钒氧化物一维纳米材料制备及气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料因为具有显著的各向异性结构和固有的量子限域效应而产生许多优异的物化性能,引起了广大学者的研究兴趣。银钒氧化物由于存在银和钒特殊的氧化态而具有优良的电化学性能、磁性能及电输运特性,可应用于心脏起搏器电池材料、电子自旋器件、敏感器件等方面。本论文以具有带状质点的V_2O_5溶胶为钒源,采用流变相自组装法制备了银钒氧化物一维纳米材料,并用XRD、SEM、TEM、EDS、SAED等手段对产物进行表征,讨论了合成工艺参数对产物结构和形貌的影响。通过组装基于粉末AgVO_3纳米棒材料和单根AgVO_3纳米棒的气敏传感器件,研究了该材料的气敏性能。得到的主要结果和结论如下:
     1.得到的产物为长几到数十微米,直径100~400nm的纳米纤维聚集成的束状β-AgVO_3,该纳米纤维是由直径为数纳米至50nm左右的Ag纳米颗粒所包覆的AgVO_3纳米棒构成,纳米棒的直径为40~100nm。
     2.升高水热反应温度和延长反应时间均有利于AgVO_3准一维纳米材料的形成,但当反应时间过长时,晶粒的择优取向生长变弱,产物逐渐生长为微米级的块状结构。搅拌和超声处理使固体反应物Ag_2O充分、均匀进入到V_2O_5溶胶层间,使反应在较低温度下就可以进行。
     3.在由粉末AgVO_3纳米棒所制备的气敏器件中,样品在不同的加热电压下对乙醇气体均具有敏感特性。乙醇与AgVO_3纳米材料表面从空气中吸附的氧形成的氧负离子发生反应,从而将捕获的电子释放,而使材料的电阻减小。
     4.由Ag纳米颗粒包覆的单根AgVO_3纳米棒气敏器件,在0.1V电压下,300℃时,Ar气氛中对甲烷气体具有好的敏感特性,最低响应浓度为50ppm。CH_4能够分解出甲基自由基CH_3和H·自由基,两个甲基自由基和纳米棒表面的晶格氧以及H·通过一系列的反应最终生成C_2H_4,、H_2O以及一个氧空位,氧空位能参与导电从而使纳米棒的电阻减小。并且两个H·自由基也能与纳米棒表面的晶格氧反应生成水,而产生一个氧空位,使得纳米棒的电阻减小。此外,纳米棒表面所包覆的Ag纳米颗粒,有可以促进CH_4的分解反应在低温下进行。
In recent years,great attention has been focused on one dimentional nanostructured materials due to the excellent physical and chemical properties. Silver vanadium oxide was applied as anode material in primary batteries,electron spin device and the sensitive device because of good electrochemical,magnetic and electronic transport properties.In the present work,silver vanadium oxide nanomaterials were successfully assembled by ultrasonic treatment followed by rheological self-assembling methods using V_2O_5 sol.The products obtained were analyzed by XRD,SEM,TEM,EDS and SAED.The parameters of the reaction and the growing mechanism were discussed.The gas sensing property and mechanism of bulk AgVO_3 nanomaterials and single AgVO_3 nanorod were also studied.The main conclusions are as follows:
     1.The obtainedβ-AgVO_3 nanomaterials with the length from several to several tens micrometers form bundles of agglomerated smaller filaments with diameters ranging from 100 to 400 nm.This nanostructure is made up of nanorods with the diameters of 40~100nm coated by Ag nanospheres with diameters of several nanometers to 50nm.
     2.The increases of hydrothermal temperature and time are helpful to formation of one dimensional nanostrcutres,but the microscale lamella structure will be attained because of the weakening of anisotropic growth when the time exceeds certain values.Stirring and ultrasonic treatment can make Ag_2O particles enter the interlayer of V_2O_5 sol easily and uniformly,resulting in the occurrence of reaction in lower temperature.
     3.The bulk AgVO_3 nanorods obtained have gas sensing property to ethanol gas. The ethanol gas can react with the negatively charged oxygen adsorbates,and release a trapped electrons at the same time.These electrons can reduce the resistance of the gas sensor.
     4.The single AgVO_3 nanorod has gas sensing property to methane gas under 0.1V, 300℃in Ar atmosphere with low response concentration of 50 ppm.The methane can dissociates to a methyl group and hydrogen,two hydrogen can react with a lattice oxygen on the surface and produce water and an oxygen vacancy.These oxygen vacancies can reduce the resistance.And two methyl group,a hydrogen can react with a lattice oxygen on the surface,which can produce an oxygen vacancy too. It also enhance the conductivity of the nanorods.Moreover,the Ag on the surface of the nanorods could be helpful to the decomposition reaction of CH_4 at low temperature.
引文
[1]Gao Y F,Wang Z L.Electrostatic potential in a bent piezoelectric nanowire-the fundamental theory of nanogenerator and nanopiezotronics.Nano Letters,2007,7(8):2499-2505.
    [2]Hu J,Odom T W,Lieber C M.Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes.Accounts of Chemical Research,1999,32(5):435-445.
    [3]Duan X,Lieber C M.General synthesis of compound semiconductor nanowires.Advanced Materials,2000,12(4):298-301.
    [4]Duan X,Lieber C M.Laser-assisted catalytic growth of single crystal GaN nano- wires.Journal of the American Chemical Society,2000,122(1):188-189.
    [5]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.
    [6]Morales A M,Lieber C M.A laser ablation method for the synthesis of crystalline semiconductor nanowires.Science,1998,279(5348):208-211.
    [7]庞文琴.无机合成与制备化学.北京:高等教育出版社,1991.
    [8]Laudise R A,Drybu P M.Advanced Crystal Growth,New York,Sydney,Tokyo:Prentice Hall 1987.
    [9]施尔畏,奕怀顺,仇海波等.人工晶体学报,1993.22(1):79-82.
    [10]施尔畏,夏长泰,仲维卓等.无机材料学报,1995.10(4):385-390.
    [11]裴立宅,唐元洪,郭池等.水热法及溶剂热合成法制备Ⅳ族-维无机纳米材料.稀有金属,2005.29(2):194.
    [12]Sun X M,Chen X,Deng Z X,et al.A CTAB-assisted hydrothermal orientation growth of ZnO nanorods.Materials Chemistry and Physics,2003,78(1):99.
    [13]Wang X,Li Y D.Selected-control hydrothermal syn-thesis of α and β-MnO_2 single crystal Nanowires.Journal of the American Chemical Society,2002,124(12):2880.
    [14]Zhu D L,Zhu H,Zhang Y H.Microstructureand magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method.Journal of Crystal Growth,2003,249(1-2):172,
    [15]杨小勤,赵永男.一维纳米材料的水热合成.材料导报,2006.11(20):90-91.
    [16]张立德,牟季美.纳米材料和纳米结构.Part V纳米微粒的制备与表面修饰.北京:科学出版社,2002.
    [17]张立德,牟季美.纳米材料和纳米结构.Part Ⅶ纳米固体及其制备.北京:科学出版社,2002.
    [18]李永军,刘春艳.一维无机纳米材料的研究进展李.感光科学与光化学,2003.11(6):446-449.
    [19]杨小勤,赵永男.一维纳米材料的水热合成.材料导报,2006.11(20):90-91.
    [20]Chen W,Mai L Q,Qi Y Y,et al.One-dimensional nanomaterials of vanadium and molybdenum oxides,Journal of Physics and Chemistry of Solids,2006,67(5-6):896-902.
    [21]Mai L Q,Chen W,Xu Q,et al.Mo doped vanadium oxide nanotubes:microstructure and electrochemistry.Chemical Physics Letters,2003,382:307-312.
    [22]Wang Z L,Gao R P,Pan Z W,Nano-scale mechanics of nanotubes,nanowires,and nanobelts.Advanced Engineering Materials,2001,9:657-661.
    [23]Wang Z L,Christopher M,Daniel M,Nanobelt and nanosaw structures of Ⅱ-Ⅵsemiconductors.Nanotechnology,2004,4:431-451.
    [24]Wang X D,Curtis N,Elton G,et al.Photonic crystals fabricated using pattemed nanorod arrays.Advanced Materials,2005,17:2103-2106.
    [25]Wang Z L.Self-assembled nanoarchtectures of polar nanobelts/nanowires.Journal of Materials Chemistry,2005,15:1021-1024.
    [26]王中林.氧化物纳米结构的科学技术.纳米科技,2006.6:5-12.
    [27]Kenneth J T,Randolph A L,Marcus J P,et al.Advanced lithium batteries for implantable medical devices:mechanistic study of SVO cathode synthesis.Jounrnal of Power Sources,2003,119-121:973-978.
    [28]Mao C J,Wu X C,Pan H C,et al.Single-crystalline Ag_2 V_4O_(11)nanobelts:hydrothermal synthesis,field emission,and magnetic properties.Nanotechnology,2005,16:2892-2896.
    [29]Xie J G,Li J X,Dai Z X,et al.Ultrasonic sol-gel synthesis of Ag_2 V_4O_(11)from V_2O_5 gel.Journal of Materials Science,2004,39:2565-2567.
    [30]Liu Y,Zhang Y G,Hu Y H,et al.Hydrothermal Synthesis of Single-crystal β-AgVO_3nanowires and ribbon-like nanowires.Chemistry Letters,2005,34(2):146-147.
    [31]Emmanuel B,Guillaume S,Dominique L,et al.Preparation of nanotextured VO_2[B]from vanadium oxide aerogels.Chemistry of Materials,2006,18:4369-4374.
    [32]Shen G Z,Chen D.Self-coiling of Ag_2 V_4O_(11)nanobelts into perfect nanirings and microloops.Journal of the American Ceramic Society B,2006.
    [33]Li M,Shao M W,Ban H Z,et al.Synthesis of ultra-long β-Ag VO_3 nanoribbon bundles and measurement of their conductivity.Solid State Ionics,2007,178:775-777.
    [34]Katsunori T,Steven J L,Wang Y,et al,Synthesis and electrochemical properties of single-crystal V_2O_5 nanorod arrays by template-based electrodeposition.Journal of Physical Chemistry B,2004,108:9795-9800.
    [35]Wang Y,Cao G Z.Synthesis and enhanced intercalation properties of nanostructured vanadium oxides.Chemistry of Materials,2006,18:2787-2804.
    [36]F.Garcia-Alvarado,J.M.Tarascon.New vanadium bronzes MyV_2O_5(M=Cu or Ag;0<y<0.85):structure and lithium intercalation.Solid State Ionics,1993,63-65:401-406.
    [37]Jorg M,Gyu T K,Vojislav K,et al.Electrical transport through individual vanadium pentoxide nanowires.Advanced Materials,2000,6:420-424.
    [38]Jorritsma J,Mydosh J A,Anomalous negative resistance in superconducting vanadium nanowires.Physical Review B,2000,62:9703-9708.
    [39]N.Ferrer-Anglada,Gorri J A,Muster J,et al.Electrical transport and AFM microscopy on V_2O_5-x-polyaniline nanorods,2001,15:237-239.
    [40]Steven J L,Seana S,Yun W,et al.Template-based growth of various oxide nanorods by sol-gel electrophoresis.Advanced Functional Materials,2002,12:59-63.
    [41]Zhou G,Rong F,Mo W Q,et al.Precursor morphology controlled formation of rutile VO_2nanorods and their self-assembled structure.Chemistry of Materials,2002,14:5053-5056.
    [42]Shih-Chieh Y,Hitrud G,Pierre S,et al.Charge ordering in lithium vanadium phosphates:electrode materials for lithium-ion batteries.Journal of the American Chemical Society,2003,125:326-327.
    [43]Liu J F,Wang X,Peng Q,et al.Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides.Sensors and Actuators B,2007,124:481-487.
    [44]Young J C,Zachary S,Amit B,et al.Aluminum-doped TiO_2 nano-powders for gas sensors.Sensors and Actuators B,2007,124:111-117.
    [45]Mauro E,Luca F,Pietro S,et al.SnO_2 thin films from metalorganic precursors:Synthesis,characterization,microelectronic processing and gas-sensing properties.Sensors and Actuators B,2007,124:217-226.
    [46]边志华.提高半导体气敏元件检测能力的研究.太原理工大学学报,2000.
    [47]刘荣利,向群,潘庆谊.一维氧化锌的水热合成及其气敏性能的研究.无机材料学报,2006,21(4):793-796.
    [48]Varghese O K,Gong D,et al.Hydrogen sensing using titania nanotubes.Sensors and Actuators B,2003.
    [49]Zhang G Y,Gou B,Chen J.MCo2O4(M=Ni,Cu,Zn)nanotubes:Template synthesis and application in gas sensors.Sensors and Actuators B,2006,114:402-409.
    [50]S.Barazzouk,R.P.Tandon,S.Hotchandani.MoO3-based sensor for NO,NO_2 and CH_4detection.Sensors and Actuators B,2006,119:691-694.
    [51]Liu Y,Zhang Y G,Hu Y H,et al.Hydrothermal synthesis of single-crystal β-AgVO_3nanowires and ribbon-like nanowires,Chemistry Letters,2005,34:146-147.
    [52]Xie J G,Li J X,Dai Z X,et al.Ultrasonic sol-gel synthesis of Ag_2V_4O_(11)from V_2O_5-gel.Journal of materials science,2004(39).
    [53]冯若,李化茂.声化学及应用.合肥:安徽科技出版社,1990.
    [54]贾卫国,张鹏等.超声化学的研究与应用.辽宁大学学报,2002.03:7-1.
    [55]Giorgio S,Camilla B,Elisabetta C,et al.Single crystalline metal oxide nano-wires/tubes:controlled growth for sensitive gas sensor devices.The 2nd IEEE International Conference on Nano/Micro Engineered and Molecular System,2007.
    [56]Jing Z H,Synthesis,characterization and gas sensing properties of undoped and Zn-doped γ-Fe_2O_3-based gas sensors.Materials Science and Engineering A,2006,441:176-180.
    [57]Si S F,Li C H,Wang X,et al.Fe_2O_3/ZnO core-shell nanorods for gas sensors.Sensors and Actuators B,2006,119:52-56.
    [58]C.Drake,S.Seal.Band gap energy modifications observed in trivalent In substituted nanocrystalline SnO_2.Applied Physics Letters,2007,90:233117 1-3.
    [59]M.Gillet,R.Delamare.Structure and electrical conduction of WO_3 nanorods epitaxially grown on mica.The European Physical Journal D,2007,43:295-298.
    [60]Z.Sadek,Supab C,Wojtek W,et al.Characterization of ZnO nanobelt-based gas sensor for H_2,NO_2,and Hydrocarbon Sensing.IEEE Sensors Journal,2007,7:919-924.
    [61]Chu X F,Jiang D L,Zheng C M.The preparation and gas-sensing properties of NiFe_2O_4nanocubes and nanorods.Sensors and Actuators B,2007,123:793-797.
    [62]P.Bhattacharyya,P.K.Basu,H.Saha,et al.Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol-gel method.Sensors and Actuators B,2007,124:62-67.
    [63]Dieter K.Function and applications of gas sensors.Journal of Physics D,2001,34:125-149.
    [64]周长军,朱月香,谢有畅.甲烷催化燃烧催化剂Ag/SnO_2体系的研究.物理化学学报,2007.17(9):850-854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700