纳米氧化物的气相合成、结构表征及发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以碳纳米管为代表的一维纳米材料已成为纳米科技领域十分重要的研究课题,在这些材料中,氧化物半导体一维纳米材料又受到了特殊的关注,这不仅因为丰富多样的氧化物纳米结构不断被制备出来,更因为氧化物中阳离子价态可变、氧空位浓度可调,从而氧化物半导体的性质可以有效调控。发展新合成方法、拓展新体系、合成新结构、探索新性能是当今重要的研究热点。本论文的主要内容是关于一维氧化物纳米材料的气相合成和光致发光性能的研究。具体包括以下几个方面:
     1. ITO衬底上Sn掺杂ZnO纳米线的制备及生长机制、光学性能研究
     采用简单的热蒸发方法,用ITO片做衬底,在无催化剂的条件下,通过热蒸发ZnO和C粉的混合物,制备出大量纤锌矿结构的Sn掺杂ZnO纳米线。Sn掺杂ZnO纳米线的生长过程遵循VLS生长机制。用扫描电镜(SEM)、透射电镜(TEM)、能量弥散X射线衍射仪(EDS)和光致发光光谱(PL)等测试手段对制得产物的形貌、微观结构和光学性能进行了研究。研究表明纳米线为单晶纤锌矿结构,直径一般在30-50nm,长度为几十到几百微米,生长方向为[001]。在室温光致发光光谱中,我们观察到在400nm处的一个紫色发光峰和在495nm处的一个绿色发光峰。这与纯ZnO的发光有所不同,可能是由于Sn的掺杂引起的。值得强调的是产物中所掺杂的Sn来源于衬底而不是反应物。
     2. SiOx纳米线的气相合成及其发光特性研究
     在没有使用催化剂的条件下,用简单的热蒸发方法成功地合成了大量的SiOx纳米线,这些纳米线自组装成扇形和束状两种不同的结构。SiOx的生长过程是基于VS机制。用扫描电镜(SEM)、透射电镜(TEM)、能量弥散X射线衍射仪(EDS)和光致发光光谱(PL)等测试手段对制得产物的形貌、微观结构和光学性能进行了研究。研究表明组成两种结构的纳米线的直径大约分别为100nm和10nm,长度为十几到几十微米左右。产物的室温光致发光(PL)谱通过高斯拟合分析表明,非晶氧化硅纳米线具有三个发光峰,分别位于368nm(3.37eV)、388nm(3.19 eV)、和400nm(3.1 eV)。
     3.锗酸锌分级纳米结构的制备、表征、生长机制和发光性能研究
     在1100℃温度条件下,通过热蒸发ZnO、Ge和C粉混合物合成了锗酸锌分级结构,Zn2GeO4微米棒/ZnGeO3纳米线。这种结构的生长过程基于两步VS生长机制。用扫描电镜(SEM)、透射电镜(TEM)、能量弥散X射线衍射仪(EDS)和光致发光光谱(PL)等测试手段对制得产物的形貌、微观结构和光学性能进行了研究。微米棒的直径大约2个微米,而纳米线的直径只有15nm,生长方向为[113]。室温下测得的光致发光谱中可以观察到395nm处的紫外发光峰、455nm处的蓝色发光峰和532nm处的绿色发光峰。
One-dimensional (1D) nanomaterials such as carbon nanotubes (CNT) have become an important research subject in the field of nanoscience and nanotechnology. Among these materials, functional oxide semiconductor nanostructures can be used as fundamental ingredients of smart systems, because their physical and chemical properties can be tuned through adjusting cation valence state and anion deficiency. The new synthetic methods, the extension of novel nanostructures and materials systems, as well as the exploration of novel properties and applications of 1D nanomaterials have become the most interesting contents. In this paper, the point is to synthesize one dimensional oxide nanomaterials and research the photoluminescence properties. The main contents of this dissertation are summarized as follows:
     1. The synthesis of Sn-doped ZnO nanowires on ITO substrate and optical properties
     Single crystalline Sn-doped ZnO nanowires were successfully synthesized on indium tin oxide coated glass (ITO) substrate by simple thermal evaporation approach without introducing any catalysts. The morphology and microstructure were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction, high-resolution transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and photoluminescence spectroscopy (PL). The investigation confirmed that the products were of the wurtzite structure of ZnO. These doped nanowires have diameters in the range of 30 to 50nm and lengths of several tens of micrometers with growth direction along the c-axis of the crystal plane. Photoluminescence (PL) of these doped nanowires exhibits a weak UV emission peak at around 400 nm and the strong green emission peak at around 495 nm at room temperature, which may be induced by the Sn doping. We used a different doping strategy for ZnO nanowires, the dopants originate from substrate rather than from source stock.
     2. Synthesis and photoluminescence properties of SiOx nanowires
     Large-scale SiOx nanowires were successfully synthesized by the simple thermal evaporation method without the presence of catalyst. These namowires self-assembled two different namostructures. The growth process of the SiOx namowires is based on vapor-solid (VS) growth mechanism. Its morphology and microstructures were determined by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and photoluminescence spectroscopy. Studies indicate that the diameters of about 100 nm and 10nm, lengths ranging from several tens to several hundreds of micrometers. The room-temperature PL spectrum of our product shows three emission bands centering at about 368nm, 388nm and 400nm, respectively.
     3. Synthesis and characterization of hierarchical zinc germinate nanostructures
     Novel hierarchical zinc germinate nanostructures have been successfully synthesized by the simple thermal evaporation method without the presence of catalyst at 1100℃. Its morphology and microstructures were characterized by field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and photoluminescence spectroscopy. SEM shows that the synthesized product displays interesting firefly-like morphology, in which numerous secondary branches (ZnGeO3 nanowires) are grown randomly around the main stems (Zn2GeO4 microrods). TEM indicates that Zn2GeO4 micorods are 2-3μm in diameters and several tens of micrometers in length. However, ZnGeO3 nanowires have diameters of about 15nm and range from ten to several hundred micrometers in lengths with the growth direction of [113]. A broad emission band from 350 to 550 nm is obtained in the photoluminescence (PL) spectrum of these nanostructures at room temperature. There are three emission peaks : an UV emission peak at 395 nm、a strong green emission peak at 455 nm and a blue emission peak at 532 nm.
引文
[1]杨剑,滕凤恩.纳米材料综述.材料导报,1997, 11(2): 8.
    [2] Gleiter H. Mater Sci & Eng, 1982, 52: 100.
    [3] W. P. Halperin, Rev. Mod. Phys, 1986, 58: 532.
    [4]Ball, L. Garwin, Nature, 1992, 355:761.
    [5]张立德,牟季美等,纳米材料和纳米结构(M),科学出版社,2001, 164.
    [6]倪星元,沈军,张志华,纳米材料的理化特性与应用(M),化学工业出版社,2006, 43.
    [7]A. I. Ekimov, A. L. Efros, A. Onushchenko, Solid State Communications, 1985, 56 :9211.
    [8]G. A. Niklasson, Nanostructured Materials, 1999, 11: 7251.
    [9]J. M. Krans, J. M. van Rutenbeek, V. V. Fisum, I. K. Yanson, L. J. de Jongh, Nature, 1995, 375:767.
    [10] D. L. Feldhein, C. D. Keating, Chem. Soc. Rev, 1998, 27:1.
    [11] S. Lijima, Nature, 1991, 354:56.
    [12] J. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res, 1999, 32: 440
    [13] G. W. Meng, L. D. Zhang, C. M. Mo, et al., J. Mater. Res, 1998, 13:2535
    [14] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 2001, 291:1947
    [15] Y. Xie, Chin. J. Inorg. Chem, 2002, 18: 5
    [16] Y. N. Xia, P. D. Yang, Y. G. Sun, et al., Adv. Mater, 2003, 15:353
    [17] C. N. R. Rao, F. L. Deepak, G. Gundiah, et al., Prog. Solid State Chem, 2003, 31: 5
    [18] M. Law, J. Goldberger, P. D. Yang, Annu. Rev.Mater. Res, 2004, 34: 83
    [19] Z. L. Wang, Annu. Rev. Phys. Chem, 2004, 55:159
    [20] Y. Li, Q. M. Zhang, F. Z. Huang, et al., Chin. J. Inorg.Chem, 2002, 18: 79
    [21] G. S. Wu, L. D. Zhang, B. C. Cheng, et al., J. Am. Chem. Soc, 2006, 126: 5976
    [22] X. S. Fang, C. H. Ye, L. D. Zhang, et al., Adv. Funct. Mater, 2005, 15:63
    [23] X. S. Fang, L. D. Zhang, J. Mater. Sci. Technol, 2006, 22:10
    [24] L. Li, Y. W. Yang, G. H. Li, et al., Small, 2006, 2: 548
    [25]W. B. Yang, Zh. Y. Lu, X.P. Hu, et al., Chin. J.Inorg. Chem, 2005, 21:1619
    [26]R. S. Wagner, W. C. Ellis, Appl. Phys. Lett, 1964, 4: 89.
    [27]J. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res, 1999, 32:435.
    [28] A. M. Morales, C. M. Lierber, Science, 1998, 279:208.
    [29] X. F. Duan, C. M. Lierber, J. Am. Chem. Soc, 2000, 122:185.
    [30] J. Zhang, X. S. Peng, X. F. Wang, et al, Chem. Phys. Lett, 2001, 345:372.
    [31] K. Hiruma, M. Yazawa, Katsuyama, et al, J. Appl. Phys, 1995, 77:447.
    [32] Y. W. Wang, L. D. Zhang, C. H. Liang, et al, Chem. Phys. Lett, 2002, 357:314.
    [33] Y. W. Wang, G. W. Meng, L. D. Zhang, et al, Chem. Mater, 2002,14:1773.
    [34] X. F. Duan, C. M. Lierber, Adv. Mater, 2000, 12:298.
    [35] Y. J. Chen, J. B. Li, Y. S. Han, et al, J. Cryst. Growth, 2002, 245:63.
    [36] X. C. Wu, W. H. Song, K. Y. Wang, et al, Chem. Phys. Lett, 2001, 336:53.
    [37] M. H. Huang, Y. Wu, H. Feick, et al, Adv. Mater, 2000, 13:113.
    [38] W. Q. Han, A. Zettl, Appl. Phys. Lett, 2002, 80:303.
    [39] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Appl. Phys. Lett, 2001, 78:407.
    [40] C. C. Chen, C. C. Yeh, C. H. Chen, et al, J. Am. Chem. Soc, 2001, 123:2791.
    [41]. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, S. T. Lee, Chem. Phys. Lett, 2000, 327:263.
    [42] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science, 2001, 292:1897.
    [43] Y. Y. Wu, P. D. Yang, J. Am. Chem.Soc, 2001, 123:3165.
    [44] M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, Adv Mater, 2001, 13: 113.
    [45] T. Kuykendall, P. J. Pauzauskie, Y. F. Zhang, J. Golberger, D. Sirbuly, J. Denlinger, P. D. Yang, Nat. Mater, 2004, 3:524.
    [46] Y. Cui, C. M. Lieber, Science, 2001, 291: 851.
    [47] S. Brenner, G. W. Sears, Acta. Metall, 1956, 4: 268.
    [48] Z. L. Wang. Annu. Rev. Phys. Chem, 2004, 55: 159
    [49] P. D. Yang, C. M. Lieber, Science, 1996, 273: 1836
    [50] C. H. Ye, G. W. Meng, Y. H. Wang, et al., J. Phys. Chem. B, 2002, 106: 10338 [5154] X. S. Fang, C. H. Ye, X. S. Peng, et al., J. Mater. Chem, 2003, 13: 3040
    [52] C. H. Ye, X. S. Fang, Y. F. Hao, et al., J. Phys. Chem. B, 2005,109: 19758
    [53] P. D. Yang, C. M. Lieber, J. Mater. Res, 1997, 12:2981
    [54]J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science, 1995, 270:1791.
    [55]W. E. Buhro, K. M. Hichman, T. J. Trentler, Adv. Mater, 1996, 8:685.
    [56] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science, 1995, 270:1791.
    [57]Y. Xia, P. Yang, Y. Sun, Y. Wu, F. Kim, H. Yan, Adv. Mater, 2003, 15:353.
    [58]Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, Y. N. Xia, Chem. Mater, 2002, 14:4736.
    [59] Z. L. Wang, J. Phys. Chem. B, 2000, 104:1153.
    [60]J. R. Heath, F. K. LeGoues, Chem. Phys. Lett, 1993, 208:263.
    [61]X. Wang, Y. Li, J. Am. Chem. Soc, 2002, 124:2880.
    [62]Q. Lu, F. Gao, D. Zhao, Nano Lett, 2002, 2:725.
    [63]Q. Zhang, L. Gao, J. Sun, S. Zheng, Chem. Lett, 2002, 2:226.
    [64]T. Kasuga, M. Hiramatsu, T. Sekino, K. Niihara, Langmuir, 1998, 14: 3160.
    [65]Y. Li, M. Sui, Y. Ding,J. Zhuang, C. Wang, Adv. Mater, 2000, 12:818.
    [66]Y. Xie, P. Yan, J. Lu, W. Wang, Y. Qian, Chem. Mater, 1999, 11:2619.
    [67]P. Yan, Y. Xie, W. Wang, Y. Qian, J. Am. Chem. Soc, 1999, 121: 4062.
    [68]M. Whitney, J. S. Jiang, P. C. Searson, et al, Science, 1993, 261:1316.
    [69]. S. Xu, Y .J. Xu, D. P. Chen, et al, Adv. Mater, 2000, 12:520.
    [70]M. J. Zheng, L .D. Zhang, X. Y. Zhang, et al, Chem. Phys. Lett, 2001, 334:298.
    [71]Y. Li, D. S. Xu, Q. M. Zhang, et al, Chem. Mater, 1999, 11:3433.
    [72]C. J. Brumlik, C. R. Martin, J. Am. Chem. Soc, 1991, 113:3174.
    [73]V. M. Cepak, J. C. Hulteen, G. L. Che, et al, Chem. Mater, 1997, 9:1065.
    [74]V. S. De, C. R. Martin, Chem. Mater, 1998, 10:1738.
    [75]G. L. Che, B. B. Lakshmi, E. R. Fisher, et al, Nature, 1998, 393:346.
    [76]G. S. Cheng, L .D. Zhang, Y. Zhu, et al, Appl. Phys. Lett, 1999, 75:2455.
    [77]Y. Li, G. W. Meng, L. D. Zhang, et al, Appl. Phys. Lett, 2000, 76:2011.
    [78]X. Y. Zhang, L. D. Zhang, G. W. Meng, et al, Adv. Mater, 2001, 13:1238.
    [79]J. C. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmiu, C. T. W. Chu, D. H. Olson, E. W. Sheppard, J. Am Chem. Soc, 1992, 114:18834.
    [80]S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science, 1995, 269:1242.
    [81]沈钟,王国庭,胶体与表面化学(M),化学工业出版社,1991, 305.
    [82]S. Frank, P. Poncharal, Z. L. Wang, Science, 1998, 280:744.
    [83]D. Zhou, S. Seraphin, Chem. Phys. Lett, 1994, 222:233.
    [84]H. J. Dai, E. W. Wong, S. S. Fan, C. M. Lieber, Nature, 1995, 375:769.
    [85] C. G. Wu, T. Bein, Science, 1994, 264: 1757.
    [86] Y. Zhang, H. Ago, J. Liu, J . Crys. Grow, 2004, 264(1):363.
    [87] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, K. J. Cho, H. J. Dai, Science, 2000, 287: 622.
    [88] Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science, 2001, 293: 1289.
    [89] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, R. S. Williams, Nano Lett, 2004, 4:245.
    [90] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, S. T. Lee, Chem. Phys.Lett, 2003, 369:220.
    [91] X. G. Wen, Y. P. Fang, Q. Pang, C. L. Yang, J. N. Wang, W. K. Ge, K. S. Wong, S. H. Yang, J. Phys. Chem. B, 2005, 109:15303.
    [92] C. S. Route, S. H. Krishna, S. R. Vivekchand, A. Govindaraj, C. N. Rao, Chem. Phys. Lett, 2006, 418:586.
    [93] C. H. Wang, X. F. Chu, M. W. Wu, Sensors and Actuators B, 2006, 113:320.
    [94] W. A. Deheer, A. Chatelain, D. Ugarte, Science, 1995, 270:1179.
    [95] J. D. Holmes , K. P. Johnston , B. A. Korgel , et al., Science, 2000, 287 (5457): 1471.
    [96] J. Wang , M. S. Gudiksen , C. M. Lieber, et al, Science, 2001, 293(5534):1455.
    [97] M. H. Huang, S. Mao, P. Yang, et al., Science, 2001, 292(5523):1897.
    [98] J. Johnson, K. P. Choi, P. Yang, et al., Nature Mater, 2002, 1(2): 106.
    [99] H. Kind, H. Yan, P. Yang, et al., Adv. Mater, 2002, 14(2):158.
    [100]Y. Xia, P. Yang, Sun. Y et al., Adv Mater, 2003, 15: 353
    [101]J. Hu, T. W. Odom, C. M. Lieber, Acc.Chem.Res, 1999, 32: 435
    [102] H. Huang, Y. Wu, H. Feick, Adv. Mater, 2001, 13: 113.
    [103] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, Solid State Commun, 1999, 109: 677.
    [104] A. Kolmakov, Y. Zhang, G. Cheng, Adv. Mater, 2003, 13: 997.
    [105] R. Z. Dai, J. L. Gole, L. Z. Wang, J.Am. Chem. Soc, 2002, 124: 8673.
    [106] J. K. Jian, X. L. Chen, X. J. Wang, Appl. Phys. A, 2003, 76: 291.
    [107] Y. W. Wang, C. H. Liang, L. D. Zhang, I. Mater. Chem, 2002, 12: 651.
    [108] X. S. Peng, X. F. Wang, L. D. Zhang, Appl. Phys. A, 2002, 74: 831.
    [109] X. S. Peng, L. D. Zhang, G. W. Meng, J. Phys. Chem. B, 2002, 106:11163.
    [110] P. D. Yang, M. C. Lieber, Science, 1996, 273:1836.
    [111]J. S. Lee, M. Kang, S. Kim, M. S. Lee, Y. K. Lee, J. Cryst. Growth, 2003, 249:202
    [112] Y. H. Huang, Y. Zhang, J. He, Y. Dai, Y. S. Gu, Z. Ji, C. Zhou, Ceramics International, 2006, 32:561
    [113] X. Y. Zhang, J. Y. Dai, , H. C. Ong, N. Wang, H. L. W. Chan, C. L. Choy, Chem. Phys. Lett, 2004, 393:17
    [114] J. Liu, Y. Zhang, J. J. Qi, J. He, Y. H. Huang, X. M. Zhang, Acta Phys. -Chim. Sin, 2006, 22:38
    [115] J. He, Y. H. Huang, Y. Zhang, Y. S. Gu, Z. Ji, C. Zhou, Acta Phys. -Chim. Sin, 2005, 21:637
    [116] W. Lee, M. C. Jeong, J. M. Myoung, Appl. Phys. Lett, 2004, 85: 6167
    [117] S. W. Jung, W. I. Park, G. C. Yi, M. Kim, Adv. Mater, 2003, 15: 1358
    [118] Y. L. Seu, L. Pang, Y. L. Chia, Y. T. Tseung, J. H. Chorng, J. Phys. D: Appl. Phys, 2004, 37:2274
    [119] X. M. Zhang, Y. Zhang, Y. S. Gu, J. J. Qi, Y. H. Liu, J. Chinese Science Bulletin, 2006, 51: 490
    [120] S.Y. Bae, C.W. Na, J. H., J. Park, J. Phys. Chem. B, 2005, 109: 2526.
    [121] H.S. Chen, J.J. Qi, Y.H. Huang, Q.L. Liao, Y. Zhang, Acta Phys. Chim. Sin, 2007, 23(1): 55.
    [122] S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, C.J. Huang, J. Phys. D: Appl. Phys, 2004, 37:2274.
    [123] R. Deng, X.T. Zhang, E. Zhang, Y. Liang, Zh. Liu, H.Y. Xu, et al., J. Phys. Chem. C, 2007, 111:13013.
    [124] Y. L. Seu, L. Pang, Y. L. Chia, Y. T. Tseung, J. H. Chorng, J. Phys. D: Appl. Phys, 2004, 37: 2274 [125 ] J. S. Jie, G. Z. Wang, X. H. Han, Q. X. Yu, Y. Liao, G. P. Li, J. G. Hou, Chem. Phys. Lett, 2004, 387:466
    [126] L. Xu, Y. Su, Y.Q. Chen, H. H. Xiao, L-a. Zhu, Q.T. Zhou, et al., J. Phys. Chem. B, 2006, 110: 6637.
    [127] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallent, J.A. Voigt, J. Appl. Phys, 1996, 79:7983.
    [128] Mott NF, Metal–Insulator Transitions, Taylor and Francis, London, 1974.
    [129] S.M. Zhou, X.H. Zhang, X.M Meng, S.K. Wu, S.T. Lee, Phys. Status Solid, 2005, 202:405.
    [130] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, et al., Chem. Phys. Lett, 2004, 387:466.
    [131] R.D. Shannon, Acta Crystallogr, 1976, A32:751.
    [132] S. Wagner, W. C. Ellis, Appl. Phys. Lett, 1964, 4: 89.
    [133] H. I. Liu, D. K. Biegelsen, F. A. Ponce, et al, Appl. Phys. Lett, 1994, 64: 1383.
    [134] J. X. Wang, D. F. Liu, X. Q. Yan, et al., Solid State Communications, 2004, 130: 89 [135] A. Kolmakov, Y. X. Zhang, M. Moskovits, Nano Letters, 2003, 3: 1125.
    [136] K. C. Kam, F. L. Deepak, A. K. Cheetham, et al., Chemical Physics Letters, 2004, 397: 329.
    [137] Y. B. Li, Y. Bando, D. Golberg, Adv. Mater, 2003, 15:581.
    [138] Z. W. Pan, Z. R. Dai, L. Xu, et al., J. Phys. Chem. B, 2001, 105: 2507.
    [139] Z. W. Pan, Z. R. Dai, C. Ma, et al., J.Am.Chem.Soc, 2002, 124: 1817.
    [140]巩雄,郭永,杨宏秀等。纳米材料及其光学特性,化学通报,1998, 3: 19
    [141]秦晓东,蒋晓明,陈月珠.高比表面积超细三氧化硅粉体的制备,石油大学学报(自然科学版), 2001, 25(3):36
    [142] Y. Q. Zhu, W. B. Hu, W. K. Hsu, et al., Science, 1995, 267(13):222
    [143] G. W. Meng, L. D. Zhang, C. M. Mo, et al., J Mater Res, 1998,13(9): 2533
    [144] Y. J. Chen, X. Y. Xue, T. H. Wang, Nanotechnology, 2005, 16(9):1978
    [145] N. I. Kovtyukhova, T. E. Mallouk, T. S. Mayer, Adv Mater, 2003, 15(10):780
    [146] D. P. Yu, O. L. Hang, Y. Ding, et al., Appl Phys Lett, 1998, 73:3076
    [147] Zhang M, Bando Y,Wada K,et al . J Mater Sci Lett, 1999, 18:1911
    [148] Z. W. Pan, D. Sheng, B. B. David, et al., Nano Lett, 2003, 3(9):1279
    [149] X. Q. Yan, W. Y. Zhou, L.F. Sun, et al., J. Phys. Chem. Solids, 2005, 66:701
    [150] D. P. Yu, Q. L. Hang, Y. Ding, et al., App1. Phys. Lett, 1998, 73: 3076.
    [151] Z. W. Pan, S. Dai, D. B. Beach, et al., Appl. Phys. Lett, 2003, 83: 3159
    [152]朱彦武,陈喜红,陈耀锋等.超细氧化硅纳米线阵列的制备和发光特性,发光学报,2004, 25: 173.
    [153] C. H. Liang, L. D. Zhang, G. W. Meng, et al., J Non-cryst Solid, 2000, 277: 63
    [154] J. Zhang, B. L. Xu, Y. D. Yang, et al., J Non-Cryst Solid, 2006, 352: 2859
    [155] Z. Jing, T. Xie, X. Y. Yuan, et al., Appl Phys A, 2005, 81(3): 447
    [156] C. Itoh, T. Suzuki, N. Itoh, Phys. Rev. B, 1990, 41: 3794
    [157] H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohki, Phys. Rev. B, 1992, 45: 586.
    [158]T. Kanashima, M. Okuyama, Y. Hamakawa, Appl. Suf. Sci, 1994, 80:321
    [159] A. N. Trukhin, M, Goldberg, J. Jansons, H. J. Fittting, I. A. Tale, J. Non-Cryst. Solid, 1998, 223:114
    [160]Y. D. Glinka, S. H. Lin, Y. T.Chen, Phys. Rev. B, 2002, 66:035404.
    [161]M. A. S. Kalceff, Phys. Rev. B, 1998, 57:5674.
    [162]J. Lin, G. Q. Yao, J. Q. Duan, and G. G. Qin, Solid State Commun, 1996, 97:221
    [163] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature, 2002, 415: 617.
    [164] X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature, 2003, 421: 241.
    [165] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 2001, 292:1897.
    [166] W. I. Park, D. H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett, 2008, 80: 4232.
    [167] P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han, M. Meyyappan,Nano Lett, 2004, 4: 651.
    [168] J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, D. Golberg, AdV. Mater, 2005, 17: 971.
    [169] X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, J. J. Du, Chem. Phys. Lett, 2001, 349: 210.
    [170] Y. Yin, G. Zhang, Y. Xia, AdV. Funct. Mater, 2002, 12: 293.
    [171] J. X. Wang, S. S. Xie, H. J. Yuan, X. Q. Yan, D. F. Liu, Y. Gao, Z. P. Zhou, L. Song, L. F. Liu, X. W. Zhao, et al., Solid State Commun, 2004, 131: 435.
    [172] J. S. Jie, G. Z. Wang, X. H. Han, J. P. Fang, Q. X. Yu, Y. Liao, B. Xu, Q. T. Wang, J. G. Hou, J. Phys. Chem. B, 2004, 108: 8249.
    [173] H. Y. Chen, J. X. Wang, H. C. Yu, H. X. Yang, S. S. Xie, J. Q. Li, J. Phys. Chem. B, 2005, 109: 2573.
    [174] K. W. Chang, J. J. Wu, J. Phys. Chem. B, 2006, 109: 13572.
    [175]Y. J. Li, M. Y. Lu, C. W. Wang, K. M. Li, L. J. Chen, Appl. Phys. Lett, 2006, 88: 143102.
    [176] Z. T. Zhang, A. J. Rondinone, J. X. Ma, J. Shen, S. Dai, AdV. Mater, 2005, 17: 1415.
    [177] H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, M. Zacharias, Nanotechnology, 2006, 17: 5157.
    [178] T. E. Gier, X. Bu, P. Feng, G. D. Stucky, Nature, 1998, 395: 154.
    [179] D. Pitzschke, W. Bensch, Angew. Chem, 2003, 115: 4525.
    [180] Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. H. Xu, H. Zhang, D. Zhao, Angew. Chem, 2001, 113: 2224.
    [181] H. Li, M. Eddaoudi, O. M. Yaghi, Angew. Chem, 1999, 111: 682.
    [182] M. Avenier, G. R. Bagieu, R. Brissot, J. F. Cavaignac, J. Collot, D. H. Koang, D. Lebrun, F. Minot, A. Stutz, Nucl. Phys. B, 1992, A28: 496.
    [183] T. Minami, Miyata, Y. Sakagami, Surf . Coat . Tech, 1998, 594: 108
    [184] L. C. Williams, D. Norton, J. Budai, P. H. Holloway, J. Electrochem. Soc, 2004, 151: 188.
    [185] F. Tao, 2001 Ph. D. Thesis (Gainesville : University of Florida) p26
    [186] J. P. Bender, J. F. Wager, J. Kissick, B. L. Clark, D. A. Keszler, J. Lumin, 2002, 99: 311.
    [187] J. S. Lewis, P. H. Holloway, J. Electrochem. Soc, 2000, 147: 3148.
    [188] J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, Y. Inoue, J. Phys. Chem. B, 2004, 108: 4369.
    [189] R. Steven, B. F. Woodfield, J. Boerio-Goates, M. K. Crawford, J. Chem.Thermodyn, 2004, 36: 349.
    [190] Z. Liu, X. Jing, L. Wang, J. Electrochem. Soc, 2007, 154: 500. DeVice Lett, 2004, 25: 274.
    [191] Z. Jiang, T. Xie, G.Z. Wang, X.Y. Yuan, C.H. Ye, W.P. Cai, G.W. Meng, G. H. Li, L. D. Zhang, Mater. Lett, 2005, 59: 416.
    [192] X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Chem. Phys. Lett, 2003, 373: 28.
    [193] Z. S. Liu, X. P. Jing, L. X. Wang, J. Electrochem. Soc, 2007, 154(6): 500.
    [194] Y.S. Yu, G.Y. Kim, B.H. Min, S.C. Kim. Journal of the European Ceramic Society, 2004, 24:1865
    [195] Y. -H. Lee, Master’s Thesis, National Chiao Tung University, Taiwan, 2004.
    [196] Z. N. Zheng, M. F. Jiang, ZH. Y. Ning, L. Zhu, Chin. Phys. Soc, 2008, 57(10):4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700