高胰岛素处理相关核酸适体的筛选及基于核酸适体技术的胰岛素检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分建立针对肝细胞的指数级富集的配体系统进化技术
     目的:建立针对肝细胞的指数级富集的配体系统进化技术(Systematic Evolution of Ligands by Exponential Enrichment, SELEX),并获得能识别肝细胞表面膜蛋白的核酸适体(Aptamer)。
     方法:设计DNA文库,两端各一段长20bp的引物序列,引物1用异硫氰酸荧光素(fluorescein isothiocyanate, FITC)标记,引物2用生物素biotin标记,中间20bp为随机序列。待培养皿(100mm)中人肝细胞癌细胞株HepG2生长丰度达到95%左右时,弃去细胞培养基,用4℃洗涤缓冲液洗涤。取20nmole DNA文库,溶于1ml结合缓冲液中,与细胞在4℃孵育1h后弃去上清液,洗涤缓冲液洗涤两次后,用细胞刮子收集细胞,用1ml蒸馏水洗涤,并将细胞悬液收集在1.5ml离心管中,在95℃加热15min后离心,取上清液,此即首轮筛选的母液,其内包含与HepG2结合的序列。经过聚合酶链式反应(PCR)扩增所得序列,扩增后的产物为双链DNA,包含目标链及其互补链。将PCR产物与链亲素(Streptavidin)覆盖的琼脂糖珠孵育后滤过上清液,用2%NaOH打开PCR双链结构,目标链则溶解于NaOH溶液中,将该溶液通过NAP-5脱盐柱脱去NaOH,测定单链DNA (ssDNA)浓度以确定该轮筛选终产物总量,并将其甩干。从上一轮筛选终产物中取100pmole,并将其溶于500ul含有10%胎牛血清的结合缓冲液中,将其与培养皿(60mm)中生长丰度达到95%左右的HepG2细胞孵育,按照上述方法完成每一轮筛选。每3-5轮筛选后需要检查每轮产物与细胞的结合情况。待细胞生长丰度达95%左右时,用非酶消化液消化细胞,将贴壁生长的细胞配成单个细胞悬液,用洗涤缓冲液洗涤后将细胞溶于结合缓冲液中,每5×105个细胞与25pmole的筛选产物于4℃孵育30min,筛选产物的浓度为250nM。同时将细胞与同等浓度的DNA文库孵育,作为阴性对照。孵育结束后洗涤细胞,用流式细胞仪分析筛选产物与细胞的结合程度。随着筛选轮数的增加,产物与细胞间的结合程度越来越高,直至达到平台期。选取结合程度最高的三轮产物进行测序,所得序列即针对靶细胞的核酸适体。用DNA合成仪合成所得序列并用流式细胞仪检测各条序列与靶细胞的结合程度,从而确定本筛选最终所得的核酸适体。分别用胰酶以及蛋白酶K处理细胞,处理时间从5min-30min不等,观察酶处理前后各核酸适体与细胞结合的情况。同时,将各核酸适体与不同种类的细胞孵育(包括LH86、Huh7、WT、IRS/KO、M7617、Ramos、CEM、H23、H69、A549、HBE、H661、TOV-21G、CAOV3等细胞),观察各序列的结合情况。
     结果:本文通过应用SELEX对HepG2细胞展开筛选,经过测序分析发现了4条针对HepG2细胞的核酸适体:IR01、IR03、IR04以及IR06。其中IR01、IR04与靶细胞的亲和性最佳,其解离常数分别为11.287±3.786nM和88.849±22.339nM; IR03虽然与HepG2细胞结合程度较低,解离常数较高(129.513±47.924nM),但其特异性最好,能特异性与HepG2细胞结合,而与其它种类细胞几乎无交叉反应;IR01、IR04、IR06对大部分肝脏来源的细胞株均有较好结合;IR01是本实验所得的核酸适体当中与靶细胞结合程度最强的一条序列,其仅与肝脏来源的细胞有结合,而与其他组织来源的细胞无交叉反应,并且该条核酸适体与细胞的结合不容易被蛋白酶的作用所破坏。相反,IR03, IR04, IR06三条核酸适体与靶细胞的结合均容易被酶的消化而破环,胰酶或者蛋白酶K处理HepG2细胞5min后上述三条核酸适体与靶细胞的结合即被完全破坏。
     结论:通过SELEX,可以获得与靶细胞高亲和性以及高特异性结合的核酸适体,这些核酸适体通过识别靶细胞膜上所表达的某种生物分子从而达到识别表达相同生物分子的不同细胞株。
     第二部分筛选针对肝细胞表面与高胰岛素处理相关膜蛋白的核酸适体
     目的:在第一部分实验的基础上筛选出针对肝细胞表面与高胰岛素处理相关膜蛋白的核酸适体(Aptamer)。
     方法:待HepG2细胞生长丰度达70%左右后血清饥饿12h,然后分成四组,第一组继续予以不含胰岛素的培养基培养,第二组予以加入生理剂量的胰岛素(0.1nM)的培养基培养,第三组予以加入高胰岛素(100nM)的培养基培养,第四组予以加入超高胰岛素(500nM)的培养基培养。同时,予以高胰岛素(100nM)处理胎鼠肝细胞野生型(Wild type, WT)与胰岛素受体底物2基因(Insulin receptor substrate 2, IRS2)敲除后的胎鼠肝细胞(IRS2/KO),并设立正常培养组(不加入胰岛素处理)作为对照。上述各组细胞的培养基中均不含血清。24h后用非酶消化液消化细胞,将贴壁生长的细胞配成单个细胞悬液,用洗涤缓冲液洗涤后将细胞溶于结合缓冲液中,每5×105个细胞与浓度为250nM的核酸适体25pmole于4℃孵育30min。孵育结束后洗涤细胞,用流式细胞仪分析各核酸适体与上述各细胞的结合程度在高胰岛素处理前后有无变化。
     结果:IR04与HepG2细胞的结合明显受到100nM胰岛素的抑制;进一步加大胰岛素的剂量(500nM)则抑制作用更加明显,经过500nM胰岛素处理后IR04与HepG2的结合几乎被完全消减;但IR04与HepG2细胞的结合不受生理剂量胰岛素的影响。同样,高胰岛素处理也能减弱IR04与WT细胞的结合;但IR04与IRS2/KO细胞的结合程度不受高胰岛素处理的影响。而IR01、IR03、IR06与细胞的结合均不受高胰岛素处理的影响。
     结论:IR04与靶细胞的结合被高胰岛素处理所减弱,且其减弱的程度与高胰岛素的浓度呈正相关;但生理浓度范围内的胰岛素不影响IR04与靶细胞的结合;IR04可能的靶标为肝细胞表面某种与胰岛素作用相关的膜蛋白,此种膜蛋白在高胰岛素处理过程中被下调,但具体机制有待进一步研究;IR04所针对的靶物质在人、鼠肝细胞的表达具有高度同源性,且其受高胰岛素影响而发生下调的机理可能与人类相似。
     第三部分基于核酸适体修饰石墨烯的胰岛素检测
     目的:应用核酸适体修饰后的氧化石墨烯(GO)来进行胰岛素的检测,并通过加入催化剂(DNA酶)来实现其检测信号的放大。
     方法:将天然石墨粉和氯化钠结晶研磨从而减小石墨颗粒的体积。去掉氯化钠后,将研磨过的石墨粉加入到浓硫酸中,强力搅拌下加入高锰酸钾,并用体积分数3%的双氧水还原剩余的高锰酸钾和二氧化锰,使其变为无色可溶的硫酸锰。在双氧水的处理下,悬浮液变成亮黄色。最后,过滤、洗涤3次,然后超声处理4h,离心后取上层溶液用于下一步实验。
     异硫氰酸荧光素(FITC)标记的胰岛素核酸适体(insulin binding aptamer, IBA)稀释成100nM的胰岛素缓冲液。将IBA与GO按照摩尔浓度1:1于室温条件下混匀,避光孵育30min。此即本实验的工作溶液。由于GO能淬灭吸附在其表面的IBA所携带的荧光,此时溶液中仅存在一个较弱的荧光信号。当溶液中存在胰岛素时,与GO结合的IBA则从GO表面解离,与胰岛素结合,FITC标记的IBA游离到溶液中,GO对FITC的淬灭作用大大减弱,从而使得溶液中的荧光信号增加;进一步在工作溶液中加入DNA酶,加入不同浓度的胰岛素(胰岛素的加入量从5nM到50μM)后孵育2h。此时与胰岛素结合的IBA将被DNA酶消化成片段,从而失去与胰岛素结合的能力,胰岛素重新游离于工作液中;而与GO结合的IBA由于被GO保护,不被DNA酶消化,但将会从GO表面解离,并与游离的胰岛素结合,从而被DNA酶消化成片段。理论上该反应可以无限循环至IBA耗尽。终止反应后检测溶液中荧光浓度。同时设立阴性对照组(生物素、链霉亲和素、牛血清蛋白)以明确上述胰岛素检测体系的特异性。
     结果:本实验通过将胰岛素核酸适体修饰在氧化石墨烯单层表面,成功构建了胰岛素的生物感应器,实现了胰岛素的便捷检测,检测下限为500nM;通过进一步加入DNA酶来实现信号放大后,胰岛素的检测下限降低到5nM。
     结论:胰岛素核酸适体修饰后的氧化石墨烯可以作为胰岛素检测的良好工具,通过加入DNA酶实现检测信号的放大,将检测下限降低了100倍。
Chapter 1 Investigation on the construction of Cell-based Systematic Evolution of Ligands by Exponential Enrichment
     Objective:To constract the Cell-based systematic evolution of ligands by exponential enrichment(SELEX)and to obtain the aptamers for the membrane proteins on the liver cells.
     Methods:The DNA library is consisted by two primers which length are 20bp. Primer1 is labeled with fluorescein isothiocyanate(FITC), while Primer2 is labeled with biotin. There is 20bp random sequence in the middle. When the HepG2 in the cell culture dish(100mm)grows to 95% confluence, get rid of the cell culture medium, and wash it by 4℃washing buffer. Dillute 20nmole library by 1ml binding buffer, and incubate it with HepG2 in 4℃for 1h. Get rid of the suspension and wash the cell by washing buffer twice. Use cell brush collect the cells in 1.5ml centrifuge tube by 1ml DI water, and heat the tube in the heat block in 95℃for 15min. Then centrifuge the tube and get the supernatant. This is our first pool for selection. Our binding sequences was inside. Using PCR to amplify these sequences. After PCR, we have double strain DNA(dsDNA), which contain the target strain and the complemental strain. Incubate these dsDNA with streatavidin coated beads, and get rid of the suspension. The dsDNA is opened into ssDNA by 2%NaOH, then our target strain was dissolved in the NaOH solution. Desalt the solution by NAP-5 column and meansure the concentration of these ssDNA to get the gross.At last dry the final sollution by DNA dryer. That is our first pool. Culture our target cells in 60mm cell culture dish. Dissovle 100pmole pooll by 500ul binding buffer which contain 10%FBS. And then do the next round of SELEX follow the way hereinbefore. Test the bound between each pool and our target cells every 3 to 5 rounds. When HepG2 grows to 95% confluence, using non-enzymatic buffer digest the cells, and make the cells into single one. Wash the cells, and put dillute the cells by binding buffer. Every 5×105 cells incubate with 25pmole pool in 4℃for 30min, the concentration of the pool is 250nM. The cells incubate with DNA library is the negative control. Using flow cytometry to analyse the binding. When the binding signal stop increasing, take the best 3 binding pools to do the 454 sequencing. After we get the sequences, synthesize these sequences and test the binding one by one with target cells to determine our aptamers. Using trypsin and proteinase K digesting HepG2 cells respectively, the treating time range from 5min to 30min, and compare the binding before and after the enzyme treatment. On the other hand, we incubate each aptamer with other kinds of cells (Including LH86, Huh7, WT, IRS/KO, M7617, Ramos, CEM, H23, H69, A549, HBE, H661, TOV-21G, CAOV3) and find the binding specificity.
     Results:In this paper, we do SELEX on HepG2 cells, and finally got 4 binding aptamers. There are IR01, IR03, IR04 and IR06. The best binding aptamers are IR01 and IR04, whose binding dissociated constant (Kd) are 11.287±3.786nM and 88.849±22.339nM respectively; Although our IR03 only have weak binding with HepG2 cells (Kd=129.513±47.924nM), but seems it only binds with HepG2, and almost no cross link with other kinds of cells; IR01, IR04 and IR06 can not only bind with HepG2 but also can bind with other kinds of liver cells. IR01 is the strongest binding sequence we got. And the most interesting thing is the bound of IR01 can not be eliminated by the digestion of proteinase.
     Conclusion:By doing SELEX, we can get the aptamers for the target cells with high specificity and high affinity. These aptamers can bind with their target biomolecules which are on the surface of cells membrane. In that way, they can bind different kinds of cells which express same biomolecules.
     Chapter 2 Select one aptamer for high insulin treatment related membrane protein on the surface of liver cell
     Objective:Based on the first part experiment, to select one aptamer for high insulin treatment related membrane protein on the surface of liver cell from the aptamers we got from the Cell-based SELEX on HepG2.
     Methods:Let the HepG2 cells grow to 70% confluence, starve from FBS for 12h, then divide these cells into four groups. The first group is treated by OnM insulin. The second group incubate with 0.1 nM insulin. The third group was treated with 100nM insulin. The last group was treated by 500nM insulin. All the four groups were incubated 24h. We also treat the fetal mice hepatocyte wild type(WT) and insulin receptor substrate 2 gene knock out fetal mice hepatocytes(IRS/KO) with 100nM insulin in the same way as HepG2 cells. At the same time, we also treat the WT and IRS/KO cells with OnM insulinfor control. And all the above cells are incubated in the FBS free medium. After 24h, using non-enzymatic buffer digest the cells into single one. Wash them by washing buffer and dissolve the cells into binding buffer. Every 5×105 cells incubate with 25pmole aptamers for 30min in 4℃. The concentration of aptamers is 250nM. After incubation, washing the cells by washing buffer, and using the flow cytometry to analyse if the high insulin treatment will change the binding aptamers and cells.
     Results:The binding between IR04 and HepG2 cells was inhibited by 100nM insulin obviously. When the concentration of insulin increased to 500nM, the binding between IR04 and HepG2 almost disappeared completely. But those binding won't affect by physiological dose insulin. Also the high insulin treatment can decrease the binding between IR04 and fetal mice hepatocyte (WT), but won't affect the binding between IR04 and the insulin receptor substrate 2 gene knock out fetal mice hepatocyte (IRS/KO). But aptamers IR01, IR03 and IR06's binding will not be influented by high insulin treatment.
     Conclusion:The binding between IR04 and target cells are inhibited by high insulin treatment. And the degree of the binding has positive correlation with insulin concentration. But the physiologic concentration of the insulin won't affect IR04's binding. So we guess the target of IR04 is one kind of insulin related membrane protein, which will be down-regulated by high insulin treatment. But the detail is not very clear. The target of IR04 are highly homologous in both human beings' and mice hepatocyte. Also the mechanism under the high insulin treatment might be the same.
     Chapter 3 Aptamer Conjugated Graphene Oxide based Insulin Detection
     Objective:Use insulin binding aptamer conjugated graphene oxide (GO) to do insulin detection. And add DNase to gain a output amplification.
     Methods:Ground the graphite powder with NaCl to reduce the particle size. Removing the salt, then graphite was added to the concentrated H2SO4 and stirring for 2 hours. After, KMnO4 was added slowly gradually under stirring.Finally, we add distilled water and H2O2 solution to end the reaction. At last, the mixture was washed again. Sonicate GO dispersion under ambient condition for 4 hours. The resulted sample was centrifuged, and collect the upper solution for future experiments.
     IBA will bind with insulin and escaped from the GO surface. In that case the quenching effect of GO to FITC-IBA will be decreased a lot. Then we can detect the fluorescence signal. Further more, we add DNase I into the GO-aptamer solution and allow insulin incubate with them for 2 hours. When the IBA bind with insulin, it escaped from the GO surface, so the GO can not protect the IBA from the digestion of DNAse any more, it will be digested into pieces, and can not bind with insulin anymore. But the FITC release into the solution and won't quench by GO. The other IBA which still on the GO surface can be protect from the DNAse digestion. Because the binding IBA was destroyed by DNAse I, other IBA can continue release from the GO surface and bind with the insulin, and the above reaction go on and on. So one insulin can bind with more than one IBA, and the output fluorescence signal in the solution has been amplified. At the same time, we test biotin, streptavidin and BSA with the same concentration as insulin to determine the specificity of the above insulin detecion system.
     Results:The IBA conjugated GO is a good tool to do insulin selection. Depend on that, we can detect insulin in a simple and fast way, and our detection limit is 500nM. While with the amplification strategy, we added DNase I to amplify the output signal, the detection limit was decreased into 5nM. And the detection limit is improved 100 times.
     Conclusion:The IBA conjugated graphene oxide is a wonderful tool for insulin detection, but without singal amplification, the detection limit is not low enough. By adding DNase I, we can improve the detection limit over 100 times.
引文
[1]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science.1990; 249:505-510
    [2]Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature.1990; 346:818-822
    [3]Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A.2006; 103: 11838-11843
    [4]Tang Z, Shangguan D, Wang K, et al. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal Chem.2007; 79:4900-4907
    [5]Mercey R, Lantier I, Maurel MC, Grosclaude J, Lantier F, Marc D. Fast, reversible interaction of prion protein with RNA aptamers containing specific sequence patterns. Arch Virol.2006; 151:2197-2214
    [6]Naimuddin M, Kitamura K, Kinoshita Y, et al. Selection-by-function:efficient enrichment of cathepsin E inhibitors from a DNA library. J Mol Recognit.2007; 20:58-68
    [7]Huizenga DE, Szostak JW. A DNA aptamer that binds adenosine and ATP. Biochemistry.1995; 34:656-665
    [8]Wang J, Zhou HS. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal Chem.2008; 80:7174-7178
    [9]Wang L, O'Donoghue MB, Tan W. Nanoparticles for multiplex diagnostics and imaging. Nanomedicine (Lond).2006; 1:413-426
    [10]Adler A, Forster N, Homann M, Goringer HU. Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer. Comb Chem High Throughput Screen.2008; 11:16-23
    [11]Bellecave P, Cazenave C, Rumi J, et al. Inhibition of hepatitis C virus (HCV) RNA polymerase by DNA aptamers:mechanism of inhibition of in vitro RNA synthesis and effect on HCV-infected cells. Antimicrob Agents Chemother.2008; 52:2097-2110
    [12]Sefah K, Shangguan D, Xiong X, O'Donoghue MB, Tan W. Development of DNA aptamers using Cell-SELEX. Nat Protoc.5:1169-1185
    [13]Shangguan D, Cao Z, Meng L, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res.2008; 7:2133-2139
    [14]Shangguan D, Cao ZC, Li Y, Tan W. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem.2007; 53:1153-1155
    [15]Gold L, Alper J. Keeping pace with genomics through combinatorial chemistry. Nat Biotechnol.1997; 15:297
    [16]Singer BS, Shtatland T, Brown D, Gold L. Libraries for genomic SELEX. Nucleic Acids Res.1997; 25:781-786
    [17]Potti A, Rusconi CP, Sullenger BA, Ortel TL. Regulatable aptamers in medicine: focus on antithrombotic strategies. Expert Opin Biol Ther.2004; 4:1641-1647
    [18]Nimjee SM, Rusconi CP, Sullenger BA. Aptamers:an emerging class of therapeutics. Annu Rev Med.2005; 56:555-583
    [19]Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron.2005; 20:2424-2434
    [20]Jayasena SD. Aptamers:an emerging class of molecules that rival antibodies in diagnostics. Clin Chem.1999; 45:1628-1650
    [21]Nagel-Wolfrum K, Buerger C, Wittig I, Butz K, Hoppe-Seyler F, Groner B. The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol Cancer Res.2004; 2:170-182
    [22]Kim Y, Liu C, Tan W. Aptamers generated by Cell SELEX for biomarker discovery. Biomark Med.2009; 3:193-202
    [23]Guo KT, Ziemer G, Paul A, Wendel HP. CELL-SELEX:Novel perspectives of aptamer-based therapeutics. Int J Mol Sci.2008; 9:668-678
    [24]Ulrich H, Wrenger C. Disease-specific biomarker discovery by aptamers. Cytometry A.2009; 75:727-733
    [25]Watanabe T, Tsuge H, Imagawa T, et al. Nucleolin as cell surface receptor for tumor necrosis factor-alpha inducing protein:a carcinogenic factor of Helicobacter pylori. J Cancer Res Clin Oncol.136:911-921
    [26]Watanabe T, Hirano K, Takahashi A, et al. Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull.33:796-803
    [27]Mongelard F, Bouvet P. AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther.12:107-114
    [28]Chen F, Hu Y, Li D, Chen H, Zhang XL. CS-SELEX generates high-affinity ssDNA aptamers as molecular probes for hepatitis C virus envelope glycoprotein E2.PLoS One.2009;4:e8142
    [29]Uhl M, Helma C, Knasmu'ller S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (HepG2) cells. Mutation Research.2000; 468:13
    [30]Li Y, Xu S, Giles A, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J.
    [31]Rodriguez A, Catalan V, Gomez-Ambrosi J, et al. Insulin-and Leptin-Mediated Control of Aquaglyceroporins in Human Adipocytes and Hepatocytes Is Mediated via the PI3K/Akt/mTOR Signaling Cascade. J Clin Endocrinol Metab.
    [32]Sun H, Zhang Y, Gao P, et al. Adiponectin reduces C-reactive protein expression and downregulates STAT3 phosphorylation induced by IL-6 in HepG2 cells. Mol Cell Biochem.347:183-189
    [33]Chen J, Huang A, Xu L, et al. Identification of recombinant intermediates of hepatitis B virus between genotype B and C in vitro. Zhong Nan Da Xue Xue Bao Yi Xue Ban.36:101-108
    [34]Zang M, Zuccollo A, Hou X, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem.2004; 279:47898-47905
    [35]Williams JF, Olefsky JM. Defective insulin receptor function in down-regulated HepG2 cells. Endocrinology.1990; 127:1706-1717
    [1]Suzuki K, Kono T. Evidence that insulin causes translation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A.1980; 77:2542-2545
    [2]Aoki TT, Benbarka MM, Okimura MC, et al. Long-term intermittent intravenous insulin therapy and type 1 diabetes mellitus. Lancet.1993; 342:515-518
    [3]Ghosh R, Karmohapatra SK, Bhattacharya G, Kumar Sinha A. The glucose-induced synthesis of insulin in liver. Endocrine.38:294-302
    [4]Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications:a new perspective on an old paradigm. Diabetes.1999; 48:1-9
    [5]Rathmann W, Giani G. Global prevalence of diabetes:estimates for the year 2000 and projections for 2030. Diabetes Care.2004; 27:2568-2569; author reply 2569
    [6]Muntner P, DeSalvo KB, Wildman RP, Raggi P, He J, Whelton PK. Trends in the prevalence, awareness, treatment, and control of cardiovascular disease risk factors among noninstitutionalized patients with a history of myocardial infarction and stroke. Am J Epidemiol.2006; 163:913-920
    [7]Lettner A, Roden M. Ectopic fat and insulin resistance. Curr Diab Rep.2008; 8: 185-191
    [8]Williams JF, Olefsky JM. Defective insulin receptor function in down-regulated HepG2 cells. Endocrinology.1990; 127:1706-1717
    [9]Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 2001; 15:2099-2111
    [10]Shangguan D, Cao ZC, Li Y, Tan W. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem.2007; 53:1153-1155
    [11]Ren JM, Marshall BA, Gulve EA, et al. Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem.1993; 268:16113-16115
    [12]Ziel FH, Venkatesan N, Davidson MB. Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes.1988; 37:885-890
    [13]Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem.1980; 255:4758-4762
    [14]Hirsch IB, Coviello A. Intensive insulin therapy in critically ill patients. N Engl J Med.2002; 346:1586-1588; author reply 1586-1588
    [15]Das UN. Insulin and inflammation:further evidence and discussion. Nutrition. 2002; 18:526-527
    [16]Lawlor MA, Alessi DR. PKB/Akt:a key mediator of cell proliferation, survival and insulin responses? J Cell Sci.2001; 114:2903-2910
    [17]Reyes-Soffer G, Rondon-Clavo C, Ginsberg HN. Combination therapy with statin and fibrate in patients with dyslipidemia associated with insulin resistance, metabolic syndrome and type 2 diabetes mellitus. Expert Opin Pharmacother.
    [18]Alves TC, Befroy DE, Kibbey RG, et al. Regulation of hepatic fat and glucose oxidation in rats with lipid-induced hepatic insulin resistance. Hepatology.
    [19]Ferreira DM, Castro RE, Machado MV, et al. Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia.
    [20]Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes.1988; 37:1595-1607
    [21]Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995; 75:473-486
    [22]Reaven GM. Syndrome X:is one enough? Am Heart J.1994; 127:1439-1442
    [23]Renstrom F, Buren J, Svensson M, Eriksson JW. Insulin resistance induced by high glucose and high insulin precedes insulin receptor substrate 1 protein depletion in human adipocytes. Metabolism.2007; 56:190-198
    [24]Zang M, Zuccollo A, Hou X, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem.2004; 279:47898-47905
    [25]Kraegen EW, James DE, Bennett SP, Chisholm DJ. In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol.1983; 245:El-7
    [26]Ogihara T, Isobe T, Ichimura T, et al.14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. J Biol Chem.1997; 272:25267-25274
    [27]Valverde AM, Burks DJ, Fabregat I, et al. Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Diabetes.2003; 52:2239-2248
    [1]Ross SA, Gulve EA, Wang M. Chemistry and biochemistry of type 2 diabetes. Chem Rev.2004; 104:1255-1282
    [2]Hellman B, Gylfe E, Grapengiesser E, Dansk H, Salehi A. [Insulin oscillations--clinically important rhythm. Antidiabetics should increase the pulsative component of the insulin release]. Lakartidningen.2007; 104:2236-2239
    [3]Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care.2003; 26 Suppl 1:S5-20
    [4]Clark PM. Assays for insulin, proinsulin(s) and C-peptide. Ann Clin Biochem.1999; 36 (Pt 5):541-564
    [5]Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors,2001. JAMA.2003; 289:76-79
    [6]Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature.2001; 414:782-787
    [7]Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed Engl.2009; 48: 872-897
    [8]He XX, Wang K, Tan W, et al. Bioconjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc.2003; 125:7168-7169
    [9]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science.1990; 249:505-510
    [10]Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C. Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small. 6:201-204
    [11]Yoshida W, Mochizuki E, Takase M, et al. Selection of DNA aptamers against insulin and construction of an aptameric enzyme subunit for insulin sensing. Biosens Bioelectron.2009; 24:1116-1120
    [12]Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American Chemical Society.1958; 80:1
    [13]Reaven GM. The metabolic syndrome:is this diagnosis necessary? Am J Clin Nutr. 2006; 83:1237-1247
    [14]Yalow RS, Berson SA. Assay of plasma insulin in human subjects by immunological methods. Nature.1959; 184 (Suppl 21):1648-1649
    [15]Ohkubo T. High performance liquid chromatographic analysis of polypeptide hormones in transplanted rat islets. Biomed Chromatogr.1994; 8:301-305
    [16]Buzea C, Pacheco, Ⅱ, Robbie K. Nanomaterials and nanoparticles:sources and toxicity. Biointerphases.2007; 2:MR17-71
    [1]Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature.1990; 346:818-822
    [2]Hermann T, Patel DJ. Adaptive recognition by nucleic acid aptamers. Science.2000; 287:820-825
    [3]Gold L, Alper J. Keeping pace with genomics through combinatorial chemistry. Nat Biotechnol.1997; 15:297
    [4]Ellington AD, Szostak JW. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature.1992; 355:850-852
    [5]Green LS, Jellinek D, Bell C, et al. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol.1995; 2:683-695
    [6]Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem.1995; 64:763-797
    [7]Michaud M, Jourdan E, Villet A, Ravel A, Grosset C, Peyrin E. A DNA aptamer as a new target-specific chiral selector for HPLC. J Am Chem Soc.2003; 125:8672-8679
    [8]Jayasena SD. Aptamers:an emerging class of molecules that rival antibodies in diagnostics. Clin Chem.1999; 45:1628-1650
    [9]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science.1990; 249:505-510
    [10]Marshall KA, Ellington AD. In vitro selection of RNA aptamers. Methods Enzymol. 2000;318:193-214
    [11]Famulok M. Oligonucleotide aptamers that recognize small molecules. Curr Opin Struct Biol.1999; 9:324-329
    [12]Goringer HU, Homann M, Lorger M. In vitro selection of high-affinity nucleic acid ligands to parasite target molecules. Int J Parasitol.2003; 33:1309-1317
    [13]Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem.1999; 68:611-647
    [14]Green LS, Jellinek D, Jenison R, Ostman A, Heldin CH, Janjic N. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry.1996; 35: 14413-14424
    [15]Jellinek D, Green LS, Bell C, Janjic N. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry.1994; 33: 10450-10456
    [16]Mann D, Reinemann C, Stoltenburg R, Strehlitz B. In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun.2005; 338: 1928-1934
    [17]Duconge F, Toulme JJ. In vitro selection identifies key determinants for loop-loop interactions:RNA aptamers selective for the TAR RNA element of HIV-1. RNA. 1999; 5:1605-1614
    [18]Toulme JJ, Darfeuille F, Kolb G, Chabas S, Staedel C. Modulating viral gene expression by aptamers to RNA structures. Biol Cell.2003; 95:229-238
    [19]Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature.1992; 355:564-566
    [20]Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem.2001; 276:16464-16468
    [21]Wang C, Zhang M, Yang G, et al. Single-stranded DNA aptamers that bind differentiated but not parental cells:subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol.2003; 102:15-22
    [22]Ulrich H, Magdesian MH, Alves MJ, Colli W. In vitro selection of RNA aptamers that bind to cell adhesion receptors of Trypanosoma cruzi and inhibit cell invasion. J Biol Chem.2002; 277:20756-20762
    [23]Rimmele M. Nucleic acid aptamers as tools and drugs:recent developments. Chembiochem.2003; 4:963-971
    [24]Patel DJ. Structural analysis of nucleic acid aptamers. Curr Opin Chem Biol.1997; 1: 32-46
    [25]Patel DJ, Suri AK, Jiang F, et al. Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol.1997; 272:645-664
    [26]Burmeister PE, Lewis SD, Silva RF, et al. Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. Chem Biol.2005; 12:25-33
    [27]Kopylov AM, Spiridonova VA. [Combinatorial chemistry of nucleic acids:SELEX]. Mol Biol (Mosk).2000; 34:1097-1113
    [28]Masud MM, Kuwahara M, Ozaki H, Sawai H. Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX. Bioorg Med Chem.2004; 12: 1111-1120
    [29]Vaish NK, Larralde R, Fraley AW, Szostak JW, McLaughlin LW. A novel, modification-dependent ATP-binding aptamer selected from an RNA library incorporating a cationic functionality. Biochemistry.2003; 42:8842-8851
    [30]Golden MC, Collins BD, Willis MC, Koch TH. Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J Biotechnol.2000; 81:167-178
    [31]Andreola ML, Calmels C, Michel J, Toulme JJ, Litvak S. Towards the selection of phosphorothioate aptamers optimizing in vitro selection steps with phosphorothioate nucleotides. Eur J Biochem.2000; 267:5032-5040
    [32]Jhaveri S, Olwin B, Ellington AD. In vitro selection of phosphorothiolated aptamers. Bioorg Med Chem Lett.1998; 8:2285-2290
    [33]King DJ, Bassett SE, Li X, et al. Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-kappa B RelA(p65) and p50. Biochemistry.2002; 41:9696-9706
    [34]Liu J, Stormo GD. Combining SELEX with quantitative assays to rapidly obtain accurate models of protein-DNA interactions. Nucleic Acids Res.2005; 33:e141
    [35]Tombelli S, Minunni M, Luzi E, Mascini M. Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry.2005; 67:135-141
    [36]Stoltenburg R, Reinemann C, Strehlitz B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem.2005; 383:83-91
    [37]Kikuchi K, Umehara T, Fukuda K, et al. RNA aptamers targeted to domain II of hepatitis C virus IRES that bind to its apical loop region. J Biochem.2003; 133: 263-270
    [38]Murphy MB, Fuller ST, Richardson PM, Doyle SA. An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res.2003; 31:e110
    [39]Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res.2002; 62:4029-4033
    [40]Schneider D, Gold L, Platt T. Selective enrichment of RNA species for tight binding to Escherichia coli rho factor. FASEB J.1993; 7:201-207
    [41]Bianchini M, Radrizzani M, Brocardo MG, Reyes GB, Gonzalez Solveyra C, Santa-Coloma TA. Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein. J Immunol Methods.2001; 252:191-197
    [42]Mendonsa SD, Bowser MT. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Anal Chem.2004; 76:5387-5392
    [43]Tang J, Xie J, Shao N, Yan Y. The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis.2006; 27: 1303-1311
    [44]Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem.2005; 77: 6107-6112
    [45]Yang X, Li X, Prow TW, et al. Immunofluorescence assay and flow-cytometry selection of bead-bound aptamers. Nucleic Acids Res.2003; 31:e54
    [46]Tsai RY, Reed RR. Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz. Mol Cell Biol.1998; 18: 6447-6456
    [47]Misono TS, Kumar PK. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem.2005; 342:312-317
    [48]Homann M, Goringer HU. Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res.1999; 27:2006-2014
    [49]Beinoraviciute-Kellner R, Lipps G, Krauss G In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae. FEBS Lett.2005; 579:4535-4540
    [50]Shi H, Fan X, Ni Z, Lis JT. Evolutionary dynamics and population control during in vitro selection and amplification with multiple targets. RNA.2002; 8:1461-1470
    [51]Davis KA, Abrams B, Lin Y, Jayasena SD. Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res.1996; 24:702-706
    [52]Rhie A, Kirby L, Saver N, et al. Characterization of 2'-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J Biol Chem.2003; 278:39697-39705
    [53]Bruno JG In vitro selection of DNA to chloroaromatics using magnetic microbead-based affinity separation and fluorescence detection. Biochem Biophys Res Commun.1997; 234:117-120
    [54]Theis MG, Knorre A, Kellersch B, et al. Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc Natl Acad Sci USA. 2004; 101:11221-11226
    [55]Bridonneau P, Chang YF, Buvoli AV, O'Connell D, Parma D. Site-directed selection of oligonucleotide antagonists by competitive elution. Antisense Nucleic Acid Drug Dev.1999; 9:1-11
    [56]Fitzwater T, Polisky B. A SELEX primer. Methods Enzymol.1996; 267:275-301
    [57]Naimuddin M, Kitamura K, Kinoshita Y, et al. Selection-by-function:efficient enrichment of cathepsin E inhibitors from a DNA library. J Mol Recognit.2007; 20: 58-68
    [58]Conrad RC, Baskerville S, Ellington AD. In vitro selection methodologies to probe RNA function and structure. Mol Divers.1995; 1:69-78
    [59]Chenna R, Sugawara H, Koike T, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res.2003; 31:3497-3500
    [60]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.1994; 22:4673-4680
    [61]Horn WT, Convery MA, Stonehouse NJ, et al. The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid:further challenges in the modeling of ligand-RNA interactions. RNA.2004; 10:1776-1782
    [62]Nishikawa F, Funaji K, Fukuda K, Nishikawa S. In vitro selection of RNA aptamers against the HCV NS3 helicase domain. Oligonucleotides.2004; 14:114-129
    [63]Jiang L, Suri AK, Fiala R, Patel DJ. Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chem Biol.1997; 4:35-50
    [64]Lee SK, Park MW, Yang EG, Yu J, Jeong S. An RNA aptamer that binds to the beta-catenin interaction domain of TCF-1 protein. Biochem Biophys Res Commun. 2005; 327:294-299
    [65]Andreola ML, Pileur F, Calmels C, et al. DNA aptamers selected against the HIV-1 RNase H display in vitro antiviral activity. Biochemistry.2001; 40:10087-10094
    [66]Macaya RF, Schultze P, Smith FW, Roe JA, Feigon J. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci U S A.1993; 90:3745-3749
    [67]Wilson C, Nix J, Szostak J. Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry.1998; 37:14410-14419
    [68]Bruno JG, Kiel JL. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron.1999; 14:457-464
    [69]Brown D, Brown J, Kang C, Gold L, Allen P. Single-stranded RNA recognition by the bacteriophage T4 translational repressor, regA. J Biol Chem.1997; 272: 14969-14974
    [70]Cho JS, Lee YJ, Shin KS, Jeong S, Park J, Lee SW. In vitro selection of specific RNA aptamers for the NFAT DNA binding domain. Mol Cells.2004; 18:17-23
    [71]Harada K, Frankel AD. Identification of two novel arginine binding DNAs. EMBO J. 1995; 14:5798-5811
    [72]Tahiri-Alaoui A, Frigotto L, Manville N, Ibrahim J, Romby P, James W. High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res.2002; 30:e45
    [73]Forster C, Brauer AB, Brode S, et al. Comparative crystallization and preliminary X-ray diffraction studies of locked nucleic acid and RNA stems of a tenascin C-binding aptamer. Acta Crystallogr Sect F Struct Biol Cryst Commun.2006; 62: 665-668
    [74]Kelly JA, Feigon J, Yeates TO. Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG). J Mol Biol.1996; 256: 417-422
    [75]Schneider C, Suhnel J. A molecular dynamics simulation of the flavin mononucleotide-RNA aptamer complex. Biopolymers.1999; 50:287-302
    [76]Soukup GA, Breaker RR. Relationship between internucleotide linkage geometry and the stability of RNA. RNA.1999; 5:1308-1325
    [77]Rhodes A, Deakin A, Spaull J, et al. The generation and characterization of antagonist RNA aptamers to human oncostatin M. J Biol Chem.2000; 275:28555-28561
    [78]Dougan H, Lyster DM, Vo CV, Stafford A, Weitz JI, Hobbs JB. Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl Med Biol.2000; 27: 289-297
    [79]Marro ML, Daniels DA, McNamee A, et al. Identification of potent and selective RNA antagonists of the IFN-gamma-inducible CXCL10 chemokine. Biochemistry. 2005; 44:8449-8460
    [80]Kimoto M, Endo M, Mitsui T, Okuni T, Hirao I, Yokoyama S. Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs. Chem Biol.2004; 11:47-55
    [81]Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S. Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem.2006; 139:383-390
    [82]Burke DH, Scates L, Andrews K, Gold L. Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J Mol Biol.1996; 264:650-666
    [83]Pan W, Craven RC, Qiu Q, et al. Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc Natl Acad Sci U S A.1995; 92:11509-11513
    [84]Yoshida W, Sode K, Ikebukuro K. Aptameric enzyme subunit for biosensing based on enzymatic activity measurement. Anal Chem.2006; 78:3296-3303
    [85]Potti A, Rusconi CP, Sullenger BA, Ortel TL. Regulatable aptamers in medicine: focus on antithrombotic strategies. Expert Opin Biol Ther.2004; 4:1641-1647
    [86]Nimjee SM, Rusconi CP, Sullenger BA. Aptamers:an emerging class of therapeutics. Annu Rev Med.2005; 56:555-583
    [1]Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature.1992; 355:564-566
    [2]Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature.1990; 346:818-822
    [3]Hoppe-Seyler F, Butz K. Peptide aptamers:powerful new tools for molecular medicine. J Mol Med.2000; 78:426-430
    [4]Buzea C, Pacheco, Ⅱ, Robbie K. Nanomaterials and nanoparticles:sources and toxicity. Biointerphases.2007; 2:MR17-71
    [5]Parak WJ, Gerion D, Pellegrino T, et al. Biological Applications of Colloidal Nanocrystals. Nanotechnology.2003; 14:15-27
    [6]Wang J. Nanomaterial-based electrochemical biosensors. Analyst.2005; 130:421-426
    [7]Frimpong RA, Hilt JZ. Magnetic nanoparticles in biomedicine:synthesis, functionalization and applications. Nanomedicine (Lond).5:1401-1414
    [8]Cuenot S, eacute, phane, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B.2004; 69: 165410
    [9]Murray CB, Kagan CR. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science.2000; 30:66
    [10]Chen X, Xu S, Yao N, Shi Y.1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett.10:2133-2137
    [11]Maojo V, Martin-Sanchez F, Kulikowski C, Rodriguez-Paton A, Fritts M. Nanoinformatics and DNA-based computing:catalyzing nanomedicine. Pediatr Res. 67:481-489
    [12]Jha N, Ramaprabhu S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. Nanoscale.2:806-810
    [13]Jaffer FA, Nahrendorf M, Sosnovik D, Kelly KA, Aikawa E, Weissleder R. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging.2006; 5:85-92
    [14]Park HS, Kim CW, Lee HJ, et al. A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery. Nanotechnology.21:225101
    [15]Lee PY, Wong KK. Nanomedicine:A New Frontier in Cancer Therapeutics. Curr Drug Deliv.
    [16]Shim M, Kam NWS, Chen RJ, Li Y, Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Letters.2002; 2:3
    [17]Tim S. Aptamers and SELEX:the technology. World Patent Information.2003; 25:7
    [18]Huizenga DE, Szostak JW. A DNA aptamer that binds adenosine and ATP. Biochemistry.1995; 34:656-665
    [19]Fang X, Tan W. Aptamers generated from cell-SELEX for molecular medicine:a chemical biology approach. Acc Chem Res.43:48-57
    [20]Li S, Xu H, Ding H, et al. Identification of an aptamer targeting hnRNP Al by tissue slide-based SELEX. J Pathol.2009; 218:327-336
    [21]Shangguan D, Cao ZC, Li Y, Tan W. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem.2007; 53: 1153-1155
    [22]Tang J, Yu T, Guo L, Xie J, Shao N, He Z. In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. Biosens Bioelectron.2007; 22: 2456-2463
    [23]Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nature Reviews Drug Discovery.2010; 62:14
    [24]Zhou J, Battig MR, Wang Y. Aptamer-based molecular recognition for biosensor development. Anal Bioanal Chem.398:2471-2480
    [25]Osborne SE, Matsumura I, Ellington AD. Aptamers as therapeutic and diagnostic reagents:problems and prospects. Curr Opin Chem Biol.1997; 1:5-9
    [26]Chen Y, Munteanu AC, Huang YF, et al. Mapping receptor density on live cells by using fluorescence correlation spectroscopy. Chemistry.2009; 15:5327-5336
    [27]Green LS, Jellinek D, Bell C, et al. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol.1995; 2:683-695
    [28]Gold L, Polisky B, Uhlenbeck 0, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem.1995; 64:763-797
    [29]Burmeister PE, Lewis SD, Silva RF, et al. Direct in vitro selection of a 2'-0-methyl aptamer to VEGF. Chem Biol.2005; 12:25-33
    [30]Hosie HE, Todd JG. Persistent erection and general anaesthesia. Anaesthesia.1991; 46: 76
    [31]W S, Arthur F, Ernst B. Controlled growth of mono-disperse silica spheres in the micron size range. Journal of Colloid and Interface Science.1968; 26:
    [32]Arriagada FJ, Osseo-Asare K. Synthesis of Nanometer-Sized Silica by Controlled Hydrolysis in Reverse Micellar Systems. The Colloid Chemistry of Silica.1994; 234: 16
    [33]Wang L, Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett.2006; 6:84-88
    [34]Lian W, Litherland SA, Badrane H, et al. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem.2004; 334:135-144
    [35]Wang Y, Wang Y, Liu B. Fluorescent detection of ATP based on signaling DNA aptamer attached silica nanoparticles. Nanotechnology.2008; 19:415605
    [36]Wang X, Zhou J, Yun W, et al. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)3(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta.2007; 598:242-248
    [37]M E, M OD, X C, W. T. Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring. Nano Res 2009; 2:14
    [38]Chen X, Estevez MC, Zhu Z, et al. Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem. 2009; 81:7009-7014
    [39]Smith JE, Medley CD, Tang Z, Shangguan D, Lofton C, Tan W. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem. 2007; 79:3075-3082
    [40]Herr JK, Smith JE, Medley CD, Shangguan D, Tan W. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem.2006; 78:2918-2924
    [41]Daniel MC, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev.2004; 104:293-346
    [42]Sau TK, Pal A, Jana NR, Wang ZL, Pal T. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. Journal of Nanoparticle Research.2001; 3:5
    [43]Liu J, Lu Y. Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods Mol Biol.2006; 335:275-288
    [44]Chah S, Hammond MR, Zare RN. Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol.2005; 12:323-328
    [45]Kanjanawarut R, Su X. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem.2009; 81:6122-6129
    [46]Liu G, Mao X, Phillips JA, Xu H, Tan W, Zeng L. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal Chem.2009; 81:10013-10018
    [47]Huang CC, Chiu SH, Huang YF, Chang HT. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Anal Chem.2007; 79:4798-4804
    [48]Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C. Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small. 6:201-204
    [49]Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA. Aptamer nano-flares for molecular detection in living cells. Nano Lett.2009; 9:3258-3261
    [50]Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett.2009; 9:308-311
    [51]Iijima S. Helical microtubules of graphitic carbon. Nature.1991; 354:3
    [52]Martin RB, Qu L, Lin Y, et al. Functionalized Carbon Nanotubes with Tethered Pyrenes:Synthesis and Photophysical Properties. J Phys Chem B.2004; 108:12
    [53]Cui D, Pan B, Zhang H, et al. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Anal Chem.2008; 80:7996-8001
    [54]So HM, Park DW, Chang H, Lee JO. Carbon nanotube biosensors with aptamers as molecular recognition elements. Methods Mol Biol.625:239-249
    [55]Kam NW, Dai H. Carbon nanotubes as intracellular protein transporters:generality and biological functionality. J Am Chem Soc.2005; 127:6021-6026
    [56]Zheng M, Jagota A, Semke ED, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater.2003; 2:338-342
    [57]Wang S, Humphreys ES, Chung SY, et al. Peptides with selective affinity for carbon nanotubes. Nat Mater.2003; 2:196-200
    [58]Gigliotti B, Sakizzie B, Bethune DS, Shelby RM, Cha JN. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano Lett. 2006; 6:159-164
    [59]Zhao X, Johnson JK. Simulation of adsorption of DNA on carbon nanotubes. J Am Chem Soc.2007; 129:10438-10445
    [60]Yang R, Jin J, Chen Y, et al. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc.2008; 130:8351-8358
    [61]Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc.2008; 130: 10856-10857
    [62]Robertson D, Tiersch B, Kosmella S, Koetz J. Preparation of crystalline gold nanoparticles at the surface of mixed phosphatidylcholine-ionic surfactant vesicles. J Colloid Interface Sci.2007; 305:345-351
    [63]Murphy CJ, Sau TK, Gole AM, et al. Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications. J Phys Chem B.2005; 109:13857-13870
    [64]Cubukcu E, Kort EA, Crozier KB, Capasso F. Plasmonic laser antenna. Applied Physics Letters.2006; 89:
    [65]Yu Y-Y, Chang S-S, Lee C-L, Wang CRC. Gold Nanorods:Electrochemical Synthesis and Optical Properties. J Phys Chem B.1997; 101:4
    [66]Abdelmoti LG, Zamborini FP. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces. Langmuir.26:13511-13521
    [67]Ma Z, Ding T. Bioconjugates of Glucose Oxidase and Gold Nanorods Based on Electrostatic Interaction with Enhanced Thermostability. Nanoscale Res Lett.2009; 4: 1236-1240
    [68]Yu C, Irudayaraj J. Multiplex biosensor using gold nanorods. Anal Chem.2007; 79: 572-579
    [69]Dujardin E, Hsin L-B, Wang CRC, Mann S. DNA-driven self-assembly of gold nanorods. Chem Commun.2001:2
    [70]Niidome T, Yamagata M, Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release.2006; 114:343-347
    [71]Liao H, Hafner JH. Gold nanorod bioconjugates. Chemistry of Materials.2005; 17:6
    [72]Castellana ET, Gamez RC, Gomez ME, Russell DH. Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry. Langmuir.26: 6066-6070
    [73]Huang YF, Chang HT, Tan W. Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem.2008; 80:567-572
    [74]GOU L, J MC. Fine-tuning the shape of gold nanorods. Chemistry of materials 2005; 17:5
    [75]Garcia-Vidal FJ, Pendry JB. Collective Theory for Surface Enhanced Raman Scattering. Phys Rev Lett.1996; 77:1163-1166
    [76]Orendorff CJ, Gearheart L, Jana NR, Murphy CJ. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys.2006; 8:165-170
    [77]Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics.1978; 69:4159
    [78]Wang Y, Lee K, Irudayaraj J. SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun (Camb).46:613-615
    [79]Lin S, Xie X, Patel MR, et al. Quantum dot imaging for embryonic stem cells. BMC Biotechnol.2007; 7:67
    [80]Riehle MO. Biocompatibility:Nanomaterials for cell- and tissue engineering NanoBiotechnology.2005; 1:2
    [81]Wu Z, Zhang B, Yan B. Regulation of enzyme activity through interactions with nanoparticles. Int J Mol Sci.2009; 10:4198-4209
    [82]Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res.2008; 14:1310-1316
    [83]Li Z, Jin R, Mirkin CA, Letsinger RL. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res.2002; 30:1558-1562
    [84]Xu L, Guo Y, Xie R, Zhuang J, Yang W, Li T. Three-dimensional assembly of Au nanoparticles using dipeptides. Nanotechnology 2002; 13:4
    [85]Turos E, Shim JY, Wang Y, et al. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett. 2007; 17:53-56
    [86]Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials.2007; 28: 4600-4607
    [87]Bothun GD. Hydrophobic silver nanoparticles trapped in lipid bilayers:Size distribution, bilayer phase behavior, and optical properties. J Nanobiotechnology. 2008;.6:13
    [88]Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev.2001; 47: 113-131
    [89]Wang T, Yang S, Petrenko VA, Torchilin VP. Cytoplasmic delivery of liposomes into MCF-7 breast cancer cells mediated by cell-specific phage fusion coat protein. Mol Pharm.7:1149-1158
    [90]Zhu J, Yan F, Guo Z, Marchant RE. Surface modification of liposomes by saccharides: vesicle size and stability of lactosyl liposomes studied by photon correlation spectroscopy. J Colloid Interface Sci.2005; 289:542-550
    [91]Kang H, O'Donoghue MB, Liu H, Tan W. A liposome-based nanostructure for aptamer directed delivery. Chem Commun (Camb).46:249-251
    [92]Liu H, Zhu Z, Kang H, Wu Y, Sefan K, Tan W. DNA-based micelles:synthesis, micellar properties and size-dependent cell permeability. Chemistry.16:3791-3797
    [93]Wu Y, Sefah K, Liu H, Wang R, Tan W. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A.107:5-10
    [94]Wan AC, Ying JY. Nanomaterials for in situ cell delivery and tissue regeneration. Adv Drug Deliv Rev.62:731-740
    [95]Jayawarna V, Ali M, Miller AF, Saiani A, Gough JE, Ulijn RV. Design of nanostructured hydrogels for 3D cell culture through self assembly of Fmoc-dipeptides. Advanced Materials.2006; 18:4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700