异丙醇铝镁与铝酸镁基荧光体的合成、表征及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁铝醇盐是合成铝酸镁(MgO·nAl2O3)基材料的重要前驱体之一,MgO·nAl2O3基材料作为节能照明及显示领域中重要的支撑材料而备受研究者的关注。对于此类材料来说,极少量铁族元素杂质存在可严重影响其品质。同时器件制备技术的飞速发展对MgO·nAl2O3基荧光体的性能要求也更为严格,传统的制备工艺合成的产物存在团聚严重、产物形貌无规及热稳定性差等尚未解决的问题,使其已不能满足要求。因此开展异丙醇铝镁前驱体的合成及纯化,研究不同MgO·nAl2O3基荧光体的制备及其发光特性,对于MgO·nAl2O3基材料的基础研究和应用领域拓展都有着十分重要的意义。本论文以探索不同类型MgO·nAl2O3基荧光体及发展相关制备方法为目的,研究了异丙醇铝镁前驱体的控制合成及纯化;研究了不同镁铝比的荧光体制备及其发光特性;并考察了制备方法、反应参数等对产物形貌、发光强度及稳定性的影响,主要内容和结果如下:
     1.采用添加剂缓蚀保护的方法合成高纯异丙醇铝镁。以镁与异丙醇铝为原料制备不同镁铝比的醇盐,讨论了各种类型添加剂对铁杂质去除的影响,研究了添加剂的加入量及反应时间对杂质含量影响。实验结果表明添加NP,可以使减压蒸馏后的醇盐中铁含量降低到5 ppm以下,满足了荧光粉对原料纯度的要求。
     2.采用改进的湿化学法合成MMgAl10O17:Eu2+(M=Ba,Sr)超细准球形荧光体。以高纯异丙醇铝镁为原料,利用醇盐水解形成金属-氧网络结构特性,制备了具有核-壳结构的前驱物,着重研究了水解条件对产物形貌及发光性质的影响。采用XRD、TG-DTG、SEM、TEM及PL等方法对产物进行表征。结果发现,核-壳结构通过限制扩散反应提高了荧光体颗粒的分散性,可有效的改善高温焙烧过程因自身晶向生长特性导致的形貌无规、颗粒团聚等问题。同时紫外激发下,Zn/B共掺杂具有良好的协同作用,能够大幅提高荧光体的发射强度,为改善其他相关荧光体的发光性能提供了新的选择。
     3.探索了球形MgAl2O4:Eu2+及其有机-无机复合荧光体的发光特性。以葡萄糖水热条件下脱水聚合生成的含碳有机物为模板,制备了球形MgAl2O4:Ln(Ln=Eu3+,Tb3+)荧光体,探讨了反应物配比、阴离子等对产物形貌的影响,重点研究了8-羟基喹啉铝-MgAl2O4:Eu3+有机-无机复合荧光体的发光性质。采用XRD、SEM、EDS、TEM、FT-IR及PL等对产物进行表征。结果表明,镁铝配比的调变可以在一定程度上调节产物的粒径,球形形貌能够显著改善荧光粉的发射强度;将8-羟基喹啉铝引入到空心微球的孔道中,合成了有机-无机复合发光材料,调节8-羟基喹啉铝与MgAl2O4:Eu3+的比例,实现了产物发光在绿光-黄光-红光范围的调变。
     4.进一步探讨了形貌控制对镁铝复合氢氧化物异质结构发光性质的影响。在乙二胺辅助水热条件下合成了不同形貌的镁铝复合氢氧化物Mg2Al(OH)6(C03)0.5·H2O1.5(LDH)/AlOOH异质结构。实验详细考察了反应温度、添加剂、初始pH值及反应时间对产物形貌的影响,并探讨了异质结构可能的生长机理。采用XRD、TG-DTG、SEM、TEM、SAED、FT-IR及PL等方法对产物进行分析表征。实验结果表明,高温有利于片状单元组装反应进行,乙二胺有助于片层基元的稳定,制备的玫瑰花状异质结构使产物具有特殊的发光性质,随着激发紫外光波长的不断增大,其发射光谱在蓝光波段的峰位也呈现出相应的红移变化。
As good candidates for full color emitters, aluminate-based phosphors have drawn extensive attention, especially for their application in plasma display panels. Magnesium aluminum isopropoxide is widely employed in the preparation of aluminate-based advanced materials. Among the physical and chemical properties, purity of raw materials plays a vital role. It is necessary to guarantee quality by controlling the content of contaminants. Trace of iron impurity could cause severe quenching of luminescence. Thus, it is necessary to remove iron from magnesium aluminum isopropoxide. In addition, the products derived from traditional synthetical methods usually suffer from several problems. The main points lie in its unstability that caused either by impurity in raw material or heat-resistance and aggregation that is brought by traditional solid-state reaction. Therefore it is urgent to find new synthetic methods and alternative luminescent materials with appropriate raw material that is accessible and high purity. In the present work, we focus our attention on the synthesis and purification of magnesium aluminum isopropoxide, development in synthetic method of aluminate-based phosphor and improvement in luminescent properties and morphological control of the aluminate phosphor. The results are given as follows:
     1. Different synthetic procedures have been considered. A one-pot two-step reaction route was chosen to synthesize alkoxide with different ratio of Mg/Al. A facile and effective method has been employed to remove the trace iron impurity in magnesium aluminum isopropoxide. Effective prevention of iron from its reaction with isopropanol or isopropoxide is generated by adding NP. Thus the iron content can be reduced from more than 20 ppm to less than 5 ppm in the resulting products.
     2. Different wet chemical methods are applied to improve the performance of aluminate-based phosphors. Barium or strontium magnesium aluminate obtained from a nano-coating route showed higher intensity compared with those from traditional solid-state reaction. The precursor had core-shell structure so that the reaction of the materials could be confined in the given field. Therefore hexagonal plate-like crystallization can be inhabited, resulting in quasi-spherical fine products. As for the SAM sample prepared by hydrocarbonate-gel method, photoluminescence intensity could be enhanced by co-doping of Zn and B. XRD patterns revealed that the sample that had the highest intensity also displayed the best crystallinity. The reason may lie in the improvement of host cell parameters by bigger Zn2+cation with the combination of flux.
     3. MgAl2O4:Ln (Ln=Eu3+, Tb3+) hollow microspheres have been obtained through hydro-thermal treatment and further calcination process. The resulting products have good dispersity with diameter in the range of 1~2.5μm. On changing the Mg/Al ratio, particle size and thickness of the shell were controlled to some extent. Energy transfer was observed from Tb3+ to Eu3+by simply regulating the molar ratio of Eu/Tb. Inorganic and organic luminescent complex could also be obtained by introducing Alq3 in the mesoporous MgAl2O4:Eu3+ and tunable emission from green to red can also be achieved by changing the ratio of the two components.
     4. Magnesium aluminum hydroxide complex with different morphologies have been synthesized. Uniform 3D rosette-like Tb3+-doped LDH/AlOOH heterophasic architectures assembled from nanosheets building blocks were successfully prepared via ethylenediamine-assisted hydrothermal method for the first time. It was found that ethylenediamine was crucial to the rosette-like architectures, in which each microflower was assembled by layer-by-layer growth of homocentric superposed nanosheets. It could also be concluded that high reaction temperature was in favor of assembly of the nanosheets building units. Photoluminescence measurements indicated that products possess multiple and tunable emissions in the blue region under different ultraviolet light excitation.
引文
[1]徐叙熔,苏勉曾.发光学与发光材料.北京:化学工业出版社,2004.
    [2]张中太,张俊英.无机光致发光材料及应用.北京:化学工业出版社,2005.
    [3]Wu Z C, Shi J X, Wang J. Synthesis and Luminescent Properties of SrAl2O4:Eu2+Green-emitting Phosphor for White LEDs. Materials Letters,2006,60:3499-3501.
    [4]Jung K Y, Lee H W, Jung H. Luminescent Properties of (Sr, Zn)Al2O4:Eu2+, B3+ Particles as a Potential Green Phosphor for UV LEDs. Chemistry of Materials,2006,18:2249-2255.
    [5]Bao A, Tao C Y, Yang H. Synthesis and Luminescent Properties of Nanaoprticles GdCaAl3O7: RE3+(RE= Eu, Tb) via the Sol-gel Method. Journal of Luminescence,2007,126:859-865.
    [6]Zorenko Y, Gorbenko V, Voznyak T, Batentschuk M, Osvet A, Winnacker A. Luminescence and Tb3+-Ce3+-Eu3+Ion Energy Transfer in Single-crystalline Films of Tb3Al5O12:Ce, Eu Garnet. Journal of Luminescence,2008,128:652-660.
    [7]Zhong J P, Liang H B, Han B, Su Q, Tao Y. NaGd(PO3)4:Tb3+-A new Promising Green Phosphor for PDPs Application. Chemical Physics Letters,2008,453:192-196.
    [8]Wu C C, Chen K B, Lee C S et al. Synthesis and VUV Photoluminescence Characterization of (Y, Gd) (V, P)04:Eu3+as a Potential Red-emitting PDP Phosphor. Chemistry of Materials, 2007,19:3278-3285.
    [9]Kuo K T, Lee S P, Chen S Y et al. BaMgAl10O17:Eu Blue Phosphors with MgO Coating and Microwave Irradiation. Journal of Physics and Chemistry of Solids,2008,69:446-450.
    [10]Chan T S, Liu R S, Baginskiy I. Synthesis, Crystal Structure, and Luminescence Properties of a Novel Green-Yellow EmittingPhosphor LiZnl-x,P04:Mnx, for Light Emitting Diodes. Chemistry of Materials,2008,20:1215-1217.
    [11]Jung K Y, Lee D Y, Kang Y C, Park H D. Improved Photoluminescence of BaMgAl10O17 Blue Phosphor Prepared by Spray Pyrolysis. Journal of Luminescence,2003,105:127-133.
    [12]Jung K Y, Kang Y C. Preparation of BaMgAl10O17:Eu Blue Phosphor by Flame-assisted Spray Pyrolysis:Photoluminescence Properties of Powder and Film under VUV Excitation. Materials Letters,2004,58:2161-2165.
    [13]Jung K Y, Lee D Y, Kang Y C. Improved Thermal Resistance of Spherical BaMgAl10O17:Eu Blue Phosphor Prepared by Spray Pyrolysis. Journal of Luminescence,2005,115:91-96.
    [14]Donald S M. Luminescence and Spectroscopy. Journal of Luminescence,2002,100:47-55.
    [15]李建宇.稀土发光材料及其应用.化学工业出版社出版,2003.
    [16]方俊鑫,陆栋.固体物理学(下册).上海科学技术出版社出版,1981.
    [17]孙家跃,杜海燕,胡文祥.固体发光材料.化学工业出版社出版,2003.
    [18]徐叙瑢.发光材料与显示技术.化学工业出版社出版,2003.
    [19]Blasse G. Luminescent Materials. Berlin-Heidelberg:Springer-Verlag,1994.
    [20]Chen S J, Yu Z, Hong J M. Preparation and Characterization of Fine Sr2CeO4 Blue Phosphor Powders. Solid State Communications,2004,130:281-285.
    [21]Xiong H M, Liu D P, Xia Y Y et al. Polyether-Grafted ZnO Nanoparticles with Tunable and Stable Photoluminescence at Room Temperature. Chemistry of Materials 2005,17: 3062-3064.
    [22]Zhang X M, Lu M Y, Zhang Y et al. Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film. Advanced Materials,2009, 21:1-4.
    [23]Van Dijken A, Vanmaekelbergh D, Meijerink A. The luminescence of Nano-crys talline ZnO particles:the Mechanism of the Ultraviolet and Visible Emission. Journal of Luminescence,2000,87-89:454-456.
    [24]Yang J, Kong D Y, Liu, Lin J. Y2O3:Eu3+ Microspheres:Solvothermal Synthesis and Luminescence Properties. Crystal Growth & Design,2007,7(4):730-735.
    [25]Kang Y C, Park S B. Preparation of Y2O3:Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis. Advanced Materials,2000,12(6): 451-453.
    [26]Yoshiyuki K, Takahashi I, Naoto K. Synthesis of High-Brightness Sub-micrometer Y2O2S Red Phosphor Powders by Complex Homogeneous Precipitation Method. Chemistry of Materials,2006,18:6303-6307.
    [27]Yang J, Quan Z W, Kong D Y et al. Y2O3:Eu3+Microspheres:Solvothermal Synthesis and Luminescence Properties. Crystal Growth & Design,2007,7(4):730-735.
    [28]Lin J H, Dong Y, Park B. Does Ce4+Play a Role in the Luminescence of LaP04:Ce. Journal of Alloys and Compounds,1995,225:124-128.
    [29]Felix M, Frank C. Biofunctionalization of Fluorescent Rare-Earth-Doped Lanthanum Phosphate Colloidal Nanoparticles. Angewandte Chemie International Edition,2004,43: 5954-5957.
    [30]Riwotzki K. Colloidal YVO4:Eu and YP0.95V0.05O4:Eu Nanoparticles:Luminescence and Energy Transfer Processes. The Journal of Physical Chemistry B,2001,105:12709-12713.
    [31]Wang F, Liu X G. Multicolor Tuning of (Ln, P)-Doped YVO4 Nanoparticles by Single-Wavelength Excitation. Angewandte Chemie International Edition,2007,46:1-5.
    [32]王鑫,甘树才.矿物发光原料方解石中含Fe2+猝灭杂质的去除.应用化学,2003,20(4):368-370.
    [33]李殿超,吴长锋,于立新等.矿物发光材料CaS:Mn2+的合成及其荧光性质.矿物学报,200121(2):209-212.
    [34]唐浩林,潘牧,赵修建.铝酸盐光致发光材料的相组成与粒径.化学通报,2003,3:174-177.
    [35]孙彦彬,邱关明,陈永杰.稀土发光材料的合成方法.稀土,2003,24(1):43-48.
    [36]彭天右,江祖成,杜平武.溶胶-凝胶法合成铝酸锶:铕发光粉及其发光性能研究.中国稀土学报,1999,18:45-47.
    [37]Yin M, Zhang W. Luminescence of Nanometric scale Y2Si05:Eu. Journal of Luminescence, 1996,68:335-339.
    [38]石士考,王继业,李玮捷.铝酸盐绿色荧光粉的快速合成及发光性质.中国稀土学报,1999,17:673-675.
    [39]Hong K S, Meltzer R S. Spcetral Hole Burning incrystalline Eu2O3 and Y203:Eu3+ Nanopartieles. Journal of Luminescence,1998,76&77:234-237.
    [40]林元华,张中太,张枫.铝酸盐长余辉光致发光材料的制备及其发光机理的研究.材料导报,2000,14(1):35-37.
    [41]Pan W, Ning G L. Synthesis and Luminescence Properties of Sr3MgSi208:Eu2+, Dy3+by a Novel Silica-nanocoating Method. Sensors and Actuators A-Physical,2007,139:318-322.
    [42]Wang J H, Ning G L, Pan W et al. A Novel Route to BaMgAl10O17:Eu Blue Phosphor by Nano-coating Method. Materials Science and Engineering B,2008,147:43-46.
    [43]陈永杰,孙彦彬,邱关明.超长余辉发光材料的研究.稀土,2002,23(4):50-53.
    [44]林嘉彬,陈登铭.基质组成对铕激活碱土金属硼酸盐荧光体发光特性的影响.中国稀土学报,2001,19(6):498-501.
    [45]林元华,张中太.掺杂稀土的xSrO·yAl2O3系长余辉发光材料的制备及其光学性能.功能材料,2001,32(3):325-327.
    [46]Lim M A, Kang Y C, Park H D. Gd2O3:Eu Phosphor Particles Prepared from the Polymeric Precursors in Spray Pyrolysis. Journal of the Electrochemical Society,2001,148(12): 171-175.
    [47]Chandler C D, Roger C, Hampden-Smith M J. Chemical Aspects of Solution Routes to Perovslite-phase Mixed-metal Oxides from Metal-organic Precursors. Chemical Reviews, 1993,93(3):1205-1241.
    [48]田明原,施而畏.纳米陶瓷与纳米陶瓷粉末.无机材料学报,1998,13(2):129-137.
    [49]阎圣刚,周科衍.金属醇盐在制备陶瓷材料中的应用进展.稀土金属,1994,18(4):310-304.
    [50]赵毅,孟庆伟.高性能陶瓷用金属醇盐的全分析技术.低温与特气,1997,3:59-64.
    [51]Bergquist C, Parkin G. Modeling the Catalytic Cycle of Liver Alcohol Dehydrogenase: Synthesis and Structural Characterization of a Four-Coordinate Zinc Ethoxide Complex and Determination of Relative Zn-OR Wersus Zn-OH Bond Energies. Inorganic Chemistry, 1999,38:422-423.
    [52]Herrmann W A, Wojtczak W A, Artus G R J et al. Multiple Bonds Between Main Group Elements and Transition Metals Trioxorhenium(VII) Alkoxide Complexes. Inorganic Chemistry, 1997,36:465-471.
    [53]Mehring M, Guerrero G, Dahan F et al. Syntheses, Characterizations, and Single-Crystal X-ray Structures of Soluble Titanium Alkoxide Phosphonates. Inorganic Chemistry,2000, 39:3325-3332.
    [54]Zhang J W, Zhu P L, Li J H et al. Fabrication of Octahedral-Shaped Polyol-Based Zinc Alkoxide Particles and Their Conversion to Octahedral Polycrys-talline ZnO or Single-Crystal ZnO Nanoparticles. Crystal Growth & Design,2009,9(5):2329-2334.
    [55]Ranjit K T, Klabunde K J. Solvent Effects in the Hydrolysis of Magnesium Methoxide, and the Production of Nanocrystalline Magnesium Hydroxide. An Aid in Understanding the Formation of Porous Inorganic Materials. Chemistry of Materials,2005,17:65-73.
    [56]Teng F, Liang S H, Gauge B, Zhu Y F. Syntheses of La,-,BaχMn2Al10O19 Catalysts(x=0,0.05) in a Novel Microemulsion of Water/2-Propanol/l-Butanol and Their High Activities in Methane Combustion. Journal of Physics and Chemistry C,2007,111:10941-10947.
    [57]Albers H, Deutsch M, Krastinat W, Osten H V. Chemical Abstract,1953,47:1585.
    [58]Jones R G, Bindschadler E, Blume D et al. Organic Compounds of Uranium. V. Derivatives of Uranium(V) Alkoxides. Journal of the American Chemical Society,1956,78(23): 6027-6030.
    [59]Carter D G. Ph. D Thesis. University of London,1959.
    [60]Mehrotra R C, Agrawal M M. Double Alkoxides of Some Quadrivalent Metals. Journal of the Chemical Society A Inorganic, Physical, Theoretical,1967,1026-1030.
    [61]Mehrotra R C, Agrawal M M, Kapoor P N. Alkali-metal Hexa-alkoxides of Niobium and of Tantalum. Journal of the Chemical Society A Inorganic, Physical, Theoretical,1967, 2673-2676.
    [62]Bradley D C, Mehrotra R C, Gaur D P. Metal alkoxides. London:Academic Press,1978.
    [63]Govil S J, Kapoor P N, Mehrotra R C. Double Isopropoxide of Niobium and Tantalum with Alkaline-Earth Metals. Journal of Inorganic Nuclear Chemistry,1976,38(1),172-173.
    [64]邱志光.超微粉体的特性及其制造技术的开发.北京工业大学学报,1987,13(2):107-115.
    [65]胡庆福.镁化合物生产与应用.化学工业出版社,2004.
    [66]Kroschwizt J I. Encyclopedia of Chemical Technology,1992,2:35-52.
    [67]杨咏来,张强,宁桂玲等.萃取-络合法纯化异丙醇铝的研究.大连理工大学学报,1999,39(1):53-55.
    [68]Justel T, Ronda C, New Developments in the Field of Luminescent Materials for Lighting and Displays. Angewandte Chemie International Edition,1998,37:3084-3103.
    [69]Lin Y H, Zhang Z T, Tang Z L. Luminescent Properties of a New Long Afterglow Eu2+ and Dy3+Activated Ca3MgSi208Phosphor. Journal of the European Ceramic Society,2001,21: 683-685.
    [70]Wu Z C, Wang J, Gong M L. Synthesis and Luminescent Properties of Sr4Al14O25:Eu2+ Blue-green Emitting Phosphor for White Light-Emitting Diodes (LEDs). Journal of Material Science:Material Electron,2008,19:339-342.
    [71]Kuang J Y, Zhang J X. White-light-emitting Long-lasting Phosphorescence in Dy3+-doped SrSiO3. Journal of Solid State Chemistry,2006,179:266-269.
    [72]Kim J S, Park Y H, Choi J C. Luminescent and Thermal Properties of Full-color Emitting X3MgSi208:Eu2+Mn2+ (X=Ba, Sr, Ca) Phosphors for White LED. Journal of Luminescence,2007, 122-123:583-586.
    [73]Yu M, Zhou Y H, Wang S B. Sol-gel Deposition and Luminescent Properties of Oxyapatite Ca2(Y, Gd)8(SiO)6O2 Phosphor Films Doped with Rare Earth and Lead Ions. Journal of Materials Chemistry,2002,12:86-91.
    [74]朱维波,宁桂玲,林源等.Sol-Gel纳米包覆技术合成SRAl2O4:Eu2+,Dy3+磷光体研究.大连理工大学学报,2004,44(1):48-50.
    [75]Tuomas A, Jungner H, Lastusaari M. Sol-gel Processed Eu2+Doped Alkaline Earth Aluminates. Journal of Alloys and Compounds,2002,341:76-78.
    [76]Lu Y Q, Xiong Y H, Wang D et al. SrAl2O4:Eu2+Dy3+ Phosphors Derived From a New Sol-gel Route. Microelectronics Journal,2004,35:379-382.
    [77]Jiang L, Mao D L, Zhang B. A New Long Persistent Blue-emitting Sr2ZnSi2O7:Eu2+, Dy3+ Prepared by Sol-gel Method. Materials Letters,2004,58:1825-1829.
    [78]Ji H M, Lv Y, Lu H X, A New Phosphor with Flower-like Structure and Luminescent Properties of Sr2MgSi207:Eu2+, Dy3+Long Afterglow Materials by Sol-gel Method. Journal of Sol-Gel Science Technology,2007,44:133-137.
    [79]张希艳,王晓春.溶胶-凝胶法制备SrAl2O4:Eu2+,Dy3+纳米发光材料.硅酸盐学报,2003,31:268-271.
    [80]Lu C H, Hsu W T. Luminescence Characteristics of Sol-gel Derived Y3Al5Oi2:Eu3+Phosphors Excited with Vacuum Ultraviolet. Journal of Applied Physics,2006,100:06355.
    [81]康明,谢克难,卢忠远等.溶胶-凝胶法制备纳米级ZnO:Eu,Li红色荧光材料.四川大学学报(工程科学版),2005,37(1):65-68.
    [82]张世英,李德意,魏坤.溶胶-凝胶法制备BaMgAl10O17:Eu荧光粉的研究.中国陶瓷工业,2003,10(2):36-38.
    [83]Lu C H, Hsu W, Huang C H et al. Luminescence Characteristics of Europium-Ion Doped BaMgAl10O17 Phosphors Prepared via a Sol-Gel Route Employing Polymerizing Agents. Materials Chemistry and Physics,2005,90:62-68.
    [84]Chen Q W, An L Q, Wang S W. A Novel Co-precipitation Synthesis of a New Phosphor Lu203:Eu3+. Journal of the European Ceramic Society,2007,27:191-197.
    [85]Yuan F L. Ce-doped YAG Phosphor Powders Prepared by Co-precipitation and Heterogeneous Precipitation. Materials Science and Engineering B,2004,107:14-18.
    [86]Yan B. Chemical Co-precipitation Composition of Hybrid Precursors to Synthesize Y0.5-xDyxLi1.5VO4 Microcrystalline Phosphors. Materials Letters,2007,61:482-484.
    [87]Chang C K, Jiang L, Mao D L. Luminescence of Long-lasting CaAl2O4:Eu2+, Nd3+Phosphor by Co-precipitation Method. Materials Chemistry and Physics,2006,98:509-513.
    [88]Sun Y, Lee M, Lee B I. Photoluminescent Properties of Y2O3:Eu3+Phosphors Prepared via Urea Precipitation in Non-aqueous Solution. Journal of Luminescence,2004,109:85-91.
    [89]李红兵,刘又年,舒万艮等.超细MgA11O19Tb3+Ce3+的制备研究.应用化工,2004,33(2):11-13.
    [90]Li Y Z, Zhang Z H, Liu W J. Precipitation Synthesis of Sr2MgSi207:Eu2+Phosphor and Its Luminescent Properties under Vacuum Ultraviolet Excitation. Electrochemical and Solid-State Letters,2006,9(10):37-39.
    [91]Pan W, Ning G L, Wang J H et al. Enhanced Luminescent Properties of Long-persistent Sr2MgSi2O7:Eu2+, Dy3+Phosphor Prepared by Coprecipitation Method. Journal of Luminescence,2008,128:1975-1979.
    [92]Lei F, Yan B. Morphology-Controlled Synthesis, Physical Characterization, and Photoluminescence of Novel Self-Assembled Pomponlike White Light Phosphor:Eu3+Doped Sodium Gadolinium Tungstate. Journal of Physics and Chemistry C,2009,113:1074-1082.
    [93]Lu S W, Lee B I, Tong W. Synthesis and Luminescent Properties of Mn2+Doped Zn2SiO4 Phosphors by A Hydrothermal Method. Journal of Physics and Chemistry of Solids,2001, 62:777-781.
    [94]Wan J X, Chen X Y, Qian Y T. Shape-Induced Enhanced Luminescent Properties of Red Phosphors:Sr2MgSi2O7:Eu3+Nanotubes. European Journal of Inorganic Chemistry,2005: 4031-4034.
    [95]Mishra D, Anand S, Panda R K et al. Preparation of Barium Hexa-Aluminate through a Hydrothermal Precipitation-Calcination Route and Characterization of Intermediate and Final Products. Materials Letters,2002,56:874-879.
    [96]Kar S, Biswas S. White Light Emission from Surface-Oxidized Manganese-Doped ZnS Nanorods.2008,112:11144-11149.
    [97]Sinha Go, Patra A. Generation of Green, Red and White Light from Rare-earth Doped Ga203 Nanoparticles. Chemical Physics Letters,2009,473:151-154.
    [98]Qiu Z F, Zhou Y Y, Lu M K et al. Combustion Synthesis of novel Li0.9Y0.9-x-y)Zr0.1O2:Euχ3+, R3+ (R=Ce,Bi) Red Luminescence Nanocrystal and Emission-mechanism Research. Nanotechnology,2007,18:495705.
    [99]Jin Y, Qin W P, Zhang J S et al. Synthesis of Gd3P07:Eu3+Nanospheres via a Facile Combustion Method and Optical properties. Journal of Solid State Chemistry,2008,181: 724-729.
    [100]Peng T Y, Pu X L, Hu B. Combustion Synthesis and Photoluminescence of SrAl2O4:Eu, Dy Phosphor Nanoparticles. Materials Letters,2004,58:352-356.
    [101]Qiu Z F, Lu M K, Zhang A Y, Ma Q. Combustion Synthesis of Long-persistent Luminescent MAl2O4:Eu2+, R3+(M= Sr, Ba, Ca, R= Dy, Nd and La) Nanoparticles and Luminescence Mechanism Research. Acta Materialia,2007,55:2615-2620.
    [102]Bhatkar V B, Moharil S V. Combustion Synthesis of Silicate Phosphors. Optical Materials,2007,29:1066-1070.
    [103]刘胜利,王淑彬,苏锵.燃烧法合成铝酸盐发光粉的研究.应用化学,1997,14(1):59-61.
    [104]Sun X D, Gao C, Wang J. Identification and optimization of advanced phosphors using combinatorial libraries. Applied Physics Letters,1997,70:3353-3355.
    [105]Wang J S, Yoo Y, Gao C et al. Identification of a Blue Photoluminescent Composite Material from a Combinatorial Library. Science,1998,279,1712-1714.
    [106]Pereira P F S, Caiut J M A, Ribeirob S J L et al. Microwave Synthesis of YAG:Eu by Sol-gel Methodology. Journal of Luminescence 2007,126:378-382.
    [107]Vecht A, Gibbons C. Journal of Vaccum Science and Technolology B,1999,17(2): 750-757.
    [108]Ohno K, Abe T. The Synthesis and Particle Growth Mechanism of Bright Green Phosphor YAG:Tb. Journal of the Electrochemical Society,1994,141(5):1252-1254.
    [109]Yoo J S, Lee J D. The Effects of Particle Size and Surface Recombination Rate on the Brightness of Low-voltage Phosphor. Journal of Applied Physics,1997,81(6):2810-2813.
    [110]Shea L E, Mckittrick J. Predicting and Moderling the Low-voltage Cathodoluminescent Efficiency of Oxide Phosphors. Journal of the Electrochemical Society,1998,145(9): 3165-3170.
    [111]Okumura M, Tamatani M, Matsuda N. Dependence of Luminece Efficiency on Phosphor Particle Size. SID Japan Chapter IDW'97, Proceedings of the 4th International Display Workshops. Nagoya, Japan:Institute of Image Information and Television Engineers, 1997,629-632.
    [112]Oshio S, Kitamula K, Shigeta T. Firing Technique for Preparing a BaMgAl10O17:Eu2+with Controlled Particle Shape and Size. Journal of the Electrochemical Society,1999,146 392-399.
    [113]Messing G L, Zhang S C, Jayanthi G V. Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society,1993,76(11):2707-2726.
    [114]Gurav A, Kodas T, Pluym T, Xiong Y. Aerosol Processing of Materials. Aerosol Science Technology,1993,19(11):411-452.
    [115]Lee D Y, Kang Y C, Park H D et al. VUV Characteristics of BaAl12O19:Mn Phosphor Particles Prepared from Aluminum Polycation Solutions by Spray Pyrolysis. Journal of Alloys and Compounds,2003,353:252-256.
    [116]Jung K Y, Lee D Y, Kang Y C et al. Improved Photoluminescence of BaMgA10O17 Blue Phosphor Prepared by Spray Pyrolysis. Journal of Luminescence,2003,105:127-133.
    [117]Kang Y C, Roh H S, Park H D et al. Optimization of VUV Characteristics and Morphology of BaMgAl10O17:Eu2+ Phosphor Particles in Spray Pyrolysis. Ceramics International 2003, 29:41-47.
    [118]Lenggoro I W, Iskadar F, Mizushima H et al. Janpanese Journal of Applied Physics Letters,2000,39:L1050.
    [119]Kang Y C, Lenggoro I W, Park S B et al. YAG:Ce Phosphor Particles Prepared by Ultrasonic Spray Pyrolysis. Materials Research Bulletin,2000,35(5):789-798.
    [120]Jing X, Ireland T, Gibbons C et al. Control of Y2O3:Eu Spherical Particle Phosphor Size, Assembly Properties, and Performance for FED and HDTV. Journal of the Electrochemical Society,1999,146(12):4654-4658.
    [121]Li J G, Li X D, Sun X D, Ishigaki T. Monodispersed Colloidal Spheres for Uniform Y203:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+Doping. Journal of Physics and Chemistry C,2008,112:11707-11716.
    [122]Ravichiadran D, Roy R, White W B. Synthesis and Characterization of Sol-gel Derived Hexa-aluminate Phosphors. Journal of Materials Research,1997,12(3):819-824.
    [123]Yuan X, Xu Y B, He Y Y. Synthesis of CaAl4O7 via Citric Acid Precursor. Journal of Alloys and Compounds,2007,441:251-254.
    [124]Chen Z, Yan Y W. Crystallinity and Luminescent Properties of Citrate Sol-gel derived BAM Phosphor. Materials Letters,2007,61:3927-3930.
    [125]Choe J Y, Ravichandran D, Blomquist S M, Kirchner K W, Forsythe E W, Morton D C. Cathodoluminescence Study of Novel Sol-gel Derived Y3-xAl5O12:Tbx Phosphors. Journal of Luminescence,2001,93(2):119-128.
    [126]Barbaran J H, Farahani M F, Hajiesmaeilbaigi F. Synthesis of Highly Doped Nd:YAG Powder by SOL-GEL Method. Semiconductor Physics, Quantum Electronics & Optoelectronics,2005, 8(1):87-89.
    [127]Sato T, Shirai M, Tanaka K et al. Strong Blue Emission from Ti-doped MgAl2O4 Crystals. Journal of Luminescence,2005,114:155-161.
    [128]Fujimoto Y, Tanno H, Izumi K et al. Vanadium-doped MgAl2O4 Crystals as White Light Source. Journal of Luminescence,2008,128:282-286.
    [129]Clausen R, Petermann K. IEEE Quantum Electron.1988,24(6):1114.
    [130]Tomita A, Sato T, Tanaka K et al. Luminescence Channels of Manganese-doped Spinel. Journal of Luminescence,2004,109:19-24.
    [131]Singh V, Chakradhar R P S, Rao J L, Kim D-K. Synthesis, Characterization, Photo-luminescence and EPR Investigations of Mn doped MgAl204 Phosphors. Journal of Solid State Chemistry,2007,180:2067-2074.
    [132]Singh V, Masuqul Haque M D, Kim D-K. Investigation of a New Red-Emitting, Eu3+-Activated
    Phosphor. Bulletin of Korean Chemical Society,2007,28(12):2477-2480.
    [133]Omkaram Ⅰ, Rao Vengala B, Buddhudu S. Photoluminescence Properties of Eu3+:MgAl2O4 Powder Phosphors. Journal of Alloys and Compounds,2009,474:565-568.
    [134]Maia A S, Stefani R, Kodaira C A, Felinto M, Teotonio E E S, Brito H F. Luminescent Nanoparticles of MgAhO4:Eu, Dy Prepared by Citrate Sol-gel Method. Optical Materials, 2008,31:440-444.
    [135]Stevels A L N, Verstegen J M P J. Eu2+→Mn2+Energy Transfer in Hexagonal Aluminates. Journal of Luminescence,1976,14(3):207-218.
    [136]Verstegen J M P J, Stevels A L N. The Relation between Crystal Structure and Luminescence in β-alumina and Magnetoplumbite Phases. Journal of Luminescence,1974, 9(5):406-414.
    [137]Shionoya S, W illiam Y M, Hase T et al. Phosphor Handbook, CRC Press, New York,1998, 832.
    [138]DiBartolo B. Optical Properties of Excited States in Solids. New York:Plwnum,1992, 349.
    [139]Smets B M J, Rutten J, Hoeks G et al. Journal of the Electrochemistry of Society, 1989,136:2119.
    [140]Ravichandran D, Johnson S T, Erdei S et al. Displays,1999,19:197.
    [141]Smets B M J, Verli jsdonk J G. The Luminescence Properties of Eu2+-and Mn2+-doped Barium Hexaaluminates. Materials Research Bulletin,1986,21 (11):1305-1310.
    [142]Zandbergen H W, Mijlhoff F C, Ijdo D J W et al. A Model for the Structure of 1.31Ba0.6M2O3; M= A1, Ga; an Electron Microscopic Study. Materials Research Bulletin, 1984,19(11):1443-1450.
    [143]黄京根.稀土三基色荧光粉的化学问题.北京:科学出版社,1992.
    [144]Oshio S, Kitamura K, Nishiara. Nath Technology Report.1997,43(2):181.
    [145]Kuo K T, Lee S P, Chen S Y et al. BaMgAl10O17:Eu Blue Phosphors with MgO Coating and Microwave Irradiation. Journal of Physics and Chemistry of Solids,2008,69:446-450.
    [146]徐进章,张志华,王育华.LaMgAl11019:Tb3+的助熔剂法制备及其发光特性研究.稀有金属材料与工程,2006,35:1-4.
    [147]徐进章,张志华,王育华.助熔剂法制备的LaMgAl11O19:Eun+(R=2,3)的发光特性.无机化学学报,2006,22:913-916.
    [148]张志华.稀土掺杂的LaMgAl11O19的合成及其发光特性研究.兰州大学硕士学位论文,2006.
    [149]Verstegen J M P J, Sommerdi jk J L, Verriet J G. Cerium and Terbium Luminescence in LaMgAl11O19. Journal of Luminescence,1973,6(5):425-431.
    [150]许武亮,刘行仁,申五福等.轻重稀土杂质对(Ce,Tb)MgAl11O19绿色荧光粉发光性能的影响.第二届中国稀土年会会议文集,第四册.北京,1990,11:170.
    [151]Xing D S, Cheah K W, Cheng P Y et al. A Novel Blue Magnesium Strontium Aluminate-based Phosphor for PDP Application. Solid State Communications,2005,134:809-813.
    [152]Singh V, Rao T K G, Zhu J J. A Rapid Combustion pProcess for the Preparation of MgSrAl10O17:Eu2+Phosphor and Related Luminescence and Defect Investigations. Journal of Luminescence,2008,128:583-588.
    [153]Singh V, Chakradhar R P S, Rao J L et al. Mn2+ Activated MgSrAl10O17 Green-emitting Phosphor—A Luminescence and EPR Study. Journal of Luminescence,2008,128:1474-1478.
    [154]Nakamura S, Mukai T, Senoh M. Candela-class High Brightness InGaN/AlGaN Double-heterostructure Blue-light-emitting Diodes. Applied Physics Letters,1994, 64(13):1687.
    [155]Tamura T, Setomoto T, Taguchi. Illumination Characteristics of Lighting Array Using 10 Candela-class White LEDs under AC 100 V Operation. Journal of Luminescence,2000, 87-89:1180-1182.
    [156]刘行仁.照明光源用白光LED的发展方向.海峡两岸第九届照明科技与营销研讨会(LED)专题报告文集,中国照明学会,台湾区照明灯具输出业同业会汇编,2002,12:202-209.
    [157]Shimizu Y, Sakano K, Bandou K. Rare Earth,2002,40:150-151.
    [158]姚光庆,冯艳娥,段洁菲.物理化学学报,2003,19(3):226-229.
    [159]Yang P, Yao G Q, Lin J H. Energy Transfer and Photoluminescence of BaMgAl10O17 co-doped with Eu2+ and Mn2+ Optical Materials,2004,26:327-331.
    [160]Turova N Y, Turevskaya E P, Kessler V G et al. The Chemistry of Metal Alkoxides, Kluwer Academic Publishers, New York,2002.
    [161]Thoms H, Epple M, Viebrock H et al. Magnesium Alcoholates as Precursors for Magnesia. Journal of Materials Chemistry,1995,5(4):589-594.
    [162]Yanovskaya M I, Kotova N M, Golubko N V et al. Reactions of Magnesium and Titanium Alkoxides. Preparation and Characterization of Alkoxy-Derived Magnesium Titanate Powders and Ceramics. Journal of Sol-Gel Science and Technology,1998,11:23-29.
    [163]Borse P H, Deshmukh N, Shinde R F et al. Luminescence Quenching in ZnS Nanopartilces due to Fe and Ni Doping. Journal of Materials Science,1999,34:6087-6093.
    [164]严泉才,李东红.AACH热解法制取高纯超细氧化铝粉.现代技术陶瓷,1995,5:32-36.
    [165]袁崇良.高纯超细低纳α-Al2O3的试制与研究.有色金属,2003,3:44-47.
    [166]Gracia M, Gancedo J R, Marco J F. Mossbauer Study of Iron Removal in a Montmorillonite. Hyperfine Interactions,1989,46:629-634.
    [167]Rocheleau R E, Zhang Z, Gilje J W et al. MOCVD Deposition of MgAl2O4 Films Using Metal Alkoxide Precursors. Chemistry of Materials,1994,6:1615-1619.
    [168]Davies H 0, Jones A C, Leedham T J et al. An Investigation into the Growth of Magnesium Niobium Oxide and Lead Magnesium Niobate by Liquid-injection MOCVD Using a Magnesium-Niobium Alkoxide Precursor. Advanced Materials for Optics and Electronics,2000,10: 177-182.
    [169]刘杰,田朋,宁桂玲等.异丙醇铝合成中原料铝所含铁杂质与异丙醇反应活性研究.化学学报,2008,66:285-288.
    [170]王玉芳,冯敏,王京等.尿素和尿素-Fe配位化合物的晶格振动光谱研究.光散射学报,2005,17:103-108.
    [171]Sharma P P. Ph.D. Thesis University of Rajasthan India,1966.
    [172]Penland R B, Mizushima S, Curran C et al. Infrared Absorption Spectra of Inorganic Corrdination Complexes Studies of Some Metal-urea Complexes. Journal of the American Chemical Society,1957,791575-1578.
    [173]Lambert J, Wallez G, Quarton M et al. Searching for the Dopant Ion in Eu2+activated BaMgAl10O17 Phosphor with Synchrotron Diffraction. Journal of Luminescence,2008,128: 366-372.
    [174]Boolchand P, MiShra K C, Raukas M et al. Occupancy and Site Distribution of Europium in Barium Magnesium Aluminate by 151Eu Mossbauer Spectroscopy. Physics Review B,2002, 66:134429.
    [175]宁桂玲.Al2O3纳米粉的制备过程及不同形状纳米颗粒形成机理的研究.大连理工大学博士学位论文,1995.
    [176]Oshio S, Matsuoka T, Tanaka S et al. Mechanism of Luminance Decrease in BaMgAl10O17:Eu2+ Phosphor by Oxidation. Journal of Electrochemical Society,1998,145(11):3903-3907.
    [177]Smets B M J, Verli jsdonk J G. The Luminescence properties of Eu2+-and Mn2+-doped Barium Hexaaluminates. Materials Research Bulletin,1986,21:1305-1310.
    [178]Ranjit K T. Klabunde K J. Solvent Effects in the Hydrolysis of Magnesium Methoxide, and the Production of Nanocrystalline Magnesium Hydroxide. An Aid in Understanding the Formation of Porous Inorganic Materials. Chemistry of Materials,2005,17,65-73.
    [179]肖莉红,顾牡,刘小林等.Zn2+掺杂对GdTaO4:Eu3+荧光粉结构和发光性能的影响.光谱学与光谱分析,2007,27(6):1054-1057.
    [180]贺明睿,肖林久,田彦文等.B3+对掺杂Tb3./Eu2+的BaAl12O19荧光材料发光性能的影响.东北大学学报(自然科学版),2009,30(2):250-253.
    [181]Jung K Y, Lee D Y, Kang Y C et al. Improved Photoluminescence of BaMgAl10O17 Blue Phosphor prepared by Spray Pyrolysis. Journal of Luminescence,2003,105:127-133.
    [182]Sun X M, Li Y D. Colloidal Carbon Spheres and Their Core/shell Structures with Noble-Metal Nanoparticles. Angewandte Chemie Internatioinal Edition,2004,43: 597-601.
    [183]马力,李明元,吴朝霞等.食品化学与营养学.中国轻工业出版社,北京,2007.
    [184]Zhong J P, Liang H B, Han B et al. Synthesis and luminescent properties of nanoparticles NaGd(PO3)4:Tb3+-A new Promising Green Phosphor for PDPs Application. Chemical Physics Letters,2008,453:192-196.
    [185]Bao A, Tao C Y, Yang H. GdCaAl3O7:RE3+(RE=Eu, Tb) via the Sol-gel Method. Journal of Luminescence,2007,126:859-865.
    [186]Moadhena A, Elhouichet H, Canut B et al. Evidence for Energy Transfer between Eu3+ and Tb3+in Porous Silicon Matrix. Materials Science and Engineering B,2003,105: 157-160.
    [187]Gavrilko T, Fedorovich R, Dovbeshko G et al. FTIR Spectroscopic and STM Studies of Vacuum Deposited Aluminium (III) 8-hydroxyquinoline Thin Films. Journal of Molecular Structure,2004,704:163-168.
    [188]Xu H G, Meng R P, Xu C X et al. Eletrolumicescence from Porous Silicon/8-Hydroxy quinoline Aluminum Hybrid Devices. Chinese Journal of Electron Devices,2003,26: 133-135.
    [189]Xu C X, Xue Q H, Zhong Y et al. Photoluminescencent Blue-shift of Organic Molecules in Nanometre Pores. Nanotechnology,2002,13:47-50.
    [190]Hussain S G, Liu D M, Huang X T et al. A Facile Route to Heterostructured ZnO:S/ZnO Nanorotors:Structural and Optical Properties. Journal of Physical Chemistry C,2008, 112(30):11162-11168.
    [191]Liu J P, Huang XT, Li Y Y et al. Facile and Large-Scale Production of Zn0/Zn-Al Layered Double Hydroxide Hierarchical Heterostructures. Journal of Physical Chemistry B,2006, 110:21865-21872.
    [192]Xua Y H, Zhang H, Duan X et al. Preparation and investigation on a Novel Nanostructured Magnetic Base Catalyst MgAl-OH-LDH/CoFe2O4. Materials Chemistry and Physics,2009,114: 795-801.
    [193]ACaiut J M, Ribeirol S J L, Messaddeq Y et al. Synthesis and Luminescence Properties of Water Dispersible Eu3+-doped Boehmite Nanoparticles. Nanotechnology,2007,18: 455605.
    [194]Iyi N, Matsumoto T, Kaneko Y et al. A novel Synthetic Route to Layered Double Hydroxides using Hexamethylenetetramine. Chemistry Letters,2004,33:1122-1123.
    [195]Carbato C E, Tettenhorst R T, Christoph G G. Clays and Clay Minerals,1985,33:71.
    [196]Hibino T, Yamashita Y, Kosuge K et al. Decarbonation Behavior of Mg-Al-C03 Hydrotalcite-like Compounds during Heattreatment. Clays and Clay Minerals,1995, 43(4):427-432.
    [197]Sampanthar J T, Zeng H C. Arresting Butterfly-Like Intermediate Nanocrystals of β-Co (OH)2 via Ethylenediamine-Mediated Synthesis. Journal of the American Chemical Society,2002,124(23):6668-6675.
    [198]Hou H W, Xie Y, Yang Q et al. Preparation and Characterization of γ-A100H Nanotubes and Nanorods. Nanotechnology,2005,16:741-745.
    [199]Yu Z Q, Wang C X, Gu X T, Li C. Photoluminescent Properties of Boehmite Whisker Prepared by Sol-gel Process. Journal of Luminescence,2004,106:153-157.
    [200]Xu Z P, Lu G Q. Hydrothermal Synthesis of Layered Double Hydroxides (LDHs) from Mixed MgO and A12O3:LDH Formation Mechanism. Chemistry of Materials,2005,17:1055-1062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700