化学还原石墨烯的制备、组装及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是由sp2杂化的C组成,具有单原子层厚度的二维碳材料。从2004年被Geim等科学家发现以来,由于其极好的机械强度、超高的载流子速率和热导率,激发了理论和实验科学家们极大的研究兴趣,在电子学、复合物、催化、能源储存等领域得到广泛应用。目前,化学还原氧化石墨烯被认为是一种操作简单、成本低、可大量制备石墨烯的有效方法,寻求安全、高效、环保的还原剂并研究其还原机理仍然是研究的一个热点问题。另外,将石墨烯分散在水中容易发生不可逆的团聚。因此,通过控制形貌、化学掺杂和化学腐蚀可以有效调控石墨烯的性质,拓展其应用领域。本论文,基于石墨烯的材料化学,对石墨烯的制备、掺杂、组装和电化学性能进行了系统的研究。主要内容和结果如下:
     (1)在低于200℃的温度下,以甲醛、甲酸为还原剂,将氧化石墨烯(GO)与还原剂蒸气反应(气相反应)或者与液态还原剂进行溶剂热反应(液相反应),分别研究了还原剂用量,还原温度和还原时间对化学还原石墨烯(rGOs)电导率的影响,并通过X-射线衍射(XRD), X射线光电子能谱(XPS)和拉曼光谱进行表征和分析。实验结果表明:当气相反应的最佳还原温度为150℃,而液相反应的最佳还原温度为175℃时,GO得到最大程度的还原。当反应时间增加到24h,气相反应制备的rGOs的氧原子百分含量明显增加,而液相反应制备的rGOs的氧原子百分含量增加不明显,甚至有减少的趋势。而且,石墨烯电导率与其所含的C、O原子比有一定的关系。
     (2)分别以羟胺和盐酸羟胺作为还原剂和N掺杂剂,与GO进行溶剂热反应制备N掺杂的石墨烯水凝胶(NGHs),并通过扫描电子显微镜、XRD、XPS、拉曼光谱对样品进行表征。在25%KOH电解液中,采用两电极法测试基于NGHs的超级电容器电容性能。实验结果表明:NGHs的形貌、电导率和N掺杂量受还原剂种类和用量、反应温度、反应时间的影响。以羟胺为还原剂,在150℃溶剂热反应12h得到NGHs(NGH-HA12)的N原子百分比为4.32%。当循环伏安扫描速度为1.0mV s-1时,NGH-HA12电极材料比电容为205F g-1,具有较好的循环稳定性。当基于NGH-HA12电极材料的超级电容器的充放电电流密度为100Ag-1,能量密度为3.65Wh kg-1时,其功率密度为20.5kW kg-1。
     (3)通过“羟胺扩散诱导组装”法可以制备出多种大面积N掺杂石墨烯基纸和透明薄膜,包括N掺杂石墨烯纸(NG-P)、N掺杂石墨烯和碳纳米管复合纸(NG-CNT-P)、沉积到基底表面的N掺杂石墨烯透明薄膜(NG-TP)以及其复合透明薄膜。在整个实验过程中,GO成型、还原和N掺杂一步完成。制备的NG-P拉伸强度可达到70.0MPa,杨氏模量可达到17.7GPa。NG-P经过300℃处理2h (NG-P300)后,其热导率高达3403W m-1K-1。在1M的H2SO4电解液中,用两电极法测试基于NG-P300的超级电容器的电化学性能。实验结果表明:当循环伏安扫描速度高达800V s-1时,其CV曲线仍然能保持较好的矩形。频率为120Hz时,其相位角-77.1°。制备的NG-TP在550nm的透光率为78%时,其面电阻可达大约4000Ω/□。
     (4)用类似“羟胺扩散诱导组装”的方法,通过湿法纺丝制备大面积N掺杂石墨烯纤维膜(NG-FM)。制备的NG-FM表现出较好的柔韧性。NG-FM经过300℃处理2h (NG-FM300)后,在25%KOH电解液中,用两电极法测试基于NG-FM300的超级电容器的电容性能。实验结果表明:当循环伏安扫描速度为5.0m Vs-1时,NG-FM300电极材料的比电容188Fg-1。当扫描速度高达10V s-1时,其比电容值仍然能保留最初比电容值的51%。基于NG-FM300的超级电容器的能量密度为3.1Wh kg-1时,功率密度高达114,000W kg-1。
     (5)结合静电纺丝、表面修饰和高温碳化技术,制备具有导电性高和柔韧性好的石墨烯修饰碳纤维复合纳米纤维膜(GCFM)。以此为载体,用甲醛蒸气还原吸附到GCFM上的H2PtCl6·6H2O,将Pt纳米粒子沉积到GCFM表面,得到Pt-GCFM催化电极,并对其进行结构表征和电催化氧化甲醇性能测试。实验结果表明:与Pt-CFM(用相同方法将Pt纳米粒子沉积到CFM电极表面)和Pt/C-GCFM(商用Pt/C底涂到GCFM表面)催化电极相比,Pt-GCFM催化电极表现出最好的电催化氧化甲醇的活性、稳定性和抗中毒能力。特殊结构的GCFM有利于提高Pt纳米催化剂电催化氧化甲醇的活性和稳定性,说明GCFM是一种很有潜力的电催化剂载体。
Graphene, a kind of two-dimensional carbon material constructed by layers of sp2-bonded carbon atom, exhibits applications in fields of electronics, composite materials, catalysis, energy generation and storage etc owing to its extreme mechanical strength, exceptionally high electron mobility and thermal conductivities and has stimulated tremendous attention for both the experimental and theoretical scientific communities in recent years since it was discovered at2004by Geim. Graphene produced through chemically reducing graphene oxide obtained from graphite is considered to be the more efficient, inexpensive and simpler approach to large-scale use, it is still the hot issues to seek the safe, efficient, pollution-free reducing agent and study its mechanism. However, graphene dissolved in water prone to an irreversible coagulation and affect the performace of the graphene. Therefore, the morphology control, chemical doping and etching are effective approach to tune the property of graphene and greatly expand their applications. In this dissertation, based on the materials chemistry of graphene, the preparation, doping, assembly and their electrochemical properties of graphene-based materials were investigated. The main contents and results are summarized as follows:
     (1) GO being exposed to a vapor and liquid phase of formaldehyde and formic acid at a reaction temperature below200℃were studied using XRD, XPS and Raman spectroscopy. The reducing agent concentration, reducing temperatures and time intensively affect the electrical conductivity of chemically reduced graphene (rGOs). Significant reduction of GO was observed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), with the largest extent of reduction obtained at150℃in vapor phase and at175℃in liquid phase. In addition, with the increase of reaction time such as24h, O content of rGO increase obviously when it obtained in vapor phase while the O content increases slightly or even decrease for rGO obtained in solution of the reductant. It is reveals that the atomic ratio of C to O has some correlation to the electrical conductivity of rGO.
     (2) N-doped graphene hydrogels (NGHs) could be obtained by using hydroxylamine hydrochloride and Hydroxylamine (HA) as the chemical dopant and reductant through a simple solvothermal reaction. The products were characterized by scanning electron microscope, XRD, XPS, Raman spectroscopy and electrochemistry. The results showed that the electrical conductivity, microstructure and doping level of NGHs were influenced by the type and quantity of reductants, temperature and time of the reaction. The NGHs prepared at150℃for12h using HA as reductant (NGH-HA12) had a N-doping level of4.32%in atom and exhibited a specific capacitance of205F g-1and good cycling stability. The energy density and power density could reach3.65Wh kg-1and20.5kW kg-1at a discharge of100A g-1for the symmetric capacitor assembled by NGH-HA12in25%KOH electrolyte using the two-electrode symmetric capacitor test.
     (3) Various N-doped graphene-based materials with large area, including N-doped graphene paper (NG-P), N-doped graphene and carbon nanotubes composite paper (NG-CNT-P), N-doped graphene transparent films (NG-TF) and the composite transparent films deposited on substrates, are prepared using a facile approach named as "hydroxylamine diffusing inducing assembly (HDIA)". The molding of GO is carried out at room temperature, the reduction of graphene oxide and the N-doping are achieved simultaneously under atmospheric pressure and at low temperature (100℃). The NG-P treated at100℃for10h possesses a tensile stress of about70.0MPa and Young's modulus of about17.7GPa. Using the two-electrode symmetric capacitor test, ultrahigh-rate capacitors assembled by NG-P treated at300℃for2h (NG-P300) still show rectangle-liked CV curves at scan rate of800V s-1and exhibit a phase angle of-77.1°at frequency of120Hz in1M H2SO4electrolyte, thermal conductivity of NG-P300is calculated to be about3403.39W m-1K-1. The surface resistivity of NG-TP can reach up to4000Ω/a at78%transmittance (550nm).
     (4) Using the similar process, larger-scale N-doped graphene fiber mats (NG-FM) are prepared using the "hydroxylamine diffusing inducing assembly (HDIA)" The obtained NG-FM exhibits good flexibility. Using the two-electrode symmetric capacitor test, the obtained NG-P treated at300℃for2h (NG-FM300) possesses a specific capacitance of188F g-1at scan rate of5mV s"1and can retain Ccs51%at10V s-1, the energy density of capacity assembled by NG-FM300can reach to3.1Wh kg-1at a power density of114,000W kg-1in25%KOH.
     (5) Carbon fibre mats modified by graphene (GCFMs) have been fabricated by combining the electrospinning, thermal treatment and surface decoration. Pt particles were deposited on the GCFM using formaldehyde vapor react with H2PtCl6·6H2O on the GCFM. The electrochemical catalytic electrodes are characterized and evaluated. The results show that the Pt catalyst loaded on GCFM possesses high electrocatalytic activity, good tolerance towards reaction intermediates and unusually high stability towards methanol electrocatalytic oxidation compared with Pt-CFM (the Pt catalyst loaded on CFM) and Pt/C-GCFM(commercial Pt/C doped to GCFM)catalytic electrodes. It is found that the special structure of the GCFM is favorable for the activity and long-term stability of the Pt catalyst towards methanol electro-oxidation, indicating that the GCFM is a hopeful candidate to be developed as an excellent supporting material for electrochemical catalysts.
引文
[1]Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene[J]. Nature,1985,318:162-163.
    [2]Iijima S. Helical Microtubules of Graphitic Crabon [J]. Nature,1991,354:56-58.
    [3]Peierls R E. Quelques Proprietes Typiques Des Corpses Solides [J]. Ann. I. H. Poincare,1935,5:177-222.
    [4]Landau L D. Zur Theorie Der Phasenumwandlungen II [J]. Phys. Z. Sowjetunion, 1937,11:26-35.
    [5]Mermin N D, Wagner H. Absence of Ferromagnetismor Antiferromagnetismin One or Two Dimensional Isotropicheisenberg Models [J]. Phys Rev Lett,1966,17(22): 1133-1136.
    [6]Mermin N D. Crystalline Order in Two Dimensions [J]. PhysRev,1968,176(1): 250-254.
    [7]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonous S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306:666-669.
    [8]Geim A K, Novoselov K S. The Rise of Graphene[J]. Nature materials,2007,6: 183-191.
    [9]Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S, et al. The Structure of Suspended Graphene Sheets[J]. Nature,2007,446:60-63.
    [10]Fasolino A, Los J H. Katsnelson M I. Intrinsic Ripples in Graphene[J]. Nat mater, 2007,6:858-861.
    [11]Novoselov K S, Geim A K, Morozov S V.et al. Two-Dimensional Gas of Massless Diracfermions in Graphene[J]. Nature,2005,438:197-200.
    [12]Bolotina K I, Sikesb K J, Jianga Z, d, Klimac M, Fudenberga G, Honec J, Kima P, Stormera H L. Ultrahigh Electron Mobility in Suspended Graphene[J]. Solid State Commun,2008,146:351-355.
    [13]Nair R R, Blake P, Grigorenko AN, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine Structure Constant Defines Visual Transparency of Graphene[J]. Science,2008,320:1308-1308.
    [14]Lee C, Wei X D, Kysar J W, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene [J]. Science,2008,321:385-388.
    [15]Balandin A A, Ghosh S, Bao W Z, Calizo R, Teweldebrhan D, Miao F, and Lau C N. Superior Thermal Conductivity of Single-Layer Graphene [J]. Nano Lett,2008,8(3): 902-907.
    [16]Si Y C, Samulski E T. Exfoliated Graphene Separated by Platinum Nanoparticles [J]. Chem. Mater,2008,20(21):6792-6797.
    [17]Peigney A, Laurent C, Flahaut E, Bacsa R R, Rousset A. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes[J]. Carbon,2001,39:507-514.
    [18]Zhu Y W, Murali S, Cai W W. et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications [J]. Adv Mater,2010,22(35):3906-3924.
    [19]Li B, Cao X H, Ong H G, Cheah J W, Zhou X Z, Yin Z Y, et al. All-Carbon Electronic Devices Fabricated by Directly Grown Single-Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes[J]. Adv Mater,2010,22(28):3058-3061.
    [20]Li Y M, Tang L H, Li J H. Preparation and Electrochemical Performance for Methan-ol Oxidation of Pt/Graphene Nanocomposites[J]. Electrochem Commun,2009,11: 846-849.
    [21]Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. Graphene for Electroche-mical Sensing and Biosensing[J]. Trends Analytical Chem,2010,29(9):954-965.
    [22]Stoller M D, Park S, Zhu Y W, An J, Ruoff R S. Graphene-Based Ultracapacitors[J]. Nano Lett,2008,8(10):3498-3502.
    [23]Wang X, Zhi L J, Mullen K. Transparent Conductive Graphene Electrodes for Dye-Sensitized Solar Cells[J]. Nano Lett,2008,8(1):323-327.
    [24]Berger C, Song Z M, Li T B, et al. Ultrathin Epitaxial Graphite:2D Electron Gas Properties and a Route Toward Graphene-Based Nanoelectronics[J]. J Phys Chem B, 2004,108:19912-19916.
    [25]Berger C, Song Z M, Li X B, et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene[J]. Science,2006,312:1191-1196.
    [26]Reina A, Jia X T, Ho J, et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J]. Nano Lett,2009,9:30-35.
    [27]Kim K S, Zhao Y, Jang H, et al. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes[J]. Nature,2009,457:706-710.
    [28]Li X S, Cai W W, An J H, et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils[J]. Science,2009,324:1312-1314.
    [29]Bae S, Kim H, Lee Y, et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes [J]. Nature Nanotechnology,2010,5(8):574-578.
    [30]Pei S F, Cheng H M. The Reduction of Graphene Oxide[J]. Carbon,2012,50: 3210-3228.
    [31]Bai H, Li C, Shi G Q. Functional Composite Materials Based on Chemically Converted Graphene[J]. Adv. Mater,2011,23:1089-1115.
    [32]Schafhaeutl C. On the Combination of Carbon with Silicon and Iron, and Other Metals, Forming the Different Species of Cast Iron, Steel, and Malleable Iron[J]. Phil Mag,1840,16(104):570-590.
    [33]Brodie B C. On the Atomic Weight of Graphite.[J]. Phil. Trans. R. Soc. Lond,1859, 149:249-259.
    [34]Staudenmaicr, L. Verfahren zur Darstellung der Graphitsaure[J]. Ber. Dtsch. Chem. Ges,1898,31(2):1481-1487.
    [35]Hummers W S, Offeman R E. Preparation of Graphene Oxide[J]. J. Am. Chem. Soc, 1958,80(6):1339-1339.
    [36]Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M. Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets[J]. Chem. Mater,2009, 21(15):3514-3520.
    [37]Marcano D C, Kosynkin D V, Berlin J M, Sinitskii A, Sun Z, Slesarev A, Alemany L B, Lu W, Tour J M. Improved Synthesis of Graphene Oxide[J]. ACS Nano,2010, 4(8):4806-4814.
    [38]Zhang X, Feng Y, Tang S, Feng W. Preparation of a graphene oxide-phthalocyanine hybrid through strong π-π interactions. Carbon,2010,48:211-216.
    [39]Zhang L, Liang J J, Huang Y, Ma Y F, Wang Y, Chen Y S. Size-Controlled Synthesis of Graphene Oxide Sheets on a Large Scale Using Chemical Exfoliation[J]. Carbon, 2009,47(14):3365-3368.
    [40]Schhmiepp H C, Li J, McAllister M J, et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxiede [J]. J.Phys.Chem.B,2006,110(11):8535- 8539.
    [41]McAllister M J, Li J, Adamson D H, et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite[J], Chem. Mater,2007,19:4396-4404.
    [42]Zhu Y, Murali S, Stoller M D, Velamakanni A, Piner R D, Ruoff R S. Microwave Assisted Exfoliation and Reduction of Graphite Oxide for Ultracapacitors[J]. Carbon, 2010,48(7):2118-2122.
    [43]Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, et al. Controlled Synthesis of Large-Area and Patterned Electrochemic-Ally Reduced Graphene Oxide Films[J]. Chem Eur J,2009,15(25):6116-6120.
    [44]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [45]Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff R S. Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-Styrenesulfonate) [J]. J Mater Chem,2006, 16(2):155-158.
    [46]Qi X, Pu K Y, Li H, Zhou X, Wu S, Fan Q L, et al. Amphiphilic Graphene Composites[J]. Angew Chem Int Ed,2010,49(49):9426-9429.
    [47]Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F, et al. Electrochemical Deposition of Zno Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells[J]. Small,2010,6(2):307-312.
    [48]Qi X, Pu K Y, Zhou X, Li H, Liu B, Boey F, et al. Conjugated Polyelectrolyte-Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents[J]. Small,2010,6(5):663-669.
    [49]Li D, Muller M B, Gilje S, et al. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat Nanotechnol,2008,3:101-105.
    [50]Zhou X J, Zhang J L, Wu H X, Yang H J, Zhang J Y, Guo S W. Reducing Graphene Oxide via Hydroxylamine:A Simple and Efficient Route to Graphene[J]. J. Phys. Chem. C,2011,115:11957-11961.
    [51]Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H, Yao J. Facile Synthesis and Characterization of Graphene Nanosheets[J]. J. Phys. Chem. C,2008,112: 8192-8195.
    [52]Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Efficient Reduction of Graphite Oxide by Sodium Borohydrilde and Its Effect on Electrical Conductance[J]. Adv. Funct. Mater,2009, 19:1987-1992.
    [53]Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions:A Green Route to Graphene Preparation [J]. Adv.Mater,2008,20:4490-4493.
    [54]Pei S F, Zhao J P, Du J H, Ren W C, Cheng H M. Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids[J]. Carbon,2010,48:4466-4474.
    [55]Li J F, Lin H, Yang Z L, Li J B. A Method for the Catalytic Reduction of Graphene Oxide at Temperatures Below 150 oC[J]. Carbon,2011,49:3024-3030.
    [56]Williams G, Seger B, Kamat P V. TiO2-Graphene Nanocomposites.UV-Assisted Photocatalytic Reduction of Graphene Oxide[J]. ACS Nano,2008,2:1487-1491.
    [57]Zhou Y, Bao Q, Tang L, Zhong Y, Loh K P. Hydrothermal Dehydration for the "Green" Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties [J]. Chem Mater,2009,21(13):2950-2956.
    [58]Wang H, Robinson J T, Li X, Dai H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets[J]. J Am Chem Soc,2009,131(29):9910-9911.
    [59]Liu N, Luo F, Wu H X, Liu Y H, Zhang C, Chen J. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite[J]. Adv.Funct. Mater,2008,18(10):1518-1525.
    [60]Zhi L, Klaus Mullen K. A Bottom-up Approach from Molecular Nanographenes to Uneonventional Carbon Materials[J]. J. Mater. Chem,2008,18:1472-1484.
    [61]Gao W, Alemany L B, Ci L, Ajayan P M. New Insights into the Structure and Reduction of Graphite Oxide[J]. Nat Chem,2009,1(5):403-408.
    [62]Wang Y, Shao Y Y, Matson D W, Li J H, Lin Y H.Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing[J]. ACSNano,2010,4:1790-1798.
    [63]Qu L, Liu Y, Baek J B, et al. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells[J]. ACS Nano,2010,4(3): 1321-1326.
    [64]Sun L, Wang L, Tian C G, Tan T X, Xie Y, Shi K Y, Li M T, Fu H G Nitrogen-Doped Graphene with High Nitrogen Level via a One-Step Hydrothermal Reaction of Graphene Oxide with Urea for Superior Capacitive Energy Storage[J]. RSC Advances,2012,2:4498-4506.
    [65]Maldonado S, Morin S, Stevenson K J. Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping[J]. Carbon,2006, 44(8):1429-1437.
    [66]Zhang C H, Fu L, Liu N, Liu M H, Wang Y Y, Liu Z F. Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources[J]. Adv. Mater,2011,23(8): 1020-1024.
    [67]Subrahmanyam K S, Panchakarla L S, Govindaraj A, Rao C N R. Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method[J]. J.Phys.Chem.C,2009, 113(11):4257-4259.
    [68]Geng D S, Chen Y, Chen Y G, Li Y L, Li R Y, Sun X L, et al. High Oxygen-Reduction Activity and Durability of Nitrogen-Doped Graphene[J]. Energy Environ. Sci,2011, 4:760-764.
    [69]Meyer J C, Kurasch S, Park H. J, Skakalova V, Kunzel D, Gro A, Chuvilin A, Algara S G, Roth S, Iwasaki T, Starke U, Smet J H, Kaiser U.Experimental Analysis of Charge Redistribution due to Chemical Bonding by High-Resolution Transmission Electron Microscopy [J]. Nat. Mater,2011,10:209-215.
    [70]Qian W, Cui X, Hao R, Hou Y L, Zhang Z Y.Facile Preparation of Nitrogen-Doped Few-Layer Graphene Via Supercritical Reaction[J]. ACS Appl. Mater. Interfaces, 2011,3(7):2259-2264.
    [71]Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, et al. Synthesis, Structure, and Properties of Boron-and Nitrogen-Doped Grapheme[J]. Adv. Mater.2009,21:4726-4730.
    [72]Sheng Z H, Shao L, Chen J J, Bao W J, Wang F B, Xia X H. Caalyst-Free Synthesis of Nitrogen-Doped Graphene Anealing Graphite Oxide with Melamine and its Excellent Electrocatalysis[J]. ACS Nano,2011,5:4350-4358.
    [73]Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped sites at Basal Planes[J]. Nano Lett,2011,11:2472-2477.
    [74]Wei D, Liu Y, Wang Y, et al. Synthesis of N-Doped Graphene by Chemical Vapor Deposition and its Electrical Properties[J]. Nano Letters,2009,9(5):1752-1758.
    [75]Reddy A L M, Srivastava A, Gowda S R, et al. Synthesis of Nitrogen-Doped Graphene Films for Lithium Battery Application[J]. ACS Nano,2010,4(11): 6337-6342.
    [76]Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W X, Fu Q, Ma X, Xue Q, Sun G, Bao X. Toward N-Doped Graphene via Solvothermal Synthesis[J]. Chem. Mater,2011, 23(5):1188-1193.
    [77]苏鹏,郭慧林,彭三,宁生科.氮掺杂石墨烯的制备及其超级电容性能[J].物理化学学报.2012,28(11):2745-2753.
    [78]Jiang B J, Tian C G, Wang L, Sun Li, Chen C, Nong X Z, QiaoY J, Fu H G. Highly Concentrated, Stable Nitrogen-Doped Graphene for Supercapacitors:Simultaneous Doping and Reduction[J]. Applied Surface Science,2012,258:3438-3443.
    [79]Xu Y X, Shi G Q. Assembly of Chemically Modified Graphene:Methods and Applications[J]. J Mater Chem,2011,21:3311-3323.
    [80]Dikin D A, Stankovich S, Zimney E J, et al. Preparation and Characterization of Graphene Oxide paper [J]. Nature,2007,448:457-460.
    [81]Huang Z D, Zhang B, Liang R, Zheng Q B, Oh S W, Lin X Y, Yousefi N, Kim J K. Effects of Reduction Process and Carbon Nanotube Content on the Supercapacitive Performance of Flexible Graphene Oxide Papers[J]. Carbon,2012,50:4239-4251.
    [82]Biawas S, Drzal L T. A Novel Approach to Creat a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface[J]. Nano Lett,2009,9: 167-172.
    [83]Liu S Y, Chen K, Fu Y, Yu S Y, Bao Z H. Reduced Graphene Oxide Paper by Supercritical Ethanol Treatment and its Electrochemical Properties[J]. Applied Surface Science,2012,258:5299-5303.
    [84]Chen F M, Liu S B, Shen J M, Li W, Liu A D, Mary B. Chan P, Chen Y. Ethanol-Assisted Graphene Oxide-Based Thin Film Formation at Pentane-Water Interface[J]. Langmuir,2011,27:9174-9181.
    [85]Dong Z L, Jiang C C, Cheng H H, Zhao Y, Shi G Q, Jiang L, Qu L T. Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers[J]. Adv. Mater, 2012,24:1856-1861.
    [86]Kim Y K, Min D H. Durable Large-Area Thin Films of Graphene/Carbon Nanotube Double Layers as a Transparent Eleetrode [J]. Langmuir,2009,25(19):11302-11306.
    [87]Chen Y, Lu J, Gao Z X. Structural and Electronic Study of Nanoscrolls Rolled up by a Single Graphene Sheet[J]. J. Phys. Chem. C,2007,111(4):1625-1630.
    [88]Savoskin M V, et al. Carbon Nanoscrolls Produced from Acceptor-Type Graphite Intercalation Compounds[J]. Carbon,2007,45(14):2797-2800.
    [89]Kou R, Shao Y Y, Liu J. et al. Enhanced Aetivity and Stability and Stability of Pt Catalysts on Functionalized Graphene Sheets for Electroeatalytic Oxygen Reduetion[J]. Electrochem Communs,2009,11(5):954-957.
    [90]Jafri R I, Rajalakshmi N, Ramaprabhu S. Nitrogen Doped Graphene Nanoplatelets as Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell[J]. J.Mater.Chem,2010,20:7114-7117.
    [91]Maiyalagan T, Dong X C, Chen P, Wang X. Electrodeposited Pt on Three-Dimensional Interconnected Graphene as a Free-Standing Electrode for Fuel Cell Application[J]. J. Mater. Chem,2012,22:5286-5290.
    [92]Chen X, Wu G, Chen J, et al. Synthesis of "Clean" and Well-Dispersive Pd Nanoparticles with Excellent Electrocatalytic Property on Graphene Oxide [J]. J. Am. Chem. Soc,2011,133(11):3693-3695.
    [93]Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite[J]. J. Am. Chem. Soc,2012,134(30):12326-12329.
    [94]Inagaki M, Konno H, Tanaike O. Carbon Materials for Electrochemical Capacitors [J]. J.Power Sources,2010,195:7880-7903.
    [95]Stoller M D, Park S, Zhu Y, et al. Graphene-Based Ultracapacitors[J]. Nano Lett, 2008,8(10):3498-3500.
    [96]Vivekchand S R C, Rout C S, Ahmanyalvl K S S, et al. Graphene-Based Electrochemical Supercapacitors[J]. J Am Chem Sci,2008,130(11):9-13.
    [97]Miller J R, Outlaw R A, Hollo way B C. Graphene Double-Layer Capacitor with Ac Line-Filtering Performance [J]. Science,2010,329(5999):1637-1639.
    [98]Zhang L, Shi G Q. Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability [J]. J. Phys. Chem. C,2011, 115:17206-17212.
    [99]Yoo E, Kim J, Hosono E, et al. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries[J]. Nano Lett,2008,8(8): 2277-2282.
    [100]Paek S M, Yoo E, Honma I. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure[J]. Nano Letters,2009,9:72-75.
    [101]Wang D, Choi D, Li J, et al. Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion[J]. ACS Nano,2009,3(4):907-914.
    [102]Zhu G, Xu T, Lv T, et al. Graphene-Incorporated Nanocrystalline TiO2 Films for CdS Quantum Dot Sensitized Solar cells[J]. J. Electroanal. Chem,2010,650(2): 248-251.
    [103]Sun S, Gao L, Liu Y. Enhanced Dye-Sensitized Solar Cell Using Graphene-TiO2 Photoanode Prepared by Heterogeneous Coagulation[J]. Appl. Phys. Lett,2010, 96(8):p083113.
    [104]Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S.S, Marchetto H. Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes[J].Adv. Funct. Mater,2008,18(10):3506-3514.
    [105]Kim Y R, Bong S, Kang Y J, Yang Y, Mahajan R K, Kim J S, Kim H. Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes[J]. Biosens. Bioelectron,2010,25(10):2366-2369.
    [106]Li J, Guo S, Zhai Y, Wang E. Nafion-Graphene Nanocomposite Film as Enhanced Sensing Platform for Ultrasensitive Determination of Cadmium [J]. Electrochem. Commun,2009,11(5):1085-1088.
    [107]Li J, Guo S, Zhai Y, Wang E. High-Sensitivity Determination of Lead and Cadmium Based on the Nafion-Graphene Composite Film[J]. Anal. Chim. Acta,2009,649(2): 196-201.
    [108]Wu J F, Xu M Q, Zhao G C. Graphene-Based Modified Electrode for the Direct Electron Transfer of Cytochrome c and Biosensing[J]. Electrochem. Commun,2010, 12(1):175-177.
    [109]Srinivas G, Zhu Y W, Piner R, Skipper N, Ellerby M, Ruoff R. Synthesis of Graphene-Like Nanosheets and Their Hydrogen Adsorption Capacity [J]. Carbon, 2010,48:630-635.
    [110]Wu J, Agrawal M, Becerril H A, et al. Organic Light-Emitting Diodes on Solution Processed Graphene Transparent Electrodes[J]. ACS Nano,2010,4:43.
    [111]Geim A K. Graphene:Status and Prospects[J]. Science,2009,324:1530-1534.
    [112]Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium[J]. Nature Mater, 2008,7:406-411.
    [113]Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition[J]. Nature materials,2011,10:424-428.
    [114]Huang S Y, Wu G P, Chen C M, Yang Y, Zhang S C, Lu C X. Electrophoretic Deposition and Thermal Annealing of a Graphene Oxide Thin Film on Carbon Fiber Surfaces[J]. Carbon,2013,52:605-620.
    [115]Muge A, Javier C G, Elizabeth C M, Rogers D M, Guzman R, Baughman R H, Chabal Y J. Reconstructed Ribbon Edges in Thermally Reduced Graphene Nanoribbons[J]. J. Phys. Chem. C,2012,116:24006-24015.
    [116]Mani V, Devadas B, Chen S M. Direct Electrochemistry of Glucose Oxidase at Electrochemically Reduced Graphene Oxide-Multiwalled Carbon Nanotubes Hybrid Material Modified Electrode for Glucose Biosensor[J]. Biosensors and Bioelectronics,2013,41:309-315.
    [117]Liu Y Z, Li Y F, Zhong M, Yang Y G, Wen Y F, Wang M Z. A Green and Ultrafast Approach to the Synthesis of Scalable Graphene Nanosheets with Zn Powder for Electrochemical Energy Storage[J]. J. Mater. Chem,2011,21:15449-15455.
    [118]Park S, An J, Potts J R, Velamakanni A, Murali S, Ruoff R S. Hydrazine-Reduction of Graphite and Graphene Oxide[J]. Carbon,2011,49:3019-3023.
    [119]Compton O C, Jain B, Dikin D A, Abouimrane A, Amine K, Nguyen S T. Chemical-ly Active Reduced Graphene Oxide with Tunable C/O Ratios [J]. ACSNano,2011,5: 4380-4391.
    [120]Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N M D. High Resolution XPS Characterization of Chemical Functionalised MWCNTs and SWCNTs[J]. Carbon,2005,43(1):153-161.
    [121]Wang H B, Maiyalagan T, Wang X. Review on Recent Progress in Nitrogen-Doped Graphene:Synthesis, Characterization, and its Potential Applications [J]. ACS Catal, 2012,2:781-794.
    [122]Han T H, Huang Y K, Tan A T L, Dravid V P, Huang J. Steam Etched Porous Graph-ene Oxide Network for Chemical Sensing[J]. J. Am. Chem. Soc,2011,133:15264-15267.
    [123]Kudin K N, Ozbas B, Schniepp H C, Homme R K P, Aksay I A, Car R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets[J]. Nano Lett,2008, 8:36-41.
    [124]Patrice S, Gogotsi A Y. Materials for Electrochemical Capacitors [J]. Nat. Mater, 2008,7:845-854.
    [125]Frackowiak E, Beguin F. Carbon Materials for the Electrochemical Storage of Energy in Capacitors [J]. Carbon,2001,39:937-950.
    [126]Brownson D A C, Kampouris D K, Banks C E. An Overview of Graphene in Energy Production and Storage Applications [J]. J. Power Sources,2011,196:4873-4885.
    [127]Sheng K X, Sun Y Q, Li C, Yuan W J, Shi G Q. Ultrahigh-Rate Supercapacitors Based on Eletrochemically Reduced Grapheme Oxide for ac Line-Filtering[J]. Sci Rep,2012,2:247.
    [128]Zhang Y, Feng H, Wu X B, Wang L Z, Zhang A Q, Xia T C, et al. Progress of Electrochemical Capacitor Electrode Materials:a Review[J]. Int. J. Hydrogen Energ, 2009,34:4889-4899.
    [129]Lokhande C D, Dubal D P, Joo O S. Metal Oxide Thin Film Based Supercapacitors[J]. Curr. Appl. Phys,2011,11:255-270.
    [130]Snook G A, Kao P, Best A S. Conducting-Polymer-Based Supercapacitor Devices and Electrodes[J]. J. Power Sources,2011,196:1-12.
    [131]Volfkovich Y M, Serdyuk T M. Electrochemical Capacitors[J]. Russ. J. Electrochem, 2002,38:1043-1068.
    [132]Khomenko V, Raymundo-Pinero E, Beguin F. A New Type of High Energy Asym-metric Capacitor with Nanoporous Carbon Electrodes in Aqueous Electrolyte [J]. J. Power Sources,2010,195:4234-4241.
    [133]An K H, Kim W S, Park Y S, Moon J M, Bae D J, Lim S C, et al. Supercapacitors Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electeodes[J]. Adv. Funct. Mater,2001,11:387-392.
    [134]Gilje S, Han S, Wang M S, Wang K L, Kaner R B. A Chemical Route to Graphene for Device Applications [J]. Nano Lett,2007,7:3394-3398.
    [135]Long D H, Li W, Ling L C, Miyawaki J, Mochida I, Yoon S H. Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide[J]. Langmuir,2010,26:16096-16102.
    [136]Wang D W, Gentle I R, Lu G Q. Enhanced Electrochemical Sensitivity of PtRh Electrodes Coated with Nitrogen-Doped Graphene[J]. Electrochem. Commun,2010, 12:1423-1427.
    [137]Lai L F, Chen L W, Zhan D, Sun L, Liu J P, Lim S H, et al. One-Step Synthesis of NH2-Graphene from in Situ Graphene-Oxide Reduction and its Improved Electrochemical Properties[J]. Carbon,2011,49:3250-3257.
    [138]Fan Z J, Yan J, Wei T, Zhi L J, Ning G Q, Li T Y, et al. Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density[J]. Adv. Funct. Mater,2011,21:2366-2375.
    [139]Worsley M A, Pauzauskie P J, Olson T Y, Biener J, Satcher J H, Jr, et al. Synthesis of Graphene Aerogel with High Electrical Conductivity[J], J. Am. Chem. Soc,2010, 132:14067-14069.
    [140]Sheng K X, Xu Y X, Li C, Shi G Q. High-Performance Self-Assembled Grapheme Hydrogels Prepared by Chemical Reduction of Graphene Oxide[J]. New Carbon Mater,2011,26:9-15.
    [141]Zhou X J, Zhang J L, Wu H X, Yang H J, Zhang J Y, Guo S W. Reducing Graphene Oxide via Hydroxylamine:a Simple and Efficient Route to Graphene[J]. J. Phys. Chem. C,2011,115:1957-1961.
    [142]Hsu C H, Kuo P L. Influence of Graphite Surface Modifications on the Ratio of Basal Plane to "Non-Basal Plane" Surface Area and on the Anode Performance in Lithium Ion Batteries[J]. J. Power Sources,2012,198:83-91.
    [143]Chen C M, Zhang Q, Zhao X C, Zhang B, Kong Q Q, Yang M Q et al. Hierarchically Aminated Graphene Honeycombs for Electrochemical Capacitive Energy Storage[J]. J. Mater. Chem,2012,22:14076-14084.
    [144]Lota G, Lota K, Frackowiak E. Nanotubes Based Composites Rich in Niteogen for Supercapacitor[J]. Electrochem. Commun,2007,9:1828-1832.
    [145]Aboutalebi S H, Chidembo A T, Salari M, Konstantinov K, Wexler D, Liu H K, et al. Comparison of GO, GO/MWCNTs Composite and MWCNTs as Potential Electrode Materials for Supercapacitors[J]. Energy Environ. Sci,2011,4(5):1855-1865.
    [146]Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature[J]. Nano Lett. 2011,11:2396-2399.
    [147]Balandin A A. Thermal Properties of Graphene and Nanostructured Carbon Materials[J]. Nature Mater,2011,10:569-581.
    [148]Stankovich S, Dikin D A, Dommett G H B, Kohlhaasl K M, Zimneyl E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-Based Composite Materials[J]. Nature,2006,442:282-286.
    [149]Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface[J]. Nano Lett,2009,9:2255-2259.
    [150]Hong W J, Xu Y X, Lu G W, Li C, Sh G Q. Transparent Graphene/PEDOT-PSS Composite Films As Counter Electrodes of Dye-Sensitized Solar Cells[J]. Electrochem. Commun,2008,10:1555-1558.
    [151]Xu Y X, Bai H, Lu G W, Li C, Shi G Q. Flexible Graphene Films via the Filtration of Water-Soluble Nocovalent Functionalized Graphene Sheets[J]. J. Am. Chem Soc, 2008,130,5856-5857.
    [152]Chen C, Yang Q H, Yang Y, Lv W, Wen Y, Hou P X, Wang M, Cheng H M. Self-Assembled Free-Standing Graphite Oxide Membrane[J]. Adv. Mater,2009,21 (29),3007-3011.
    [153]Valles C, Nunez J D, Benito A M, Maser W K. Flexible Conductive Graphene Paper Obtained by Direct and Gentle Annealing of Graphene Oxide Paper [J]. Carbon, 2012,50:835-844.
    [154]Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films As Transparent Conductors[J]. ACS Nano,2008,2(3),463-470.
    [155]Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S, Graphene-Based Liquid Crystal Device[J]. Nano Lett,2008,8(6):1704-1708.
    [156]Kim F, Cote L J, Huang J. Graphene Oxide:Surface Activity and Two-Dimensional Assembly[J]. Adv. Mater,2010,22(17),1954-1958.
    [157]Wang H, Maiyalagan T, Wang X. Review on Recent Progress in Nitrogen-Doped Graphene:Synthesis, Characterization, and its Potential Applications [J]. ACS Catal, 2012,2:781-794.
    [158]Dreyer D R, Park S J, Bielawski C W, Ruoff R S. The Chemistry of Graphene Oxide[J]. Chem. Soc. Rev,2010,39:228-240.
    [159]Han G Y, Yuan J Y, Shi G Q, Wei F. Electrodeposition of Polypyrrole/Multiwalled Carbon Nanotube Composite Films[J]. Thin Solid Films,2005,474:64-69.
    [160]Ryu K S, Lee Y G,Kim K M, Park Y J, Hong Y S, Wu X L, Kang M G, Park N G, Song R Y, Ko J M.Electrochemical Capacitor with Chemically Polymerized Conducting Polymer Based on Activated Carbon as Hybrid Electrodes[J]. Synth. Met,2005,153(1-3):89-92.
    [161]Arrigo R, Havecker M, Wrabetz S, Blume R, Lerch M, McGregor J, Parrott E P J, Zeitler J A, Gladden L F, Knop-Gericke A, Schlogl R, Su D S. Tuning the Acid/Base Properties of Nanocarbons by Functionalization via Amination[J]. J. Am. Chem. Soc,2010,132:9616-9630.
    [162]El-Kady M F, Strong V, Dubin S, Kaner R B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors[J]. Science 2012,335: 1326-1330.
    [163]Xu Y X, Sheng K X, Shi G Q. Highly Conductive Chemically Converted Graphene Prepared From Mildly Oxidized Graphene Oxide[J]. J. Mater. Chem.2011,21: 7376-7380.
    [164]Cai, W.; Lin, Z.; Strither, T.; Smith, L. M.; Hamers, R. J. Chemical Modification and Patterning of Iodine-Terminated Silicon Surfaces Using Visible Light. J. Phys. Chem. B 2002,106,2656-2664.
    [165]Berciaud S, Ryu S, Brus L E, Heinz T F. Probing the Intrinsic Properties of Exfoliated Graphene:Raman Spectroscopy of Free-Standing Monolayers", Stephane Berciaud[J]. Nano Lett,2009,9(1):346-352.
    [166]Sadezky A, Muckenhuber H, Grothe H, Niessner R, Posch U. Raman Microspectroscopy of Soot and Related Carbonaceous Materials:Spectral Analysis and Structural Information[J]. Carbon,2005,43:1731-1742.
    [167]Vigolo B, Penicaud Al, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P. Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes[J]. Science,2000, 290(5495):1331-1334.
    [168]Jiang K L, Li Q Q, Fan S S. Nanotechnology:Spinning Continuous Carbon Nanotube Yarns[J]. Nature,2002,419:801-801.
    [169]Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature[J]. Nano Lett, 2011,11:2396-2399.
    [170]Liu Y L, Xie B, Zhang Z, Zheng Q S, Xu Z P. Mechanical Properties of Graphene PapersfJ]. Journal of the Mechanics and Physics of Solids,2012,60:591-605.
    [171]Li C, Shi G Q. Three-Dimensional Graphene Architectures [J]. Nanoscale,2012,4: 5549-5563.
    [172]Xu Z, Gao C. Graphene Chiral Liquid Crystals and Macroscopic Assembled Fibres[J]. Nat. Commun,2011,2:571.
    [173]Cong H P, Ren X C, Wang P, Yu S H. Wet-Spinning Assembly of Continuous, Neat, and Macroscopic Graphene Fibers[J]. Sci. Rep. Sci. Rep.2012,2:613.
    [174]Hu X Z, Xu Z, Gao C. Multifunctional, Supramolecular, Continuous Artificial Nacre Fibres[J]. Sci. Rep,2012,2:767.
    [175]Carretero G J, Castillo M E, Dias L M, Acik M, Rogers D M, Sovich J, Haines C S, Lepro X, Kozlov M, Zhakidov A, et al. Oriented Graphene Nanoribbon Yarn and Sheet from Aligned Multiwalled Carbon Nanotube Sheets[J]. Adv. Mater.2012,24: 5695-5701.
    [176]Xu Z, Zhang Y, Li P G, Gao C. Strong, Conductive, Lightweight, Neat Graphene Aerogel Fibers With Aligned Pores. ACS Nano 2012,6,7103-7113.
    [177]Xu Z, Sun H Y, Zhao X L, Gao C. Ultrastrong Fibers Assembled From Giant Graphene Oxide Sheets[J]Adv. Mater,2013,25(2):188-193.
    [178]Wen Z H, Li J H. Hierarchically Structured Carbon Nanocomposites as Electrode Materials for Electrochemical Energy Storage, Conversion and Biosensor Systems[J]. J. Mater. Chem,2009,19:8707-8713.
    [179]Guo Y G, Hu J S, Wan L J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices[J]. Adv. Mate,2008,20:2878-2887.
    [180]Thavasi V, Singh G, Ramakrishna S. Electrospun Nanofibers in Energy and Environmental[J]. Energy Environ. Sci,2008,1:205-221.
    [181]Girishkumar G, Hall T D, Vinodgopal K, Kamat P V. Single Wall Carbon Nanotube Supports for Portable Direct Methanol Fuel Cells[J]. J. Phys. Chem. B,2006,110: 107-114.
    [182]Mu Y Y, Liang H, Hu J S, Jiang L, Wan L J. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells[J]. J. Phys. Chem. B,2005,109:22212-22216.
    [183]Liu H S, Song C J, Zhang L, Zhang J J, Wang H J, Wilkinson D P. A Review of Anode Catalysis in the Direct Methanol Fuel Cell[J]. J. Power Sources,2006,155: 95-110.
    [184]Li H Y, Zhang X H, Pang H L, Huang C T, Chen J H. PMol2-Functionalized Graphene Nanosheet-Supported PtRu Nanocatalysts for Methanol Electro-Oxidation[J]. J Solid State Electrochem,2010,14:2267-2274.
    [185]Seger B, Kamat P V. Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells[J]. J. Phys. Chem. C,2009,113:7990-7995.
    [186]Liu Y C, Qiu X P, Huang Y Q, Zhu W T. Mesocarbon Microbeads Supported Pt-Ru Catalysts for Electrochemical Oxidation of Methanol[J]. J. Power sources,2002, 111:160-164.
    [187]Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, et al. Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles[J]. Nature,2001,412:169-171.
    [188]Joo S H, Pak C, You D J, Lee A, Lee H I, Kim J M, et al. Ordered Mesoporous Carbons (OMC) as Supports of Electrocatalysts for Direct Methanol Fuel Cells (DMFC):Effect of Carbon Precursors of OMC on DMFC Performances[J]. Electrochim. Acta,2006,52:1618-1626.
    [189]Bessel C A, Laubernds K, Rodriguez N M, Baker R T K. Graphite Nanofibers as an Electrode for Fuel Cell Applications[J]. J. Phys. Chem. B,2001,105:1115-1118.
    [190]Huang H X, Chen S X, Yuan C E. Platinum Nanoparticles Supported on Activated Carbon Fiber as Catalyst for Methanol Oxidation[J]. J. Power Sources,2008,175, 166-174.
    [191]Li W Z, Liang C H, Qiu J S, Zhou W J, Han H M, Wei Z B, Sun G Q, Xin Q. Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell[J]. Carbon,2002,40:791-794.
    [192]Wu G, Xu B Q. Carbon Nanotube Supported Pt Electrodes for Methanol Oxidation: A Comparison Between Multi and Single-Walled Carbon Nanotubes[J]. J. Power Sources,2007,174:148-158.
    [193]Xu J B, Hua K F, Sun G Z, Wang C, Lv X Y, Wang Y J. Electrooxidation of Methanol on Carbon Nanotubes Supported Pt-Fe Alloy Electrode [J]. Electrochem. Commun,2006,8:982-986.
    [194]Chai G S, Yoon S B, Kim J H, Yu J S. Spherical Carbon Capsules with Hollow Macroporous Core and Mesoporous Shell Structures as a Highly Efficient Catalyst Support in the Direct Methanol Fuel Cell[J]. Chem. Commun,2004,23:2766-2767.
    [195]Han S, Yun Y K, Park W, Sung E, Hyeon T. Simple Solid-Phase Synthsis of Hollow Graphitic Nanoparticles and their Appliction to Direct Methanol Fuel Electrodes[J]. Adv. Mater,2003,15:1922-1925.
    [196]Chai G S, Shin I S, Yu J S. Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Support in Direct Methanol Fuel Cells[J]. Adv. Mater, 2004; 16:2057-2061.
    [197]Li M Y, Han G Y, Yang B S. Fabrication of the Catalytic Electrodes for Methanol Oxidation on Electrospinning-Derived Carbon Fibrous Mats[J]. Electrochem. Commun,2008,10:880-883.
    [198]Zhou Y G, Chen J J, Wang F B, Sheng Z H, Xia X H. A Facile Approach to the Synthesis of Highly Electroactive Pt Nanoparticles on Graphene as an Anode Catalyst for Direct Methanol Fuel Cells[J]. Chem. Commun,2010,46:5951-5963.
    [199]Niyogi S, Bekyarova E, Itkis M E, McWilliams J L, Hamon M A, Haddon R C. Solution Properties of Graphite and Graphene[J]. J. Am. Chem. Soc,2006,128: 7720-7721.
    [200]Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M. Growth of Graphene from Solid Carbon Sources[J]. Nature,2010,468:549-552.
    [201]Ruoff R. Calling all Chemists[J]. Nature Nanotechnol,2008,3:10-11.
    [202]Xu C, Wang X, Zhu JW. Graphene-Metal Particle Nanocomposites[J]. J. Phys. Chem. C,2008,112:19841-19845.
    [203]Shang N G, Papakonstantinou P, Wang P, Platinum Integrated Graphene for Methanol Fuel Cells[J]. J. Phys. Chem. C,2010,114:15837-15841.
    [204]Dong L F, Gari R R S, Li Z, Craig M M, Hou S F. Graphene-Supported Platinum and Platinum-Ruthenium Nanoparticles with High Electrocatalytic Activity for Methanol and Ethanol Oxidation[J]. Carbon,2010,48:781-787.
    [205]Gao X F, Jang J, Nagase S. Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design [J]. J. Phys. Chem. C,2010,114:832-842.
    [206]Pozio A, Francesco M D, Cemmi A, Cardellini F, Giorgi L. Comparison of High Surface Pt/C Catalysts by Cyclic Voltammetry[J]. J. Power Sources,2002,105: 13-19.
    [207]Rhee C K, Kim B J, Ham C, Kim Y J, Song K, Kwon K. Size Effect of Pt Nanoparticle on Catalytic Activity in Oxidation of Methanol and Formic Acid: Comparison to Pt(111), Pt(100), and Polycrystalline Pt Electrodes [J]. Langmiur, 2009,25:7140-7147.
    [208]Yang S H, Chen C Y, Wang W J. An Impedance Study of an Operating Direct Methanol Fuel Cell[J]. J. Power Sources,2010,195:2319-2330.
    [209]Zhou M, Zhang A, Dai Z X, Feng Y P, Zhang C. Strain-Enhanced Stabilization and Catalytic Activity of Metal Nanoclusters on Graphene[J]. J. Phys. Chem. C 2010, 114:16541-16546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700