改性滤料高速过滤技术用于再生水生产的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以天然石英砂和无烟煤等环境友好型滤料作为研究对象,针对城市污水处理厂二级处理出水中的浊度、COD、磷酸盐等污染物质,提出并验证了污水回用高速过滤技术(滤速≥30m/h)的可行性,并制备开发了以除磷为目标的新型改性滤料——改性石英砂。
     研究了微絮凝-高速过滤和KMnO4预氧化强化微絮凝-高速过滤处理二级出水的效果。结果表明,高速过滤工艺出水均符合《城市污水再生利用城市杂用水水质》(GB/T 18920-2002)要求。并且确定了高速过滤的反冲洗方式和主要参数。经过对不同滤料级配和厚度(石英砂-无烟煤双层滤料)的11种工况的周期实验确定出,双层滤料的粒径范围、滤床深度、有效粒径及滤料层ΣL/d10,高速过滤技术应该以过滤开始的自然滤速,也即最大滤速进行,对高速过滤的流态通过两种Re公式进行了计算,认为高速过滤的流态为紊流。
     将微电解工艺产生的铁泥应用于滤料改性,以废治废。该思想同时为高浓度金属(铁、铝、锰等)废液的处理提供了一条有益的思路。研究了铁泥砂、铁铝砂和铁砂直接过滤处理再生水的效果。
     分别在低温(200℃)和高温(550℃)条件下制备出以除磷为目标的两种铁改性砂滤料——IOCS-1和IOCS-2,对其进行了表面特征分析(SEM、XRD、FTIR、EDAX),研究了铁改性砂静态吸附除磷影响因素、吸附等温线、热力学和动力学。结果发现,IOCS-1的PO43-吸附去除效果明显优于IOCS-2。共存阴离子SO42-、Cl-、HCO3-对IOCS-1吸附PO43-影响的大小顺序为:HCO3->SO42->Cl-,但影响不大。
     IOCS-1动态过滤实验表明,溶液初始pH值、滤速、床深等均会影响过滤除磷效果。IOCS-1连续三个周期的滤柱再生循环利用实验表明,吸附PO43-后IOCS-1可以使用0.1MNaOH溶液解吸再生,并且保持较稳定的PO43-去除率。
     与国内外相关研究相比,低温制备铁改性砂滤料对水中PO43-具有良好的吸附性,材料成本低,经实验表明可再生重复利用,具有环境友好性,因而有利于对现有水和废水处理中过滤除磷工艺的升级改造。
In order to remove turbidity, COD and phosphate from municipal secondary effluent for wastewater reuse, high-rate filtration technology (filtration rate≥30m/h) using granular media (natural quartz sand and anthracite) is put forward and investigated. Several new types of modified filter media—metal-oxides-coated sands were prepared for enhancing filtration.
     Treatment efficiency of reclaimed wastewater with or without preoxidation (KMnO4) enhanced microflocculation high-rate filtration was investigated. The results show that effluent quality by high-rate filtration can meet (GB/T 18920-2002). Moreover, hydraulic flow pattern of high-rate filtration were investigated. Meanwhile, backwash method and main operation parameters of high-rate filtration were determined.
     By experiments in 11 cycles of different operation conditions (gradation and bed depth of double-layer media), the results indicate that, the particle size of sand ranges from 0.6~1.2mm, bed depth=50cm, effective particle size=0.7mm, L/d100=714; the particle size of anthracite ranges from 1.2~1.6mm, bed depth=60cm, effective particle size=1.2mm, L/d10=500,ΣL/d10=1214. The initial filtration rate of high-rate filtration should be controlled at naturally largest filtration rate. Hydraulic flow pattern of high-rate filtration was calculated by two different Reynolds number formulas, and hydraulic flow pattern was thought to be turbulent flow.
     Reclaimed iron oxide was used to prepare iron-oxide-coated sand (RIOCS) in order to solve waste sludge deriving from micro-electrolysis process. The experimental results also can provide a beneficial idea which waste solutions containing high concentrations of metal (iron, aluminum or manganese) ions can be used for coating sand filter media in view of solving waste disposal problem. The effects of different MOCS (RIOCS, IAOCS, IOCS) and natural quartz sand (QS) on the removal of pollutants were researched for wastewater reuse.
     Two new types of iron-oxide-coated sand filter media IOCS-1 and IOCS-2 (prepared at low coating temperature and high coating temperature, respectively) were investigated for phosphate removal. SEM, XRD, FTIR and EDAX analysis were conducted for the characterization of IOCS-1 and IOCS-2. In batch experiments, the effects of initial solution pH, contact time and dose of IOCS on phosphate removal were investigated. The adsorption isotherms of phosphate by IOCS were fitted using Langmuir, Freundlich and Temkin equations at various temperatures (15℃,25℃, 35℃). The phosphate adsorption kinetics and thermodynamics of IOCS-1 and IOCS-2 were researched. The results indicate that the removal efficiency of PO43- by IOCS-1 was greater than IOCS-2. The sequence of anions studied competing with phosphate on IOCS-1 was HCO3->SO42->Cl-, but the effect of competitive adsorption was not great.
     The results of column filtration incate that phosphate removal depends on initial pH, flow rate and bed depth. Moreover, Phosphorus adsorbed IOCS-1 can be effectively regenerated by 0.1 M NaOH solution and column kept almost constant phosphate removal consecutively during three cycles.
     Results of this study showed that IOCS can be used as a new type of filter media through reforming filtration unit for removal of low concentration phosphate in water and wastewater treatment.
引文
[1]中国人民共和国环境保护部,2007年中国环境状况公报[R],2008年.
    [2] G. Dennis Cooke, Eugene B. Welch, Spencer A. Peterson, et al. Restoring and Protecting the World's Lakes and Reservoirs(3rd Edition)[M]. CRC Press, 2005.
    [3]籍国东,姜兆春.我国污水资源化的现状分析与对策探讨[J].环境科学进展,1999,7(5):85~93.
    [4] Robert G. Smith. Water Reclamation and Reuse [J]. Water Environment Research, 1995, 67(4): 48~49.
    [5]雷乐成,李伟,汪大翚,等.污水回用新技术及工程设计[M].北京:化学工业出版社,2002.
    [6] USEPA. Water Reuse and Reclamation, Section 2 in Water Services Overview, USEPA Water Office, 1997.
    [7]江世竹,张漫.贫水地区用水对策与污水回用[J].环境保护,1996,3:13~16.
    [8] Friedler E. Water reuse-an integral part of water resources management:Israel as a case study[J]. Water Policy, 2001, 3(1): 29~39.
    [9] Van der Merwe, B. Integrated water resources management in Windhoek, Namibia[J]. Water supply, 2000, 18(l):376~381.
    [10]张雅玲,邵辉煌,方先金.国内外污水回用的发展状况及发展方向[C].中国环境工程领域回顾与展望研讨会,2002年.
    [11] Richman, M. City sets new standard for converting wastewater to potable water[J]. Water Environment &Technology, 1997, 9(8): 22~24.
    [12]建设部、科技部.城市污水再生利用技术政策[M].2006年.
    [13]沈光范,徐强.积极稳妥地开展中水回用工作[J].中国给水排水,2001,17(4):31~32.
    [14]钟淳昌等.净水厂设计[M].北京:中国建筑工业出版社,1986.
    [15]栾兆坤,李桂平,王曙光.微絮凝-深床直接过滤及工艺参数研究[J].中国给水排水,2002,18(4):14~18.
    [16] Gordon J. Williams, Bahman Sheikh, Robert B. Holden, et al. The impact of increased loading rate on granular media, rapid depth filtration ofwastewater[J].Water research, 2007, 41(19): 4535~4545.
    [17] Benjamin M M, Leckie J O. Multiple site adsorption of Cd Cu Zn and Pb on amorphous iron oxyhydroxide[J]. Colloid Interface Science, 1981, 79(5): 209~215.
    [18] Davis A P, Bhatnagar V. Adsorption of cadmium and humic acide onto hematite[J]. Chemosphere, 1997, 30(2): 243~256.
    [19] Gu B, Schmitt J, Chen Z. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and model[J]. Environment Science and Technology, 1994, 28(1): 38~46.
    [20] Heijman S G J, Paassen A M,Meer W G J,et al. Adsorptive removal of natural organic matter during drinking water treatment[J]. Water Science and Technology, 1999, 40(9): 183~190.
    [21]邹卫华,陈宗璋,韩润平,等.锰氧化物/石英砂(MOCS)对铜和铅离子的吸附研究[J].环境科学学报,2005,25(6):779~784.
    [22]黄怡,高乃云,周雪松.改性滤料除氟技术的探讨[J].工业水处理,2003,23(4):6~9.
    [23]易小萍,邓慧萍.改性滤料在水处理中的应用及机理探讨[J].净水技术,2000,18(1):25~27.
    [24] Mckenzie R M. The adsorption of lead and other heavy metals on oxides of manganese and iron[J]. Journal of Soil Research, 1980, 18(5): 61~73.
    [25] Theis T L, Iyer R, Kaul L W. Kinectics studies of cadmium and freecynaide adsorption on goethite[J]. Environment Science and Technology, 1988, 22(6): 1013~1017.
    [26] Theis T L, Iyer R, Ellis S K. Evaluating a new granular iron oxide for removing lead from drinking water[J]. Journal of American Water Works Association, 1992, 84(2): 101~105.
    [27] Tipping E, Cooke D. The effects of adsorbed humic substances on the surface charge of goethite in freshwaters[J]. Geochim Cosmochim Acta, 1982, 46(6): 75~80.
    [28] Schultz M F, Benjamin M M, Ferguson J F. Adsorption and desorption of metals on ferrihydrite reversibility of the reaction and sorption properties of the regenerated solid[J]. Environment Science and Technology, 1987, 21(9): 863~869.
    [29] Baltpurvins K A, Burns R C, Lawrance. Effect of pH and anion type on the aging of freshly precipitated iron hydroxide sludges[J]. Environment Science andTechnology, 1996, 30(3): 939~944.
    [30] Davis J A, Leckie J O. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides[J]. Environment Science and Technology, 1978, 12(4): 1309~1315.
    [31] Hsia T H, Lo S L, Lin C F. Chemical and spectroscopic evidence for specific adsorption of chromate on hydrous iron oxide[J]. Chemosphere, 1993, 26(6): 1897~1904.
    [32] Lo S L, Shiu S H, Lin C F. Adsorption of metals on oxides formed from Fe(NO3)3, FeCl3 and Fe(ClO4)3 solutions[J]. Environment Geochem Health, 1994, 16(5): 89~99.
    [33]雷国元,王占生.滤料表面改性及其在水处理中的应用[J].净水技术,2001,20(1):20~23.
    [34]黄自力,胡岳华,徐競.氧化铁对石英砂表面改性的研究[J].应用化工,2003, 32(4):23~26.
    [35]黄自力,胡岳华,郑春华.涂铁石英砂吸附Cr(Ⅵ)的研究[J].武汉科技大学学报(自然科学版),2006,29(5):465~468.
    [36] Lo S L, Tsung-Yung Chen. Adsorption of Se(IV)and Se(VI)on an iron-coated from water[J]. Chemosphere, 1997, 35(5): 919~930.
    [37] Lo S L, Jeng H T, Lin C F. Adsorption of heavy metals by the iron-coated filter medium[J]. J. Chinese Inst of Civil and Hydraulic Engineering, 1994, 6(1): 101~110.
    [38] Lo S L. Characteristics and adsorption properties of iron-coated sand[J]. Water Research, 1997, 35(7): 63~70.
    [39] Benjamin M M, Sletten R S, Bailey R P. Sorption and filtration of metals using iron-oxide-coated sand[J]. Water Research, 1996, 30(11): 2609~2620.
    [40] Bailey R P, Bennett T, Benjamin M M. Sorption and recover of Cr(VI)using iron-oxide-sand[J]. Water Science Technology, 1992, 26(5):1239~1244.
    [41] Lai C H. Removal of metal ions and humic acid from water by iron-coated filter media[J]. Chemosphere, 2001, 44(4): 1177~1184.
    [42] Wen-Hui Kuan, Shang-Lien Lo, Ming K. Wang, et al. Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand[J]. Water Research, 1998, 32(3): 915~923.
    [43] O.S. Thirunavukkarasu, T. Viraraghavan, K.S. Subramanian, et al. Organic arsenic removal from drinking water[J]. Urban Water, 2002, 4(4): 415~421.
    [44] V.K. Gupta, V.K. Saini, Neeraj Jain. Adsorption of As(III) from aqueous solutions by iron oxide-coated sand[J]. Journal of Colloid and Interface Science, 2005, 288(1): 55~60.
    [45] N. Boujelben, J. Bouzid, Z. Elouear. Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems[J]. Journal of Hazardous Materials, 2009, 163 ( 1): 376~382.
    [46]邹卫华,韩润平,陈宗璋,等.锰氧化物/石英砂(MOCS)对铜和铅离子的动态吸附[J].应用化学,2006,23(3):209~304.
    [47] Runping Han, Weihua Zou, Zongpei Zhang, et al. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study[J]. Journal of Hazardous Materials, 2006, 137(1): 384~395.
    [48] Runping Han, Zhu Lu, Weihua Zou, et al. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand II. Equilibrium study and competitive adsorption[J]. Journal of Hazardous Materials, 2006, 137(1): 480~488.
    [49] Satpathy J K, Chaudhuri M. Treatment of cadmium-plating and chromium-plating wastes by iron oxide-coated sand[J]. Water Environ.Research, 1995, 67(5): 788~790.
    [50] Stahl R S, James B R. Zinc sorption by iron-oxide-coated sand as a function of pH[J]. Journal of Soil Science Society of America, 1991, 55(3): 1287~1290.
    [51]高乃云,李富生,汤浅晶,等.氧化物涂层砂及其涂层理论分析[J].中国给水排水,2002,18(10):42~44.
    [52] Gregory V K, Benjamin M M, Ronald S S. Adsorption of natural organic matter (NOM) on iron oxide: effects on NOM composition and formation of organo-halide compounds during chlorination[J]. Water Research, 1997, 31(7): 1643~1650.
    [53]邓慧萍,梁超,常春.改性滤料去除有机物的分子量分布及与活性炭联用去除有机物研究[C].城镇饮用水安全保障技术研讨会论文集,2004:366~369.
    [54]马军,盛力.涂铁砂的直接过滤效果及其再生方法研究[J].中国给水排水,2002,4(4):31~35.
    [55]盛力,马军.金属氧化物改性滤料去除微量苯酚研究[J].中国给水排水,2003,19(9):16~18.
    [56]高乃云,徐迪民,范瑾初,等.氧化铁涂层砂改性滤料除氟性能研究[J].中国给水排水,2000,16(1):1~4.
    [57] M. Arias, J. Da Silva-Carballal, L. García-Río, et al. Retention of phosphorus by iron and aluminum-oxides-coated quartz particles[J]. Journal of Colloid and Interface Science, 2006, 295(1):65~70.
    [58] N. Boujelben, J. Bouzid, Z. Elouear, M. Feki, et al. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents[J]. Journal of Hazardous Materials, 2008, 151(1): 103~110.
    [59]许光眉,施周,邓军.石英砂负载氧化铁吸附除磷的热动力学研究[J].环境工程学报,2007,1(6):15~18.
    [60]王俊岭,冯萃敏,龙莹洁,等.改性石英砂过滤除磷试验研究[J].工业水处理,2008,28(5):60~65.
    [61]友田雅則.福罔市にぉける下水処理水有效利用事業の推進と取組みの歩み[J].下水道恊会誌,1998,35(12):47~51.
    [62]严煦世,范瑾初主编.给水工程(第四版)[M].北京:中国建筑工业出版社,1999.
    [63] O'Melia C. R., Crapps, D.K. Some chemical aspects of rapid sand filtration[J]. JAWWA, 1964, 56: 1326~1344.
    [64] Amirtharajah A. Coagulation and Filtration: Back to the Basics[C]. in AWWA Seminar, 1981.
    [65] O'Melia C. R. Particles, Pretreatment, and Performance in Water Filtration[J]. Journal of Environmental Engineering, 1985, 111(6): 874~890.
    [66] Tobiason, J.E. Physicochemical Aspects of particle deposition in porous media[D]. John Hopkins University, Baltimore, Maryland, 1987.
    [67] O'Melia, C. R. Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface[M]. John Wiley and Sons, New York, 1987: 385~403.
    [68] Kuan-Mu Yao, Mohammad T. Habibian, and Charles R. O’Melia. Water and Waste Water Filtration: Concepts and Applications[J]. Environmental Science & Technology, 1971, 5(11): 1105~1112.
    [69] Amirtharajah A. Some theoretical and conceptual views of filtration[J]. JAWWA, 1988, 80(12): 36~46.
    [70]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    [71]张锡辉,王占生.水-纤维床层过滤水头损失理论研究综述[J].工业水处理,1994,14 (5):8~11.
    [72]吴宏海,吴大清.石英矿物表面反应性的EPR谱学研究[J].光谱学与光谱研究,2000,20(3):298~301.
    [73] Tien, C. Adsorption calculations and modeling[M]. Butterworth-Heinemann, Boston, 1994.
    [74]唐受印,戴友芝.水处理工程师手册[M].北京:化学工业出版社,2000.
    [75]汤鸿霄.环境水质学的进展——颗粒物与表面络合(上)[M].环境科学进展,1993,1(1):25~41.
    [76] Guibal E, Saucedo I, Roussy J, et al. Uptake of uranyl ions by new sorbingpolymers: discussion of adsorption isotherms and pH effect[J]. Reactive Polymers, 1994, 23: 147~156.
    [77] Rengaraj S, Kim Y, Joo C K, et al. Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium[J]. J. Colloid Interface Sci, 2004, 273(1): 14~21.
    [78] Cheung C W, Porter J F, Mckay G. Sorption kinetics for the removal of copper and zinc from effluents using bone char[J]. Sep. Purif. Technol., 2000, 19(1): 55~64.
    [79] Chiron N, Guilet R, Deydier E. Adsorption of Cu(II)and Pb(II)onto a grafted silica:isotherms and kinetic models[J]. Water Research, 2003, 37(13): 3079-3086.
    [80]许保玖著.给水处理理论[M].北京:中国建筑工业出版社,2000年.
    [81]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [82] Burbanettin Farizoglu, Alper Nuhoglu, Ergun Yildiz, et al. The performance of pumice as a filter bed material under rapid filtration conditions[J]. Filtration & Separation, 2003, 40(3): 41~47.
    [83]孟军,李桂平,王东升,等.聚合氯化铁在微絮凝—深床过滤工艺中的应用[J].环境科学,2003,24(1):98~102.
    [84]李科,栾兆坤.微絮凝—直接过滤中应用聚合铝处理低浊低色水研究[J].中国给水排水,1998,14(6):1~4.
    [85] B. Eikebrokk, R.D. Vogt, H. Liltved. NOM increase in Northern European source waters: discussion of possible causes and impacts on coagulation/contact filtration processes[J]. Water science and technology, 2004, 4 (4): 47~54.
    [86]黄树辉,吕军.微絮凝直接过滤工艺处理生活污水的实验研究[J].浙江大学学报(工学版),2003,37(6):739~747.
    [87]李三中.微絮凝直接过滤处理水库水的探讨[J].中国给水排水,1997,13(5):17~19.
    [88]李冬梅,金同轨.直接过滤技术中混凝剂的最佳选择[J].广东工业大学学报,2002,19(2):48~54.
    [89] A.F. van Nieuwenhuijzen, J.H.J.M. van der Graaf, A.R. Mels. Direct influent filtration as a pretreatment step for more sustainable wastewater treatment systems[J]. Water science and technology, 2001, 43(11): 91~98.
    [90]李桂平,栾兆坤.微絮凝-直接过滤工艺在城市污水深度处理中的应用研究[J].环境污染治理技术与设备,2002,3(4):65~68.
    [91] H Cikurel, M Rebhun, A Amirtharajah, et al. Wastewater effluent reuse by in-line flocculation filtration process[J]. Water Science and Technology, 1996, 33(10-11): 203~211.
    [92] Van Der Graaf, JHJM Van Nieuwenhuijzen, AF. Experiments on high rate effluent filtration in the Netherlands[J]. Water Science and Technology. 1998, 38(3): 127~134.
    [93]袁旭安.常规过滤工艺优化研究[D].湖南长沙:湖南大学,2003.
    [94]王鹤立,肖树宏.常规混凝沉淀给水处理工艺的强化[J].给水排水,1999,25(6):1~4.
    [95]华东水力学院编.水力学[M].北京:科学技术出版社,1983.
    [96]曹冲.水的过滤[M].西安:西安冶金学院,1987.
    [97]许保玖,安鼎年编.给水处理理论与设计[M].北京:中国建筑工业出版社,1992.
    [98]张杰,曹开朗.城市污水深度处理与水资源可持续利用[J].中国给水排水,2001,17(3): 20~21.
    [99]聂梅生.美国污水回用技术调研分析[J].中国给水排水,2001,17(9):23~25.
    [100]邓慧萍,徐迪民,易小萍等.几种改性滤料去除水中有机物的性能比较[J].同济大学学报,2001,29(4):444~447.
    [101]高乃云,徐迪民,范瑾初.氧化铁涂层砂变性滤料除砷性能研究[J].上海环境科学,2001,20(9):417~419.
    [102] Chang Yujung, Li Chiwang, Benjamin M M. Iron oxide-coated media for NOM sorption and particulate filtration[J]. JAWWA, 1997, 89(5): 100~103.
    [103]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4):18~24.
    [104]王永广,杨剑锋.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备,2002,3(4):69~73.
    [105]胡春,曲久辉,刘会娟,等.水固液微界面氧化还原反应过程与污染物控制研究[J].环境科学学报,2009,29(1):28~33.
    [106] Claudio Della Rocca, Vincenzo Belgiorno, Sureyya Meri?.Overview of in-situapplicable nitrate removal processes[J]. Desalination, 2007, 204(1-3): 46~62.
    [107]盛力,马军.滤料表面电位对滤床过滤效果的影响[J].工业水处理,2002,22(12):34~36.
    [108]许光眉,施周,邓军.石英砂负载氧化铁吸附除锑、磷的XRD、FTIR以及XPS研究[J].环境科学学报,2007,27(3):402~407.
    [109] Mead JA. Comparison of the Langmuir, Freundlich and Temkin equations to describe phosphate adsorption properties of soils[J]. Aust J Soil Res, 1981, 19(3):333~342.
    [110] Sutha Khaodhiar, Mohammad F. Azizian, et al. Copper, chromium, and arsenic adsorption and equilibrium modeling in an iron-oxide-coated sand, background electrolyte system[J]. Water, air, and soil pollution, 2000, 119(1-4): 105~120.
    [111]杨春.含磷洗涤剂不是惟一凶手——污水三级处理除磷是解决水体富营养化的根本办法[N].中国环境报,2004年5月21日.
    [112] E.Liopez, B.Soto, M.Arias, et al. Adsorbent properties of red mud and its use for wastewater treatment[J]. Water research, 1998, 32(4):1314~1322.
    [113] J.Pradhan, J.Das, S.N.Das, et al. Adsorption of phosphate from aqueous solution using activated red mud[J]. Journal of Colloid and Interface Science, 1998, 204(1): 169~172.
    [114] C.H. Weng, C.P. Huang. Adsorption characteristics of Zn(Ⅱ) from dilute aqueous solution by fly ash[J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 247(1-3): 137~143.
    [115] E.Oguz. Sorption of phosphate from solid/liquid interface by fly ash[J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2005, 262(1-3): 113~117.
    [116] M.L. Kandah. Zinc and cadmium adsorption low-grade phosphate[J]. Sep. Purif. Technol., 2004, 35(1): 61~70.
    [117] F.D. Tillman, S.L. Bartelt-Hunt, V.A. Craver, et al. Relative metal ion sorption on natural and engineered sorbents: batch and column studies[J]. Environ. Eng. Sci., 2005, 22(3): 400~409.
    [118] N.M. Agyei, C.A. Strydom, J.H. Potgieter. The removal of phosphate ions from aqueous solution by fly ash, slag, ordinary Portland cement and related blends[J]. Cem. Concr. Res., 2002, 32 (12): 1889~1897.
    [119] G.Villasenor Nano, T.J. Strathmann. Ferrous iron sorption by hydrous metal oxides[J]. Journal of Colloid and Interface Science, 2006, 297(2):443~454.
    [120] Edward, M. A., and Benjamin, M. M. Adsorptive filtration using coated sand: Anew approach for treatment of metal bearing wastes[J]. J. Water Pollut. Control Fed., 1989, 61(9): 1523~1533.
    [121] Joshi, A., Chaudhuri, M. Removal of arsenic from ground water by iron-oxide-coated sand[J]. J. Environ. Eng., 1996, 122(8): 769~771.
    [122]盛力,马军,高乃云.改性滤料除锰效能及影响因素研究[J].中国给水排水,2007,23(13):41~44.
    [123] G.M. Ayoub, B. Koopman, N. Pandya. Coated filter media for low concentration phosphorous removal[J]. Water Environ. Res., 2001, 73(4):478~485.
    [124] Rakesh Chandra Vaishya, Sudhir Kumar Gupta.Arsenic Removal from Groundwater by Iron Impregnated Sand[J]. Journal of Environmental Engineering, 2003, 129(1): 89~92.
    [125] O. S. Thirunavukkarasu, T. Viraraghavan, K. S. Suvramanian. Arsenic removal from drinking water using iron oxide-coated sand[J]. Water, Air, and Soil Pollution, 2003, 142(1-4): 95~111.
    [126] R. Han, W. Zou, H. Li, et al. Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite[J]. Journal of Hazardous Materials, 2006, 137(2):934~942.
    [127] Po-Yu Hu, Yung-Hsu Hsieh, Jen-Ching Chen, et al. Characteristics of manganese-coated sand using SEM and EDAX analysis[J]. Journal of Colloid and Interface Science, 2004, 272(2):308~313.
    [128]梁咏梅,何利华,仇荣亮,等.焙烧温度对铁覆膜砂IOCS吸附Cr(VI)的影响[J].环境科学学报,2007,27(1):1887~1891.
    [129]王琳,施永生.改性滤料表面结构特性的研究[J].有色金属设计,2005,32(3):53~57.
    [130] Stumm, W., Morgan, J. J. Aquatic Chemistry(3rd Edition)[M]. Wiley, New York, 1996: 683~686.
    [131] G. Horanyi, P. Joo. Some peculiarities in the specific adsorption of phosphate ions on hematite andγ-Al2O3 as reflected by radiotracer studies[J]. Journal of Colloid and Interface Science, 2002, 247(1):12~17.
    [132] H.S. Altundogan, F.Tumen. Removal of phosphates from aqueous solutions by using bauxite. I: effect of pH on the adsorption of various phosphates[J]. J. Chem. Tech. Biotechnol., 2001, 77(1):77~85.
    [133] James R O, Torsten W V, William F M. Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)aq and H2O[J].Geochimica Cosmochimica Acta., 2003, 67(13): 3135~3144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700