用户名: 密码: 验证码:
难处理赤铁精矿制备氧化球团的基础及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化球团矿是优质的高炉炼铁炉料。我国目前主要以磁铁矿为原料采用链箅机—回转窑工艺生产普通酸性氧化球团矿。但随着炼铁生产对球团矿质量和品种要求的不断提高以及我国铁矿资源日渐贫杂化、多样化,拓宽球团生产的原料范围、提高球团矿品质是成为氧化球团矿生产重要而紧迫的课题。
     与磁铁矿相比,全球赤铁矿资源储量丰富,且价格相对较低,但是由于其赤铁矿球团的焙烧温度高、高温固结温度区间窄等原因,目前还无法大量用于氧化球团矿的生产。本文以巴西产赤铁矿为主要原料,在系统研究氧化球团制备特性的基础上,从改善赤铁精矿表面性质、促进固相扩散、活化晶格、调控液相量等方面改善赤铁矿球团的造球、焙烧性能,并通过实验室试验研究和扩大试验,开发赤铁矿球团制备的工艺技术,实现以全赤铁矿为原料制备优质氧化球团矿。
     论文首先研究了赤铁矿制备氧化球团的基础特性。研究表明,虽然所用赤铁精矿的铁品位高,但微细粒含量少,比表面积仅为644cm2/g,成球性能很差;仅当预热温度达到1100℃、预热时间8-14min,焙烧温度1300-1320℃,焙烧时间10-18min,才能获得预热球强度400N/P、焙烧球强度2500N/P的产品,采用常规的链箅机—回转窑工艺难以生产出优质球团矿。
     研究了铁精矿预处理改善造球和球团焙烧性能的方法和机制。结果表明,采用高压辊磨和球磨对赤铁矿精矿进行预处理均可以降低铁精矿的粒度,提高铁精矿的比表面积。高压辊磨主要作用是改变了铁矿颗粒的形状和结构;而球磨后细颗粒明显增多,主要是起到了细磨的作用。采用球磨-高压辊磨预处理方式可显著改善赤铁精矿的成球性能。与不预处理相比,预处理后比表面积达1600cm2/g以上时,造球膨润土用量可降低0.75个百分点,适宜的预热温度可降低100℃,在焙烧温度相当的条件下,球团矿强度可提高500N/P以上。
     研究了内配适量的碳(无烟煤)改善赤铁矿的焙烧性能的可行性和作用机理。研究表明,与未配碳球团相比,内配少量无烟煤可降低焙烧温度20℃~50℃,缩短焙烧时间5min~10min,同时焙烧温度区间范围扩大了50℃。研究发现:①无烟煤在预热阶段会着火燃烧,释放热量,可降低赤铁矿球团的预热温度;②无烟煤中的碳燃烧产生的CO气体可使赤铁矿在预热阶段部分转化为磁铁矿,这部分磁铁矿在焙烧阶段再氧化放热,转化为活性较高的次生赤铁矿,从而降低赤铁矿球团的焙烧温度,改善球团矿固结强度。
     研究了添加剂对赤铁矿球团的影响和以赤铁矿为原料制备熔剂性球团矿的可行性。试验表明:石灰石和白云石在预热阶段由于分解吸热,降低了球团内部的温度,致使预热球强度降低。CaO在预热阶段与Fe2O3发生固相反应,生成铁酸钙等低熔点矿物,在焙烧阶段形成少量液相,促进了铁氧化物的微晶连接,提高了焙烧球团的强度。添加少量的白云石可降低球团矿的还原膨胀率。
     论文最后采用实验室扩大化试验装置研究了以全赤铁矿为原料生产氧化球团矿的工艺技术,获得了最佳的工艺参数。试验表明,内配适量无烟煤和熔剂,采用链箅机-回转窑工艺和带式焙烧机工艺,均可制备出质量优良的熔剂性球团矿。相比而言,链箅机-回转窑生产出的球团矿质量更均匀、转鼓强度高、耐磨性能好。
Oxide pellets are quality burden for blast furnace. At present, grate-kiln is the main process for oxide pellet production in China. Acid pellet production by grate-kiln process with magnetite as the main raw material is becoming mature. However, diversified oxide pellet is required by the complex raw material structure in China, so that impoverishment and diversification problem of iron ores can be solved and higher demand of pellet quality by high coal injection and high-intensity smelting can be met. Therefore, it is an important subject of pellet technology to broadening the range of raw material and improving pellet quality.
     Compared with magnetite, though with resource reserves and price advantage, utilization of hematite is limited by poor induration performance, higher preheating and roasting temperature demand, as well as higher reduction swell index of hematite pellet. In this study, a certain hematite from Brazil is taken as the main raw material. Based on the systematic study of hematite oxide pellet, mineral composition and microstructure of hematite pellet are reconstructed by improvement of surface properties, control of solid diffusion conditions, activation of crystal lattice, control of liquid phase quantity, etc. to improve the quality of hematite pellet according to the poor strength of green pellet, high induration temperature, and high reduction swell index.
     The research on basic characteristics of hematite oxide pellet indicates that the iron ore concentrate used in this test has high iron grade, but little fine particles and small specific surface area (644cm2/g), thus it has bad balling capability. It requires a thermal regulation of preheating temperature 1100℃, preheating time 8-48 min, roasting temperature 1300-1320℃, and roasting time 10-18 min to obtain the preheated strength of 400 N/P and roasted strength of 2500 N/P. The thermal regulation above is hard to realize with regular grate-kiln process.
     Both high pressure roller grinding and ball milling are able to micronize iron ore concentrate particles, increase its specific surface area. The main effect of high pressure roller grinding is shape change while the main effect of ball milling is ore grinding. The balling capability of hematite concentrate can be remarkably changed by pretreatments of ball-milling and high pressure roller grinding. After the pretreatment, when the specific surface area is over 1600cm2/g, the dosage of bentonite can reduce 0.75%, the feasible preheating temperature is 100℃lower, the roasting temperature is analogous while the pellet strength increases to higher than 500N/P.
     Compared with carbon-free pellets, hematite pellets with proper amount of carbon burden require a 20℃~50℃lower roasting temperature,5min~10min shorter roasting time, and the feasible range is 50℃larger. The main effects of anthracite on induration process of hematite pellet include:①heat supply:anthracite catches on fire during preheating, and a certain amount of heat is released, therefore, the preheating temperature can be lower;②reduction:the carbon in anthracite, as well as the gas product of combustion, CO, can reduce the hematite. The hematite is partially transformed into magnetite which is reoxidized with heat releasing out during induration process. These magnetite are then transformed into secondary hematite with higher activity. Therefore, roasting temperature of hematite is lower, and indurated strength of pellet is better.
     The research on flux adding indicates that limestone and dolomite are mainly composed with carbonate minerals. A certain amount of heat is absorbed by decomposition during preheating, therefore, pellet temperature falls as well as the strength of preheated pellet. Solid state reactions take place between CaO and Fe2O3 during preheating. The low melting point reaction products, such as calcium ferrite, are produced. These low melting point materials form the liquid phase during roasting which promotes microcrystalline connection of iron oxides and pellet strength improvement. Moreover, reduction swell index can be decreased by addition of dolomite.
     Optimizing technological parameters are obtained by pilot experiment. The research on process of carbon burden fluxed pellet indicates that fluxed pellet with high quality can be produced by grate-kiln or straight grate process. And grate-kiln pellet is more uniform in quality, has higher tumbler strength and better abrasion resistance comparing with the latter process.
引文
[1]周曲波.我国铁矿业产品结构调整的方向.金属矿山,2001,(8):1-4
    [2]刘文权.对我国球团矿生产发展的认识和思考.炼铁,2006,25(3):1-13
    [3]叶匡吾.欧盟高炉炉料结构述评和我国球团生产的进展.烧结球团,2004,29(4):4-7
    [4]徐矩良.我国高炉合理炉料结构探讨.炼铁,2004,23(4):25-26
    [5]傅菊英,姜涛,朱德庆.烧结球团学.长沙:中南大学出版社,1995:5-13
    [6]范晓慧,代林晴,王祎,袁礼顺,甘敏,赵改革.我国球团矿生产技术进展.金属矿山,2006,Z8:73-78
    [7]张一敏.球团理论与工艺.北京:冶金工业出版社,2002:3-11
    [8]王维兴. 我国大高炉炼铁技术发展. 中国钢铁企业网http://www.0937.net/bbs/viewthread.php?tid=82734,2008
    [9]刘文权.我国球团矿生产和发展模式探讨.世界金属导报,2008,10:11
    [10]张新兵,朱梦伟.膨润土对我国球团生产的影响.烧结球团,2003,128(6):3-7
    [11]孔令坛.中国球团矿的发展.球团技术,2005,(1):2-4
    [12]叶匡吾.关于我国球团矿质量问题的探讨.烧结球团,2005,30(5):1-4
    [13]叶匡吾.努力推进我国球团矿的生产.烧结球团,2007,(5):1-5
    [14]王维兴.我国大高炉炼铁技术发展.本钢技术,中国金属学会.2008,(5):4-7
    [15]徐亚军,李长兴,王纪英.链算机—回转窑球团工艺的开发与应用.中国冶金,2005,15(4):17-20
    [16]阎为群.国内球团生产技术的发展.江苏冶金,2007,35(3):22-24
    [17]刘动.反浮选应用于铁精矿提铁降硅的现状及展望.金属矿山,2003,(2):38-42
    [18]张克诚,田发超,潘建,朱德庆,肖立华,曾新中.球团矿焙烧过程中铁品位的变化规律研究.湖南冶金,2003,31(4):11-14
    [19]赵云.全球球团矿产量不断增长.世界金属导报,2007,9:5
    [20]未来世界球团矿需求将增.我的钢铁网http://www.mysteel.com,2007
    [21]叶匡吾.大力推进我国球团矿的生产.冶金管理,2007,(10):11-13
    [22]李蒙,任伟,陈三凤.国内外球团矿生产现状及展望.球团技术,2005,(2): 2-13
    [23]司晓悦.我国铁矿石进口的战略与对策,东北大学学报(社会科学版),2003,5(5):355-357.
    [24]姚培慧.中国铁矿志.北京:冶金工业出版社,1994.
    [25]焦玉书.国外铁矿发展的新态势,矿业工程,2003,(1):22-28.
    [26]张典波,万海明,郑江.世界铁矿石资源情况及中国铁矿石供需态势,中国冶金,2004,79(6):26-29.
    [27]梁德兰,范军.赤铁矿球团焙烧过程研究.球团技术,2006,(1):8-11
    [28]傅菊英.巴西赤铁精矿球团试验研究.球团技术,2005,(3):6-11
    [29]肖琪.球团理论与实践.长沙:中南大学出版社,1991
    [30]郑红暇,汪琦,潘喜峰.磁铁矿球团氧化机理的研究.烧结球团,2003,28(5):13-15
    [31]陈耀明,张元波.氧化球团矿结晶规律的研究.钢铁研究,2005,(3):10-12
    [32]陈耀明,李建.氧化球团矿中Fe2O3结晶规律.中南大学学报(自然科学版),2007,38(1):70-73
    [33]王筱留.钢铁冶金学(炼铁部分)[M].第2版.北京:冶金工业出版社,2005.
    [34]黄柱成,张元波,陈耀铭,庄剑鸣.以赤铁矿为主配加磁铁矿制备的氧化球团显微结构.中南大学学报(自然科学版),2003,34(6):606-610
    [35]J. K. Wright. The effect of firing conditions on the Strength of Hematite compacts. Powder Technology,1976,14 (1):103-113
    [36]K. Tano, E. Oberg, P. O. Samskog, T Monredon, A. Broussaud. Comparison of control strategies for a hematite processing plant. Powder Technology,1999,105 (1-3):443-450
    [37]K. Higuchi, R. H. Heerema. Influence of sintering conditions on the reduction behaviour of pure hematite compacts. Minerals Engineering,2003,16(5):463-477
    [38]刘宏泉,孔令坛,梁德兰.鞍钢弓长岭球团矿配料结构优化研究.第五届冶金工程科学论坛,2006:20-23
    [39]许满兴.赤铁矿粉球团生产的质量与技术.第十届全国炼铁原料学术会议,2007:264-268
    [40]薛敏.磁铁矿与赤铁矿在球团矿中合理配比的探讨.金属矿山,2010(1):67-70
    [41]顾军,刘宝先.链箅机-回转窖工艺法生产100%赤铁矿球团设计初探.江苏冶金,2009,37(1):27-29
    [42]李富荣.以赤铁矿为主的原料生产氧化球团工艺的研究:[硕士学位论文].东北大学2004
    [43]梁德兰,范军.赤铁矿球团焙烧过程研究.球团技术,2006,(1):8-11
    [44]傅菊英.巴西赤铁精矿球团试验研究.球团技术,2005,(3):6-11
    [45]郑红暇,汪琦,潘喜峰.磁铁矿球团氧化机理的研究.烧结球团,2003,28(5):13-15
    [46]黄柱成,张元波,朱尚朴,庄剑鸣,罗秀全.以赤铁矿为主配加磁铁矿制备氧化球团的研究.钢铁,2004,39(4):9-13
    [47]黄柱成,张元波,陈耀铭,庄剑鸣.以赤铁矿为主配加磁铁矿制备的氧化球团显微结构.中南大学学报(自然科学版),2003,34(6):606-610
    [48]T. Jiang, Y. B. Zhang, Z. C. Huang. Preheating and Roasting Characteristics of H-M Concentrate Pellets. Ironmaking and Steelmaking,2008,35(1):21-26
    [49]J. M. F. Clout, J. R. Manuel. Fundamental Investigations of Differences in Bonding Mechanisms in Iron Ore Sinter Formed from Magnetite Concentrates and Hematite Ores, Power Technology,2003,130:393-399
    [50]王昌安,王新继,胡承凡,霍聿诚.辊磨预处理磁铁精矿活化机理初探.烧结球团,2005,30(2):16-19
    [51]黄柱成,李骞,杨永斌,姜涛.混合料润磨预处理对氧化球团矿质量的影响.中南大学学报(自然科学版),2004,35(5):753-758
    [52]温燕明,董宝利,王明磊.球团混合料润磨技术研究与应用.中国钢铁年会,2001:195-198
    [53]S. P. E. Forsmo, P.-O. Samskog, B. M. T. Bjorkman. A study on plasticity and compression strength in wet iron ore green pellets related to real process variations in raw material fineness. Powder Technology,2008,181 (3):321-330
    [54]C. S. Gundewar, K. A. Natarajan, U. B. Nayak, K. Satyanarayana. Studies on ball wear in the grinding of Kudremukh hematite-magnetite ore. Minerals Engineering, 1990,3 (1-2):207-220
    [55]W. Brian Rowe. Grinding Machine Developments. Principles of Modern Grinding Technology,1990:163-210
    [56]L. G. Austin, K. Julianelli, A. S. Souza, C. L. Schneider. Simulation of wet ball milling of iron ore at Carajas, Brazil. International Journal of Mineral Processing, 2007,84 (1-4):157-171
    [57]R.Arbain, M.Othman, S.Palaniandy. Preparation of iron oxide nanoparticles by mechanical milling. Minerals Engineering,2010:1-9
    [58]王昌安,朱德庆.润磨活化机理初探.钢铁研究,2003,12(6):23-27
    [59]D. Zhu, J. Pan, G. Z. Qiu. Mechano-chemical Activation of Magnetite Concentrate for Improving Its Pelletability by High Pressure Roll Grinding. ISIJ International, 2004,44(2):310-315
    [60]王昌安,熊守安,朱德庆.高压辊磨预处理铁精粉对生球性能的影响.烧结球团,2002,27(6):12-15
    [61]张汉泉,戚岳刚.辊压机在改善铁矿球团质量中的应用.矿业工程,2005,3(1):37-39
    [62]王昌安,王新继,张一敏,陈铁军.原料高压辊磨对球团氧化活化能的影响.钢铁研究,2005,(1):8-10
    [63]赵东.高效节能破磨设备的进展.冶金矿山设计与建设,1999,31(5):33^-36
    [64]段玉震.高压辊磨机的研究及应用.矿山机械,2007,35(4):56-57
    [65]刘曙,王永清RP-P3.6-120/50B辊压机在程潮球团生产中的使用.金属矿山,2005,8(增刊):263-268
    [66]汪琦.铁矿含碳球团技术.北京:冶金工业出版社,2005:45-76
    [67]B. K. Pandey, T. Sharma. Reducing agents and double-layered iron ore pellets. International Journal of Mineral Processing,2000,59 (4):295-304
    [68]Meng XU, Ming-wei GUO, Jian-liang ZHANG, Tian-ji WAN, Ling-tan KONG. Beneficiation of Titanium Oxides From Ilmenite by Self-Reduction of Coal Bearing Pellets. Journal if Iron and Steel Research, International,2006,13 (2): 6-9
    [69]G. Chowdhury, G. G. Roy. Application of Genetic Algorithm (GA) to estimate the rate parameters for solid state reduction of iron ore in presence of graphite. Computational Materials Science,2009,45 (1):176-180
    [70]Jingyu Shi, E. Donskoi, D. L. S. McElwain, L. J. Wibberley. Modelling the reduction of an iron ore-coal composite pellet with conduction and convection in an axisymmetric temperature field. Mathematical and Computer Modelling,2005,42 (1-2):45-60
    [71]R.C. Nascimento, M. B. Mourao, J. D. T. Capocchi. Reduction-swelling behaviour of pellets bearing iron ore and charcoal. Canadian Metallurgical Quarterly,1998, 37 (5):441-448
    [72]T. Sharma. Reduction of double layered iron ore pellets. International Journal of Mineral Processing,1997,49 (3-4):201-206
    [73]T. Coetsee, P. C. Pistorius, E. E. de Villiers. Rate-determining steps for reduction in magnetite-coal pellets. Minerals Engineering,2002,15 (11):919-929
    [74]T. Du, K. Du. Application study of key technologies in carbon-bearing pellets-iron bath smelting reduction process. Fuel and Energy Abstracts,1998,39 (1):51
    [75]E. P. Oaikhinan. Break-down of Nigerian iron ore compacts during reduction. Minerals Engineering,1990,3 (3-4):375-380
    [76]N. Narcin, S. Aydln, K. Sesen, F. Dikec. Reduction of iron ore pellets with domestic lignite coal in a rotary tube furnace. International Journal of Mineral Processing, 1995,43 (1-2):49-59
    [77]T. Sharma. Non-coking coal quality and composite pre-reduced pellets. International Journal of Mineral Processing,1993,39 (3-4):299-311
    [78]J.E.阿普尔比.用于球团生产的含碳添加剂.第四届国际造块会议论文选:223-244
    [79]黄典冰,孔令坛.内燃球团矿生球性质的研究.烧结球团,1990,(4):5-10
    [80]康思琦.内配煤球团矿等温还原动力学数模的研究.烧结球团,1992,(1):1-6
    [81]黄典冰,孔令坛.球团矿内配煤粉燃烧动力学及其过程模型.钢铁,1992,27(3):2-5
    [82]马兴亚,汪琦,姜茂发.含碳球团还原技术研究现状.烧结球团,1999,24(3):24-26
    [83]黄典冰,杨学民,杨天钧,孔令坛.含碳球团还原过程动力学及模型.金属学报,1995,32(6):629-636
    [84]M. C. Abraham, A.Ghosh. Kinetics of reduction of iron oxide by carbon. Ironmaking and steelmaking,1979,6(1):14-23
    [85]Q Wang, Z Yang, J Tian. Reduction kinetics of iron ore-coal pellet during fast heating. Ironmaking and steelmaking,1998,25(6):443-447
    [86]S Sun, W K. Lu Theoretical investigation of kinetics and mechanism of iron ore reduction in an ore/coal composite. ISIJ,1999,39(2):123-129
    [87]C. Bryk, W K. Lu. Reduction phenomena in composites of iron ore concentrates and coals. Ironmaking and Steelmaking,1986,13(2):70-75
    [88]S K Dutta, A Ghosh. Study of nonisthermal reduction of iron ore-coal composite pellet. Metallurgical and Materials TransactionB,1994,25B:15
    [89]Q Wang, Z Yang, J Tian. Mechanisms of reduction in iron ore-coal composite pellet. Ironmaking and Steelmaking,1997,24(6):457-460
    [90]黄典冰,孔令坛.内配煤赤铁矿球团反应动力学及其模型.钢铁,1995,30(11):
    [91]杨学民,郭占成,王大光,谢裕生,黄典冰,孔令坛,杨天钧.含碳球团还原机理研究.化工冶金,1995,16(2):118-126
    [92]李久,周国凡,薛正良,余明扬,罗敬逊,王学普.包钢内配煤球团外滚煤粉焙烧的试验研究.武汉冶金科技大学学报,1995,19(1):10-18
    [93]王黎光,傅菊英,张亚平,陈文忠,胡友明.内配煤对酸性球团矿的影响.烧结球团,2001,26(1):3-5
    [94]汪琦,杨兆祥,孙家富,田济民,李文忠.含碳球团在氧化性气氛中的还原机理.钢铁研究学报,1998,10(3):2-4
    [95]吕庆,赵利国,郎建峰,吕长星,尹海生.含碳球团生产海绵铁的研究.河北理工学院学报,1998,20(3):8-12
    [96]张海峰,薛正良,周继程,李小明,陈伟.内配煤团块直接还原法制备铁粒技术研究.武汉科技大学学报(自然科学版),2007,30(2):125-127
    [97]李振国.内配煤自熔性球团矿性能的试验研究.河北冶金,1996,(1):12-17
    [98]周国凡,韩志军,李久.矿壳内配煤球团试制金属化球团的实验室研究.武汉钢铁学院学报,1995,18(1):23-27
    [99]阴继翔.内配煤球团矿直接还原工艺参数的优化研究:[硕士学位论文].北京:北京科技大学,1997:4-12
    [100]姜鑫,吴钢生.MgO对烧结工艺及烧结矿冶金性能的影响[J].钢铁,2006,41(3):8-11
    [101]张玉柱.MgO含量和碱度对高炉渣的黏度的影响[J].材料与冶金学报,2005,4
    [102]关雪芳.提高烧结矿MgO含量的途径及高炉冶炼效果[J].烧结球团,2001,26(2):1-5
    [103]冯向鹏.低硅条件下碱度对烧结矿强度的影响[J].烧结球团,2004,29(2):9-13.
    [104]孙金铎.合理烧结矿R的探讨[J].钢铁,2001,36(8):1-4.
    [105]F. W. Frazer, H. Westenberger, K. H. Boss, W. Thumm. The relationship between basicity and swelling on reduction of iron-ore pellets. International Journal of Mineral Processing,1975,2 (4):353-365
    [106]S. Dwarapudi, T. K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee, R. Venugopal. Effect of pyroxenite flux on the quality and microstructure of hematite pellets. International Journal of Mineral Processing,2010,96 (1-4):45-53
    [107]A.-Z.M. Abouzeid, I.M. Kotb, A.A. Negm. Iron ore fluxed pellets and their physical properties. Powder Technology,1985,42 (3):225-230
    [108]张永明.含MgO熔剂性球团矿特点及生产实践[J].烧结球团,1998,23(2):1-5.
    [109]范晓慧,袁晓丽.铁精矿粒度对球团强度的影响[J].中国有色金属学报,2006,16(11):1966-1969.
    [110]李国玮,王学峰.首钢熔剂性球团矿的试验研究[J].首钢科技,2002,3:17-20.
    [111]朱秉辰译.加古川2号高炉70%球团矿操作[J].钢铁研究,1994,5:63-64.
    [112]杨佳龙,谭穗勤.增加球团矿用量以优化高炉炉料结构[J].钢铁,2005,40(10):13-15.
    [113]洪灶熬.造块工艺中的添加剂[J].马钢科研,1999,1:6-11.
    [114]范晓慧,甘敏,陈许铃,姜涛.低碱度镁质氧化球团的试验研究[J].钢铁,2009,44(3):6-10.
    [115]范晓慧,甘敏.从炼铁精料探讨氧化球团技术的发展方向[C]//全国烧结球团技术交流年会论文集.长沙:全国烧结球团信息网,2009,4-7.
    [116]周明顺,刘万山,翟立委,李艳茹.复合熔剂性球团的开发研究.中国冶金,2006,16(3):23-26
    [117]王学峰,刘文运,郭和宝,陈秀昆.内配燃料熔剂球团试验研究.全国炼铁原 料学术会议,2005:252-257
    [118]李振国,胡长庆,张玉柱,郎建峰,栾景林,陶文,常久柱.熔剂外加-球料混烧的研究.烧结球团,2001,26(3):16-19
    [119]张永明,贾彦忠.熔剂性含MgO球团矿特点及生产实践.中国金属学会2004年全国炼铁生产技术暨炼铁年会,2004:255-259
    [120]张汉泉.熔剂性球团的生产及发展.中国矿业,2009,18(4):89-92
    [121]贾彦忠,梁德兰,孔令坛,李国伟.熔剂性球团氧化预热组织结构变化研究.2002年全国炼铁生产技术暨炼铁年会,2002:448-450
    [122]朱德庆,潘建,胡晓铭,何奥平,李建,徐小锋,王志远.熔剂作用下的铁矿石高温反应性能研究.2005年度全国烧结球团技术交流年会2005:14-19
    [123]王学峰,刘文运,陈秀坤,郭和宝.首钢熔剂性球团试验研究.烧结球团,2004,29(2):5-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700