1-4
    [96]丁增辉,熊予莹,张蜡宝.空位氧化锌第一性原理平面波赝势方法研究.材料导报,2009,23(9):79-82
    [97] L. N. Wang, X. Y. Fang, Z. L. Hou, et al. The Polarization Mechanism of Oxygen Vacancyand Its Influence on Dielectric Properties in ZnO. Chin. Phys. Lett.,2011,28(2):027101-1-4
    [98] A. Janotti and Chris G. Van de Walle. Oxygen Vacancies in ZnO. Appl. Phys. Lett.,2005,87(12):122102-1-4
    [99] Chris G. Van de Walle. Defect Analysis and Engineering in ZnO. Physica B,2001,308:899-903
    [100] I.-J. Kang and C.-H. Park. First-Principles Study of the Microscopic Properties of the OVacancies in Single-Crystalline InGaZnO4. Journal of the Korean Physical Society,2010,56(1):480-484
    [101] W.-J. Lee, E.-A. Choi, J. Bang, et al. First-principles Study of the Electronic Structure ofCrystalline InGaO3(ZnO)3. Journal of the Korean Physical Society,2009,55(1):112-115
    [102] L. Bellaiche and D. Vanderbilt. Virtual Crystal Approximation Revisited: Application toDielectric and Piezoelectric Properties of Perovskites. Phys. Rev. B,2000,61(12):7877-7782
    [103]何贤昶.陶瓷材料概论.上海科学普及出版社,2005:146-147
    [104]张龙,朱健,卓敏. Ba0.6Sr0.4TiO3溅射靶材的烧制和性能分析.功能材料与器件学报,2008,14(2):358-361
    [105]陈江博,王丽,苏雪琼等. InGaZnO多晶靶材制备与薄膜生长的研究.中国激光,2009,36(S2):364-367
    [106] Z. Thomas. Industrial Applications of Excimer Lasers. SPIE,1986, V668:339-346
    [107] D. Dijkkamp, T. Venkatesan, X. Wu, et al. Preparation of Y-Ba-Cu Oxide SuperconductorThin-Films Using Pulsed Laser Evaporation from High-Tc Bulk Material. Appl. Phys. Lett.,1987,51(8):619-621
    [108] D. B. Chrisey and G. K. Hubler. Pulsed Laser Deposition of Thin Film. John Wiley&Sons,Inc., New York,1994:1-4
    [109]戢明,宋全胜,曾晓雁等.脉冲激光沉积(PLD)薄膜技术的研究现状与展望.真空科学与技术,2003,23(1):25-29
    [110]高国棉,陈长乐,陈钊等.脉冲激光沉积(PLD)的研究动态与新发展.材料导报,2005,19(2):69-71
    [111]李晓生,李成海,林蔚等.无机非金属材料物相分析与研究方法.中国建材工业出版社,2008:224-226
    [112]魏显起.脉冲激光沉积制备ZnO薄膜及其光电性质研究.山东师范大学博士学位论文,2007:27-28,35-36
    [113]施展. p型Cu1-xNixO透明氧化物半导体薄膜的制备及性能分析.复旦大学硕士学位论文,2009:31-32
    [114]刘恩科,朱秉升,罗晋生.半导体物理学.电子工业出版社,2009:366-373
    [115] L. J. van der Pauw. Philips Res. Rep.,1958,13:1-4
    [116] J. F. Watts, J. Wolstenholme著.吴正龙译.表面分析(XPS和AES)引论.华东理工大学出版社,2008:1-48
    [117]杨序刚,吴琪琳.拉曼光谱的分析与应用.国防工业出版社,2008:1-18
    [118] H. Hosono. Ionic amorphous oxide semiconductors: Material design, carrier transport, anddevice application. J. Non-Cryst. Solid.,206,352(9-20):851-858
    [119] M. R. Moon, S. Na, H. Jeon, et al. Effects of Substrate Heating on the Amorphous Structureof InGaZnO Films and the Electrical Properties of Their Thin Film Transistors. AppliedPhysics Express,2010,3(11):111101-1-4
    [120] P. T. Liu, Y. T. Chou, L. F. Teng, et al. Nitrogenated Amorphous InGaZnO Thin FilmTransistor. Appl. Phys. Lett.,2011,98(5):052102-1-3
    [121] X. Zou, G. J. Fang, L. Y. Yuan, et al. A Comparative Study of Amorphous InGaZnOThin-Film Transistors with HFOxNyand HFO2Gate Dielectrics. Semicond. Sci. Technol.,2010,25(5):055006-1-5
    [122] S. K. Park, Y.-H. Kim and J.-I. Han. All Solution-Processed High-ResolutionBottom-Contact Transparent Metal-Oxide Thin Film Transistors. J. Phys. D: Appl. Phys.,2009,42(12):125102-1-4
    [123] J. B. Chen, L. Wang, and X. Q. Su. InGaZnO Thin Films Grown by Pulsed Laser Deposition,Vacuum,2012,86(9):1313-1317
    [124] J. B. Chen, L. Wang, X. Q. Su, et al. InGaZnO Semiconductor Thin Film Fabricated UsingPulsed Laser Deposition, Optics Express,2010,18(2):1398-1405
    [125] T.-L. Phan, P. Zhang, D. S. Yang, et al. Local Structure and Paramagnetic Properties ofZn1-XMnxO, J. Appl. Phys.,2011,110(6):063912-1-6
    [126] S. Adhikari, R. Gupta, A. Garg, et al. An Investigation in InGaO3(ZnO)MPellets as Cause ofVariability in Thin Film Transistor Characteristics. Bull. Mater. Sci.,2011,34(3):447-454
    [127] J. B. Chen, L. Wang, X. Q. Su, et al. Pulsed Laser Deposited InGaZnO Thin Film on SilicaGlass, J. Non-Cryst. Solid., in press
    [128] J. Sann, J. Stehr, A. Hofstaetter, et al. Zn Interstitial Related Donors in Ammonia-TreatedZnO Powders. Phys. Rev. B,2007,76(19):195203-1-4
    [129] H. I. Abdulgafour, Z. Hassan, N. Al-Hardan, et al. Growth of Zinc Oxide Nanoflowers byThermal Evaporation Method. Physica B,2010,405(11):2570-2572
    [130] O. M. Berengue, A. D. Rodrigues, C. J. Dalmaschio, et al. Structural Characterization ofIndium Oxide Nanostructures: A Raman Analysis. J. Phys. D: Appl. Phys.,2010,43(4):045401-1-4
    [131] R. Rao, A. M. Rao, B. Xu, et al. Blueshifted Raman Scattering and Its Correlation with the
    [110] Growth Direction in Gallium Oxide Nanowires. J. Appl. Phys.,2005,98(9):094312-1-4
    [132] G. Korotcenkov, V. Brinzari, M. Ivanov, et al. Structural Stability of Indium Oxide FilmsDeposited by Spray Pyrolysis During Thermal Annealing. Thin Solid Films,2005,479(1-2):38-51
    [133] H. S. Kim, H. G. Na, J. C. Yang, et al. Synthesis, Structure, Photoluminescence, and RamanSpectrum of Indium Oxide Nanowires. Acta Physica Polonica A,2011,119(2):143-145
    [134] H. M. Zhang, G. X. Chen, G. W. Yang, et al. Optical Properties of Amorphous/CrystallineZnO Nano-Powder Prepared by Solid State Reaction. J. Mater. Sci.: Mater. Electron,2007,18(4):381-384
    [135] N. Yamaguchi, S. Taniguchi, T. Miyajima, et al. Optical and Electrical Properties ofAmorphous InGaZnO, J. Vac. Sci. Technol. B,2009,27(3):1746-1748
    [136] C. Q. Wang, D. R. Chen, X. L. Jiao, et al. Lotus-Root-Like In2O3Nanostructures:Fabrication, Characterization, and Photoluminescence Properties. J. Phys. Chem. C,2007,111(36):13398-13403
    [137] L. F. Ji, Y. J. Jiang, W. Wang, et al. Enhancement of the Dielectric Permittivity of Ta2O5Ceramics by CO2Laser Irradiation. Appl. Phys. Lett.,2004,85(9):1577-1579
    [138] N. L. Dehuff, E. S. Kettenring, D. Hong, et al. Transparent Thin-Film Transistors with ZincIndium Oxide Channel Layer. J. Appl. Phys.,2005,97(6):064505-1-4
    [139] K. Jang, H. Park, S. Jung, et al. Optical and Electrical Properties of2wt.%Al2O3-DopedZnO Films and Characteristics of Al-Doped ZnO Thin-Film Transistors with Ultra-ThinGate Insulators. Thin Solid Films,2010,518(10):2808-2811
    [140] W. J. Park, H. S. Shin, B. D. Ahn, et al. Investigation on Doping Dependency ofSolution-Processed Ga-Doped ZnO Thin Film Transistor. Appl. Phys. Lett.,2008,93(8):083508-1-4
    [141] S. J. Lim, J. M. Kim, D. Kim, et al. Atomic Layer Deposition ZnO:N Thin Film Transistor:The Effects of N Concentration on the Device Properties. J. Electrochem. Soc.,2010,157(2):H214-H218
    [142] R. L. Hoffman, B. J. Norris, J. F. Wager. ZnO-Based Transparent Thin-Film Transistors.Appl. Phys. Lett.,2003,82(5):733-735
    [143] T. Kamiya, K. Nomura, H. Hosono. Electronic Structure of the Amorphous OxideSemiconductor A-InGaZnO4-X: Tauc-Lorentz Optical Model and Origins of Subgap States.Phys. Status Solidi A,2009,206(5):860-867
    [144] A. Suresh, P. Wellenius, V. Baliga, et al. Fast All-Transparent Integrated Circuits Based onIndium Gallium Zinc Oxide Thin-Film Transistors. IEEE Electron Dev. Lett.,2010,31(4):317-319
    [145] R. P. Wang, Y. L. Zhou, S. H. Pan, et al. A New Direct Process to Prepare YBa2Cu3O7-ΔFilms on Biaxially Textured Ag{110}<211>. Physica C,1999,328(1-2):37-43
    [146] R. P. Wang, H. Muto, and T. Kusumori. Growth of C-Axis Oriented GaN Films on Quartzby Pulsed Laser Deposition. Opt. Mater.,2003,23(1-2):15-20
    [147] R. P. Wang, H. Muto, Y. Yamada, et al. Effect of ZnO Buffer Layer on the Quality of GaNFilms Deposited by Pulsed Laser Ablation. Thin Solid films,2002,411(1):69-75
    [148] L. Z. Xuan, S. H. Pan, Z. H. Chen, et al. Second-Harmonic Generation in BaTiO3FilmsDoped with Cerium. Appl. Phys. Lett.,1998,73(20):2896-2898
    [149] R. P. Wang, C. J. Tao. Nb-Doped CaTiO3Transparent Semiconductor Thin Films. J. Cryst.Growth,2002,245(1-2):63-66
    [150] Y. Choi, S. Yamamoto, T. Umebayashi, et al. Fabrication and Characterization of AnataseTiO2Thin Film on Glass Substrate Grown by Pulsed Laser Deposition. Solid State Ionics,2004,172(1-4):105-108
    [151] M. Nagashima, H. Wada. AFM Observation for the Oxygen Deficiency Effect on theSurface Morphology of VO2Thin Films. J. Cryst. Growth,1997,179(3-4):539-545
    [152] K. Morigaki. Physics of Amorphous Semiconductors. Singapore: World ScientificPublishing Co. Pte. Ltd,1999:137-138
    [153] V. Jayasree, R. Ratheesh, V. Ganesan, et al. Influence of Reactive Oxygen Ambience on theStructural, Morphological and Optical Properties of Pulsed Laser Ablated PotassiumLithium Niobate Thin Films. Thin Solid Films,2008,517(2):603-608
    [154] C.-F. Yu, C.-W. Sung, S.-H. Chen, et al. Relationship Between the Photoluminescence andConductivity of Undoped ZnO Thin Films Grown with Various Oxygen Pressures. Appl.Surf. Sci.,2009,256(3):792-796
    [155] R. K. Gupta, K. Ghosh, R. Patel, et al. Effect of Oxygen Partial Pressure on Properties ofNb-Doped In2O3Thin Films. Mat. Chem.&Phys.,2008,112(1):136-139
    [156] G. Exarhos, X. Zhou. Discovery-Based Design of Transparent Conducting Oxide Films.Thin Solid Films,2007,515(18):7025-7052
    [157] P. Sen, M. S. Hegde, C. N. Rao. Surface Oxidation of Cadmium, Indium, Tin and Antimonyby Photo-Electron and Auger-Spectroscopy. Appl. Surf. Sci.,1983,10(1):63-74
    [158] G. Sch n. Auger and Direct Electron Spectra in X-Ray Photoelectron Studies of Zinc, ZincOxide, Gallium and Gallium Oxide. J. Electron Spectrosc, Relat. Phenom.,1973,2(1):75-86
    [159] S. P. Kowalczyk, R. A. Pollak, F. R. McFeely, et al. L2,3M45M45Auger Spectra of MetallicCopper and Zinc: Theory and Experiment. Phys. Rev. B,1973,8(6):2387-2391
    [160] B. Z. Dong, G. J. Fang. Effect of Thickness on Structural, Electrical, and Optical Propertiesof ZnO: Al Films Deposited by Pulsed Laser Deposition. J. Appl. Phys.,2007,101(3):033713-1-4
    [161] Y. Z. Jiang, N. Bahlawane. Changes in the Structural and Optical Properties of CeO2Nanocrystalline Films: Effect of Film Thickness. J. Alloys Compd.,2009,485(1-2):L52-L55.
    [162] F. K. Shan, G. X. Liu, W. J. Lee, et al. The Role of Oxygen Vacancies in Epitaxial-DepositedZnO Thin Films. J. Appl. Phys.,2007,101(5):053106-1-4
    [163] K. Matsubara, P. Fons, K. Iwata, et al. Room-Temperature Deposition of Al-Doped ZnOFilms by Oxygen Radicalassisted Pulsed Laser Deposition. Thin Solid Films,2002,422(1-2):176-179
    [164] D. Beena, K. J. Lethy, R. Vinodkumar, et al. Effect of Substrate Temperature on Structural,Optical and Electrical Properties of Pulsed Laser Ablated Nanostructured Indium OxideFilms. Appl. Surf. Sci.,2009,255(20):8334-8342
    [165] C. Yang, X. M. Li, X. D. Gao, et al. Effects of the Oxygen Pressure on the Structural andOptical Properties of ZnBeMgO Films Prepared by Pulsed Laser Deposition. J. Cryst.Growth,2010,312(7):978-981
    [166] T. P. Rao, M. C. S. Kumar, A. Safarulla, et al. Physical Properties of ZnO Thin FilmsDeposited at Various Substrate Temperatures Using Spray Pyrolysis. Physica B,2010,405(9):2226-2231
    [167] M. Futsuhara, K. Yoshiok, O. Takai. Structural, Electrical and Optical Properties of ZincNitride Thin Films Prepared by Reactive RF Magnetron Sputtering. Thin Solid Films,1998,322(1-2):274-281
    [168] S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, et al. High-Energy Heavy-Ion InducedPhysical and Surface-Chemical Modifications in Polycrystalline Cadmium Sulfide ThinFilms. Appl. Phys. A,2009,94(3):703-714
    [169]章宁琳,宋志棠,邢溯等.准分子脉冲激光沉积法制备的ZrO2薄膜结构和电学性能的研究.中国激光,2003,30(4):345-348
    [170] X. Y. Zhang, A. Dhawan, P. Wellenius et al. Planar ZnO Ultraviolet Modulator. Appl. Phys.Lett.,2007,91(7):071107-1-4
    [171]杨义发,龙华,杨光等.温度对飞秒激光沉积ZnO/Si薄膜的结构和性能的影.中国激光,2007,34(9):1282-1286
    [172] J. Tauc, R. Grigorovici, A. Vancu. Optical Properties and Electronic Structure of AmorphousGermanium. Physica Status Solidi (b),1966,15(2):627-637
    [173] J. Swiatowska-Mrowiecka, V. Maurice, S. Zanna, et al. XPS Study of Li Ion Intercalation inV2O5Thin Films Prepared by Thermal Oxidation of Vanadium Metal. Electrochimica Acta,2007,52(18):5644-5653
    [174] G. M. Hado, D. N. Guerra, D. Leinen, et al. Indium Doped Zinc Oxide Thin Films Obtainedby Electrodeposition. Thin Solid Films,2005,490(5):124-131
    [175] L. L. Chen, Z. Z. Ye, J. G. Lu, et al. Co-Doping Effects and Electrical Transport in In-NDoped Zinc Oxide. Chemical Physics Letters,2006,432(1-3):352-355
    [176] X. P. Peng, H. Zang, Z. H. Wang, et al. Blue-Violet Luminescence Double Peak of In-DopedFilms Prepared by Radio Frequency Sputtering. Journal of Luminescence,2008,128(3):328-332
    [177] M. N. Islam, T. B. Ghosh, K. L. Chopra, et al. XPS and X-Ray Diffraction Studies ofAluminum Doped Zinc Oxide Transparent Conducting Films. Thin Solid Films,1996,280(1-2):20-25
    [178] H. Wang, S. Baek, J. Song, et al. Microstructural and Optical Characteristics ofSolution-Grown Ga-Doped ZnO Nanorod Arrays. Nanotechnology,2008,19(7):075607-1-4
    [179] C. Jung, D. Kim, Y. K. Kang, et al. Effect of Heat Treatment on Electrical Properties ofAmorphous Oxide Semiconductor In-Ga-Zn-O Film as A Function of Oxygen Flow Rate.Japanese J. Appl. Phys.,2009,48(8):08HK02-1-4
    [180] Y. Zhao, Y. J. Jiang, Y. Fang. The Influence of Substrate Temperature on ZnO Thin FilmsPrepared by PLD Technique. J. Cryst. Growth,2007,307(2):278-282
    [181] Z. Y. Chen, J. P. Zhao, T. Yano, et al. Effect of Temperature on Carbon Nitride FilmsSynthesized by Ion-Beam-Assisted Pulsed Laser Deposition. J. Appl. Phys.,2000,88(12):7060-7066
    [182] D. Beena, K. J. Lethy, R. Vinodkumar, et al. Influence of Substrate Temperature on theProperties of Laser Ablated Indium Tin Oxide Films. Solar Energy Materials and Solar Cells,2007,91(15-16):1438-1443
    [183] J. Mass, P. Bhattacharya, R.S. Katiyar. Effect of High Substrate Temperature on Al-DopedZnO Thin Films Grown by Pulsed Laser Deposition. Materials Science and Engineering B,2003,103(1):9-15
    [184] S. M. Park, T. Ikegami, K. Ebihara. Effects of Substrate Temperature on the Properties ofGa-Doped ZnO by Pulsed Laser Deposition. Thin Solid Films,2006,513(1-2):90-94
    [185] A. S. Reddy, H. H. Park, G. M. Rao, et al. Effect of Substrate Temperature on the PhysicalProperties of DC Magnetron Sputtered CuAlO2Films. Journal of Alloys and Compounds,2009,474(1-2):401-405
    [186] H. Wang, S. Baek, J. Song, et al. Microstructural and Optical Characteristics ofSolution-Grown Ga-Doped ZnO Nanorod Arrays. Nanotechnology,2008,19(7):075607-1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700