一维钒氧化物纳米材料的可控组装、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米结构材料,因其形状的各向异性而具有优异的物化特性,已在纳米电子学、纳米光电子学、超高密度存储、扫描探针显微镜以及隐身材料等方面显示出潜在的应用前景。随着对其组成、形貌、尺寸以及组装的人为可控,一维纳米材料得以充分的展示和应用。本文在综述了当前关于一维纳米材料的合成与组装技术最新进展的基础上,利用流变相自组装法和微乳液法合成了一维钒氧化物纳米材料,研究了不同组装技术对钒氧化物纳米结构的影响。主要内容和结果如下:
     采用流变相自组装法合成VO_2纳米棒,纳米棒尺寸不均匀,团聚现象明显,价键分析发现纳米棒表面没有任何有机物的存在。采用微乳液法合成了尺寸均匀的钒氧化物超细纳米线,由于有机物的存在,纳米线未出现团聚现象,并且自组装成蒲公英状的超结构。延长反应时间或增大反应物浓度,纳米线和蒲公英结构在形貌保持不变的情况下尺寸得到有效控制。此外,纳米线在氯仿中能够单分散形成稳定的胶体溶液,研究了该溶液的光致发光性能,通过机理分析发现其丰富的发光谱带分别归属于电荷迁移机制引起的自由激子发光、量子限域效应引起的束缚激子发光、纳米态下某一能级电子跃迁引起的发光以及缺陷能级引起的发光。
     将流变相自组装法合成的VO_2纳米棒经过熔融硬脂酸甲苯溶液预处理以后通过微乳液法解决了其团聚问题,使得其在氯仿中具有了很好的单分散性。表面功能化处理后的纳米棒进行了表面分析,结合超细微粒的分散理论,揭示了纳米棒基于空间位阻稳定和静电位阻稳定的单分散机理。
     建立了钒氧化物纳米蒲公英超结构的组装模型,解释了其模板诱导、有机诱导和疏水作用诱导的分子自组装机理。利用溶剂挥发自组装技术,分别采用氯仿和乙醇为溶剂,实现了钒氧化物超细纳米线从三维蒲公英结构到边对边排列的二维超晶格结构、三维网格状超结构和一维束状结构的可控组装。分析了不同溶剂和基底对自组装行为的作用机理。采用LB技术组装VO_2纳米棒,获得了(001)晶面取向和局部区域定向排列的LB膜。通过π-A曲线、形貌和XRD分析,研究了单分子膜行为。磁性能研究表明VO_2纳米棒LB膜为顺磁性。
One-dimensional (1D) nanostructure materials, which have excellent physical and chemical properties because of the shape anisotropy, have potential applications in nanoelectronics, nanooptoelectronics, ultra-density storage, scanning probe microscope, stealth material and so on. Along with the artificial controlling of constitute, shape, size and assembly, 1D nanomaterials were applied sufficiently. Here we reviewed the recent development of 1D nanomaterials. 1D vanadium oxide nanomaterials were synthesized by rheological phase self-assembly and microemulsion approach. The nanostructure of vanadium oxide with different assembling technique was studied. Main study content and results are as follows:
     VO_2 nanorods were synthesized by rheological self-assembly method. The nanorods were non-uniform in size and aggregated greatly, and without organics on the surface. The vanadium oxide ultra-narrow nanowires with uniform size were synthesized by microemulsion method and self-assemblied to dandelion-like superstructure with no aggregation because of the organics on the surface. As reaction time extends or reactant concentration increase, the sizes of nanowires and dandelions increased with no changes in the shape. Furthermore, vanadium oxide nanowires could be monodispersed in chloroform to form stable colloidal solution. The photoluminescence (PL) property of the solution was studied. Via mechanism analysis, the rich photoluminescent bands were attributed to free exciton caused by charge transfer, bondage exciton caused by quantum confinement effect, electron transition from a level of nanometer state and defect energy level, separately.
     VO_2 nanorods prepared by rheological self-assembly method were functionalized via melted stearic acid toluene solution followed by microemulsion. These rods were rendered hydrophobic and monodispersed in chloroform. By the surface analysis of functionalized nanorods and dispersive theory of ultra-fine particle, the steric and electrostatic stabilization monodispersed mechanism was revealed.
     The assembling model of vanadium oxide nano-dandelion superstructure was established. The molecule self-assembly mechanism of template inducement, organic molecule inducement and hydrophobic interaction inducement was revealed. Based on the solvent volatilization self-assembly technique, and the chloroform and alcohol used as the solvent, the superstructure of vanadium oxide ultra-narrow nanowires was controlled from 3D dandelion-like to 2D side-by-side alignment, 3D rectangular grid and 1D bunchy-like, separately. The self-assembly behavior under different solvents and substrates was investigated. (001) crystal planes orientated and locally aligned VO_2 nanorods films are assembled by Langmuir-Blodgett (LB) technique. The Langmuir film behavior was revealed based on the analysis ofπ-A curve, morphology and X-ray diffraction. Furthermore, the magnetism property study demonstrated that the LB film of VO_2 nanorods is paramagnetism.
引文
[1]马向东.纳米材料的进展及展望.水利电力机械,2004.26(2):35-37
    [2]Huang M H,Mao S,Feick H,et al.Room-temperature ultraviolet nanowire nanolasers.Science,2001,292:1897
    [3]Peng X G,Manna L,Yang W D,et al.Shape control of CdSe nanocrystals.Nature,2000,404:9
    [4]Ahmad T S,Wang Z L,Green T C,et al.Shape-controlled synthesis of colloidal platinum nanoparticles.Science,1996,272:1924
    [5]Zhang Y,Ago H,Liu J.The synthesis of In,In_2O_3 nanowires and In_2O_3 nanoparticles with shape controlled.J.Crys.Grow.,2004,264(1-3):363
    [6]Choi S H,Wang K L,Leung L S,et al.Fabrication of bismuth nanowires with a silver nanocrystal shadow mask.J.Vac.Scie.Tech.,Part A:Vacuum,Surfaces and Films,2000,18(41):1326.
    [7]Wang Y,Duan X,Cui Y,et al.Gallium nitride nanowire nanodevices.NanoLett.,2002,2(2):101.
    [8]Cui Y,Lieber C M.Functional nanoscale electronic devices assembled using silicon nanowire buliding blocks.Science,2001,291(5505):851.
    [9]Chung S W,Yu J Y,Heath J R.Silicon nanowire devices.Appl.Phys.Lett.,2000,76(15):2068.
    [10]Holmes J D,Johnston K P,Korgel B A,et al.Control of thickness and orientation of solution grown silicon nanowires.Science,2000,287(5457):1471.
    [11]Wang J,Gudiksen M S,Lieber C M,et al.Highly polarized photoluminescence and photodetection from single indium phosphide nanowires.Science,2001,293(5534):1455.
    [12]Huang M H,Mao S,Yang P,et al.Room-temperature ultraviolet nanowire nanolasers.Science,2001,292(5523):1897.
    [13]Johnson J,Choi K P,Yang P,et al.Single gallium nitride nanowire lasers.Nature Mater.,2002,1(2):106.
    [14]Kind H,Yan H,Yang P,et al.nanowire ultraviolet photodetectors and optical switches.Adv.Mater.,2002,14(2):158.
    [15]王新军,万福全,韩坤等.溶剂热/水热法控制合成一维无机纳米材料的影响因素探讨.材料导报,2007,11(21)专辑IX:151-155
    [16]Penner R M,Martin C R.Electronically conductive composite polymer membranes.J Electrochem.Soc,1986,133:2206
    [17]周炽炜.一维钒氧化物纳米阵列的构筑及其性能研究:[硕士学位论文].武汉:武汉理工大学,2007
    [18]宋丽萍等.化学气相沉积法在碳纤维复合材料领域的应用.化工新型材料,1994,8:25-26
    [19]麦立强.低维钒氧化物纳米材料制备、结构与性能研究:[博士学位论文].武汉:武汉理工大学,2004
    [20]赵艳凝,李树国,滕洪辉等.微乳液法制备纳米材料的探究.吉林师范大学学报(自然科学版),2006,8(3):35-37
    [21]张纪红,杨红健.微乳液法制备纳米粒子的研究进展.河北化工,2004,6:16-17
    [22]Morales A M,Lieber C M,A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.Science,1998,279:208-211
    [23]Holmes J D,Johnton K P,Doty R C,et al.Control of Thickness and Orientation of Solution-Grown Silicon Nanowires.Science,2000,287(5457):1471-1473
    [24]袁爱华,汪萍,沈小平.一维纳米结构材料制备方法的研究进展.化学研究与应用,2006,18(2):122-128
    [25]Xia Y,Gates B,Mayers B,et al.A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports.Adv.Mater.,2002,14(23):1749
    [26]白志刚等.准一维纳米结构的电子显微学研究.北京大学学报,1 998,17(5):493[27]马江虹,翟玉春,于旭光等.一维纳米材料的研究进展.稀有金属与硬质合金,2004,32(4):41-45
    [28]Xu C K,et al.Preparation and charaterization of SnO_2 nanorods by thermaldecomposition of SnC_2O_4 precursor.Scripta Materialia,2002,46(11):789.
    [29]Lakshrni B B,Patrissi C J,Martin C R.Sol-Gel template synthesis of semiconductor oxide micro-and nanostructures.Chem.Mater,.1997,9(11):2544-2550.
    [30]姜国华等.金属氧化物纳米线和纳米棒的制备及应用.材料科学与工程学报,2003,21(5):753.
    [31]刘海林,马晓燕,袁莉等.分子自组装研究进展.材料科学与工程学报,2004,22(2):308-311
    [32]哈恩华,寇开昌,颜录科等.分子自组装体系的影响因素及其在纳米材料中的应用.材料科学与工程学报,2004,22(3):457-460
    [33]Ulman A.An introduction to ultrathin organic filmss.Academic press,1990.
    [34]Denkov N D,Velev O D,Kralchevsky P A,et al.,Mechanism of formation of two-dimensional crystals from latex particles on substrates,Langmuir,1992,8:3183-3190
    [35]Denkov N D,Velev O D,Kralchevsky P A,et al.Two-dimensional Crystallization.Nature,1993,361:26
    [36]Kralchevsky P A,Nagayama K,Capillary forces between colloidal particles.Langmuir,1994,10(1):23-36
    [37]Kiely C J,Fink J,Brust M,et al.Spontaneous ordering ofbimodal ensembles of nanoscopic gold clusters.Nature,1998,396:444-446
    [38]Connolly S,Fullam S,Korge B,et al.Time-resolved small-angle X-ray scattering studies of nanocrystal superlattice self-assembly.J.Am.Chem.Soc.,1998,120:2969-2970
    [39]Vijayasarathy K,Raina G,Yadav R T,et al.Thiol-Derivatized Nanocrystalline Arrays of Gold,Silver,and Platinum.J.Phys.Chem.B,1997,101:9876-9880
    [40]Mothe L,Billoudet F,Lacaze E,et al.Self-organization into 2D and 3D superlattices of nanosized particles differing by their size.J.Phys.Chem.B,1997,101:138-144
    [41]Messer B,Song J H,Yang P,et al.Microchannel networks for nanowire patteming.J.Am.Chem.Soc.,2000,122(41):10232-10233
    [42]Huang Y,Duan X,Wei Q,et al.Directed assembly of one-dimensional nanostructures into functional networks.Science,2001,291:630-633
    [43]Martin B R,Mbindyo J,Mallouk T E,et al.Electric-field assisted assembly and alignment of metallic nanowires.,Appl.Phys.Lett.,2000,77:1399-1401
    [44]Tanase M,Bauer L A,Hultgren A,et al.Magnetic trapping and self-assembly of multicomponent nanowires.Magnetic Mater.,2001,1:155-158
    [45]高书燕,王俊,张洪杰等.LB技术在纳米粒子组装中的应用.应用化学,2005,22(7):697-702
    [46]Khomutov G B,Gubin S P,Khanin V V,et al.Formation of nanoparticles and one-dimensional nanostructures in floating and deposited Langmuir monolayers under applied electric and magnetic fields.Colloids Surf A,2002,198-200(18):593-604
    [47]Khomutov G B,Kislov V V,Gainutdinov R V,et al.The design,fabrication and characterization of controlled-morphology nanomaterials and functional planar molecular nanocluster-based nanostructures.Surf.Sci.,2003,532-35:287-293
    [48]Chen S.Langmuir-Blodgett fabrication of two-dimensional robust cross-linked nanoparticle assemblies.Langmuir,2001,17:2878-2884
    [49]Lin X M,Sorensen C M.Ligand-induced gold nanocrystal superlattice formation in colloidal solution.Chem Mater,1999,11(2):198-202
    [50] Serra A, Genga A, Manno D, et al. Synthesis and characterization of TiO_2 nanocrystals prepared from n-octadecylamine-titanyl oxalate Langmuir-Blodgett films. Langmuir, 2003, 19(8): 3486-3492
    [51] Kotov N V, Meldrum F C, Wu C. Monoparticulate layer and Langmuir-Blodgett type multiparticulate layers of size-quantized cadmium sulfide clusters: a colloid-chemical approach to superlattice construction. J Phys Chem, 1994, 98(11): 2735-2738
    [52] Gong H, Liu M. Growth and morphology control of silver halide nanoparticles in templated Ag(I)-coordinated Langmuir-Schaefer films. Chem Mater, 2002,14(12): 4933-4938
    [53] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 1999,402:393-395
    [54] Antipina M N, Gainutdinov R V, Rachnyanskaya A A, et al. Studies of nanoscale structural ordering in planar DNA complexes with amphiphilic mono- and polycations. Surf Sci, 2003, 532-535: 1025-1033
    [55] Tatewaki Y, Akutagawa T, Hasegawa T. Structural modification of molecular nanowires composed of dialkylmacrocyclicbis TTF-F4TCNQ complex. Synth. Metals., 2003, 137(1): 933-934
    [56] Kim F, Kwan S, Akana J , et al. Langmuir-Blodgett nanorod assembly. J Am. Chem. Soc, 2001,123(18): 4360-4361
    [57] Pignataro B, Sardone L,Marletta G. Self-organizing fiberlike nanostructures and wrapping-up processes in Langmuir-Blodgett films. Langmuir, 2003,19(14): 5912-5917
    [58] Fahmi A W, Oertel U, Steinert V, et al. Ring and disk-like CdSe nanoparticles stabilized with copolymers. Macromol Rapid Commun, 2003,24 (10): 625-629
    [59] Sun S H, Anders S, Hamann H F, et al. Polymer mediated self-assembly of magnetic nanoparticles. J Am. Chem. Soc, 2002,124(12): 2884-2885
    [60] Shimoda H, Oh S J, Geng H Z, et al. Self-assembly of Carbon nanotubes. Adv. Mater., 2002, 14(12): 899-901
    [61] Peschel S, Schmid G, First steps towards ordered monolayers of ligand-stabilized gold clusters. Angew. Chem. Int. Ed., 1995,34:1442-1443
    [62] Younezawa T, Onone S Y, Kunitake T, Growth of closely packed layers of gold nanoparticles on an aligned ammonium surface. Adv. Mater., 1998,10(5): 414-416
    [63] Alivisatos A P, Johnson K P, Peng X G, et al. Organization of 'nanocrystal molecules' using DNA. Nature, 1996, 382: 609
    [64] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett., 2003,3(12): 1625-1631
    [65]Gao P X,Ding Y,Mai W,et al.Conversion of Zinc oxide nanobelts into superlattice-structured nanohelices.Science,2005,309:1700-1704
    [66]Yu G H,Cao A Y,Lieber C M.Large-area blown bubble films of aligned nanowires and carbon nanotubes.Nature nanotechnology,2007,2:372-377
    [67]张元静,胡瑞省,董丹红等.纳米粒子组装技术的研究进展.石家庄学院学报,2006,8(3):29-31
    [68]雷淑华,林健,黄文等.纳米线阵列及纳米图形制备技术的研究进展.材料导报,2007,21(1):102-105
    [69]李永军,刘春艳.有序纳米结构薄膜材料.北京:化学工业出版社,2006
    [70]刘欢,翟锦,江雷.纳米材料的自组装研究进展.无机化学学报,2006,22(4):585-597
    [71]Pinna N,Willinger M,Weiss K,et al.Local Structure of Nanoscopic Materials V_2O_5Nanorods and Nanowires.Nano Lett.,2003,3(8):1131-1134
    [72]陆胜,方荣利,解哓斌.W/O型微乳液碳化法制备超细氢氧化铝粉体.无机盐工业,2003,25(5):18-20
    [73]Qin S Q,Dong J X,Chen G X.Preparation of Cu nanoparticales from water-in-oil microemulsions.J Colloid Interface Science,1999,216:230-234
    [74]Thomas F,Abld K L.Kinetics and mechanism of formation of quantum-sized cadmium sulphide particles in water-aerosol-in oil microemulsions.Chem.Soc.Faraday Trans.,1990,86:3757
    [75]Lal M,Kumar N D,Joshi M P.Polymerization in a reverse micelle nanoreactor:preparation of processable poly(p-phenylenevinylene)with controlled conjugation length.Chem.Mater.,1998,10:1065
    [76]Ramana C V,Hussain O M.Physical investigations on electron-beam evaporated vanadium pentoxide films.Material Science and Engeering B,1998,52:32-39
    [77]Ramana C V,Hussain O M.Hussain.Microstructural features of pulsed-laser deposited V_2O_5 thin films.Applied Surface Science,2003,207:135-138
    [78]Valmalette J C,Gavarri J R.High efficiency thermochromic VO_2(R)resulting from the irreversible transformation of VO_2(B).Materials Science and Engineering B,1998,54:168-173
    [79]Yuan J,Li W,Gomez S,et al.Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures.J.Am.Chem Soc.2005,127,14184-14185
    [80]Dwyer C O,Navas D,Lavayen V,et al.Nano-Urchin:The Formation and Structure of High-Density Spherical Clusters of Vanadium Oxide Nanotubes.Chem.Mater.,2006,18: 3016-3022
    [81]Nir T,Vlad M,Miri K,et al.Efficient near-infrared polymer nanocrystal light-emitting diodes.Science.2002,295(5559):1506-1508
    [82]Yang P and Kim F.Langmuir-Blodgett assembly of one-dimensional nanostructures.Chem.Phys.Chem.2002,3:503
    [83]Kwan S,Kim F,Yang P,et al.Synthesis and assembly of BaWO_4 nanorods.Chem.Commun.,2001,5:447-448
    [84]Kim F,Kwan S,and Yang P.Langmuir-Blodgett Nanorod Assembly.J.Am.Chem.Soc.,2001,123:4360-4361
    [85]Taleb A,Petit C,Pileni M P.Synthesis of Highly Monodisperse Silver NanopartMes from AOT Reverse Micelles:A Way to 2D and 3D Self-Organization.Chem.Mater.,1997,9(4):950-959
    [86]高晓明,邱克辉,赵改青等.光致发光材料的研究与进展.科技进步与对策,2003,增刊(研究开发实务):276-277
    [87]Masakazu A,Ichiro T,and Yutaka K.Photoluminescence and Photoreduction of V_2O_5Supported on Porous Vycor Glass.J.Phys.Chem.,1980,84:3440-3443
    [88]Zhang S G,Shinya H,Masakazu A,et al.Characterization of Vanadium Oxide/ZSM-5Zeolite Catalysts Prepared by the Solid-State Reaction and Their Photocatalytic Reactivity:In Situ Photoluminescence,XAFS,ESR,FT-IR,and UV-vis Investigations.J.Phys.Chem.B,1998,102,5590-5594
    [89]Stanislaw D,Masaya M,Masakazu A,et al.Probing Different Kinds of Vanadium Species in the VSi Zeolite by Diffuse Reflectance UV-Visible and Photoluminescence Spectroscopies.J.Phys.Chem.B,1998,102,6309-6312
    [90]Masakazu A,Zhang S G,Shinya H,et al.Characterization of the Local Structure of the Vanadium Silicalite(VS-2)Catalyst and Its Photocatalytic Reactivity for the Decomposition of NO into N_2 and O_2.J.Phys.Chem.B,1999,103,9295-9301
    [91]Stanislaw D,Michel C.Oxidation State of Vanadium Introduced in Dealuminated Zeolite by Impregnation with V~(IV)OSO_4 Solution Influence of Preparation Parameters.J.Phys.Chem.B 2005,109,22167-22174
    [92]Mai L Q,Chert W,Xu Q,et al.Low-cost synthesis of novel vanadium dioxide nanorods.International Journal of Nanoscience 2004,3,225-231
    [93]陈文,彭俊锋,麦立强等.两种一维纳米结构钒氧化物的合成与表征.无机化学学报,2004,20(2):147-151
    [94]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社.2001
    [95]李国栋.纳米粉体表面结构与分散机理研究.襄樊学院学报,2002,23(5):50-54
    [96]张心亚,沈慧芳,黄洪等.纳米粒子材料的表面改性及其应用研究进展.材料工程,2005,10:58-63
    [97]马文有,曹茂盛,朱静等.纳米颗粒分散技术研究进展-分散方法与机理(1).中国粉体技术.2002,8(3):28-31
    [98]Israelachvili J N.In Intermolecular and Surface Forces.2nd ed.Academic Press,New York,1985
    [99]Yang P.Wires on water.Nature,2003,425:243
    [100]Huang J,Tao A R,Yang P D,et al.A general method for assembling single nanoparticle lines Nano.Lett.,2006,6:524
    [101]Panda A B,Acharya S,Golan Y,et al.Synthesis,Assembly,and Optical Properties of Shape- and Phase-Controlled ZnSe Nanostructures.Langmuir,2007,23:765
    [102]Nikoobakht B,Wang Z L,and E1-Sayed M A.Self-Assembly Of Gold Nanorods.J.Phys.Chem.B,2000,104,8635
    [103]Antolini F,Luccio T D,Sangiorgi S,et al.Deposition and characterization of Langmuir-Blodgett films of cadmium arachidate-SWCNTs composites.Surf.Interface Anal.,2006,38,1285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700