氧化石墨烯的表面酸碱性质及其对U(Ⅵ)和Th(Ⅳ)的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化石墨烯(GO)是一种新型碳纳米材料,具有独特的物化性质及广泛的应用前景。GO表面有大量的含氧基团,可强烈吸附重金属离子,有望应用于放射性废水处理。因此,研究氧化石墨烯的表面酸碱性质及其对放射性核素的吸附作用具有重要意义。
     采用Hummers法制备了氧化石墨并通过超声波处理得到了GO;用氢氧化钠溶液纯化了GO,同时分离并纯化了氧化碎片(CFs);采用FT-IR、拉曼光谱、XRD、TEM和XPS等手段对CFs以及除去CFs前(ASGO)、后(BWGO)的氧化石墨烯进行了详细表征;用连续电位滴定法研究了BWGO的表面酸碱性质。结果表明,CFs对GO在水溶液中的分散性、表面电荷密度、导电性以及对重金属离子的吸附等均具有显著影响,去除CFs非常必要。解吸动力学研究表明,在氢氧化钠溶液中,CFs的解吸是一个相对缓慢的动力学过程。氧化程度不同的BWGO均含-COOH、-OH、C=C和六元环等官能团,但随着氧化程度的增大,其比表面积和含氧官能团数量逐渐增加。
     采用批式法分别研究了U(Ⅵ)和Th(Ⅳ)在不同氧化程度的BWGO上的吸附行为。结果表明,随着氧化程度的增加,BWGO对U(Ⅵ)和Th(Ⅳ)的吸附能力显著增强;离子强度对吸附的影响较弱;U(Ⅵ)和Th(Ⅳ)可能主要以表面配合反应被吸附;Langmuir模型可以解释U(Ⅵ)和Th(Ⅳ)的吸附等温线,拟合得到的最大吸附量为10-4-10-3mol/g,表明GO是一种U(Ⅵ)和Th(Ⅳ)的优秀吸附材料。
As a new carbon nanomaterial, graphene oxide (GO) has unique physicochemical properties and extensive application prospects. GO contains a large number of surface functional groups that strongly promote the adsorption of heavy metal ions, may be applied in liquid radioactive waste treatment. Therefore, it's of significance to study the acid-base chemistry and the adsorption of radionuclides on graphene oxide.
     Graphite oxide was prepared from purified natural graphite by Hummers method. GO was obtained by ultrasonic treatment of the graphite oxide, and purified with sodium hydroxide solution, meanwhile oxidation debris (carbonaceous fragments, CFs) was isolated and purified. CFs, GO before (ASGO) and after (BWGO) removal of CFs were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The acid-base chemistry of BWGO was studied by continuous potentiometric titrations. It was found that CFs significantly influence the dispersibility, surface charge density, adsorption of heavy metals on GO and electrical conductivity of graphene produced from reduction of GO, therefore it's necessary to remove CFs from GO. The desorption kinetics of CFs in NaOH solution was relatively slow. Although BWGOs at different oxidation levels contain the same groups, such as-COOH,-OH, C=C and hexatomic ring, the oxygen-containing functional groups and specific surface area increase with increasing oxidation level.
     The adsorption of U(Ⅵ) and Th(Ⅳ) on BWGO at different oxidation levels were carried out by batch experiments. It was found that with the increase of oxidation degree, the adsorption capacities of U(Ⅵ) and Th(Ⅳ) are significantly enhanced. Ionic strength has a weak effect on the adsorption, indicating that the adsorption of U(Ⅵ) and Th(Ⅳ) is mainly via surface complexation reactions. The adsorption isotherms of U(Ⅵ) and Th(Ⅳ)can be interpreted by Langmuir model, which give a maximum adsorption capacity range in104-10"3mol/g, suggesting that GO is an excellent adsorbate for U(Ⅵ) and Th(Ⅳ).
引文
[1]Novoselv KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Elec-tric field effect in atomically thin carbon films. Science,2004,306:666-9.
    [2]Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005, 438(7065):197-200.
    [3]Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature,2006,442(7100):282-6.
    [4]Geim AK, Novoselov KS. The rise of graphene. Nat Mater,2007; 6(3):183-91.
    [5]Pereira JM, Vasilopoulos P, Peeters FM. Tunable quantum dots in bilayer graphene. Nano Lett, 2007,7(4):946-9.
    [6]Wu J, Pisula W, Mullen K. Graphenes as potential material for electronics. Chem Rev,2007, 107(3):718-47.
    [7]Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett, 2008,8(10):3498-502.
    [8]McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater,2007, 19(18):4396-404.
    [9]Allen MJ, Tung VC, Kaner RB. Honeycomb carbon:a review of graphene. Chem Rev,2010, 110(1):132-45.
    [10]Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol, 2009,4(4):217-24.
    [11]Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scale graphene. Nat Nanotechnol,2009,4(1):25-9.
    [12]Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev,2010,39(1):228-40.
    [13]Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett,2007, 7(11):499-503.
    [14]Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008,2(3):463-70.
    [15]Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol,2008,3(5):270-4.
    [16]Wu X, Sprinkle M, Li X, Ming F, Berger C, de Heer WA. Epitaxial-graphene/graphene-oxide junction:an essential step towards epitaxial graphene electronics. Phys Rev Lett,2008, 101(2):26801-4.
    [17]Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett,2008,8(10):3137-40.
    [18]Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH. Practical chemical sensors from chemically derived graphene. ACS Nano,2009,3(2):301-6.
    [19]Liu Z, Wang Y, Zhang X, Xu Y, Chen Y, Tian J. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl Phys Lett,2009,94(2):21902-3.
    [20]Luo Z, Vora PM, Mele EJ, Johnson ATC, Kikkawa JM. Photoluminescence and band gap modulation in grapheme oxide. Appl Phys Lett,2009,94(11):111903-9.
    [21]Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP. Hydrothermal dehydration for the "Green" reduction of exfoliated grapheme oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater,2009,21(13):2950-6.
    [22]Ghosh S, Sarker BK, Chunder A, Zhai L, Khondaker SI. Position dependent photodetector from large area reduced graphene oxide thin films. Appl Phys Lett,2010,96(16):163103-9.
    [23]Zhao B, Cao B, Zhou W, Li D, Zhao W. Nonlinear optical transmission of nanographene and its composites. J Phys Chem C,2010,114(29):12517-23.
    [24]Wang L, Lee K, Sun Y, Lucking M, Chen Z, Zhao J, et al. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano,2009,3(10):2995-3000.
    [25]Xu J, Wang K, Zu S, Han B, Wei Z. Hierarchical nanocomposites of polyaniline nanowire arrays on grapheme oxide sheets with synergistic effect for energy storage. ACS Nano,2010, 4(9):5019-26.
    [26]Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol,2008,3(6): 327-31.
    [27]Liu L, Wang L, Gao J, Zhao J, Gao X, Chen Z. Amorphous structural models for graphene oxide. Carbon,2012,50:1690-8.
    [28]Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JDD, Rojas-Cervantes ML, Martin-Aranda RM. Study of oxygencontaining groups in a series of graphite oxides: physical and chemical characterization. Carbon,1995,33(11):1585-92.
    [29]He H, Riedl T, Lerf A, Klinowski J. Solid-state NMR studies of the structure of graphite oxide. J Phys Chem,1996,100(51):19954-8.
    [30]Lerf A, He H, Riedl T, Forster M, Klinowski J.13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics,1997,101-103(Pt 2):857-62.
    [31]He H, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chem Phys Lett,1998,287(1-2):53-6.
    [32]Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B, 1998,102(23):4477-82.
    [33]Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater,2006, 18(11):2740-9.
    [34]Jeong HK, Lee YP, Lahaye R, Park MH, An KH, Kim IJ, et al. Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc,2008,130(4):1362-6.
    [35]Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem,2009,1(5):403-8.
    [36]Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, et al. Atomic and electronic structure of graphene-oxide. Nano Lett,2009,9(3):1058-63.
    [37]Gomez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, et al. Atomic structure of reduced graphene oxide. Nano Lett,2010,10(4):1144-8.
    [38]Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A. Determination of the local chemical structure of grapheme oxide and reduced graphene oxide. Adv Mater,2010,22(40):4467-72.
    [39]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007, 45(7):1558-65.
    [40]Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation. Adv Mater,2008, 20(23):4490-3.
    [41]Liu L, Ryu SM, Tomasik MR, Stolyarova E, Jung N, Hybertsen MS, et al. Graphene oxidation:thickness-dependent etchingand strong chemical doping. Nano Lett,2008,8(7): 1965-70.
    [42]Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon,2009,47(1):145-52.
    [43]Li X, Wang Ⅱ, Robinson JT, Sanchez H, Diankov G, Dai H. Simultaneous nitrogen doping and reduction of grapheme oxide. J Am Chem Soc,2009,131(43):15939-44.
    [44]Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett,2008,8(1):36-41.
    [45]Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science,2008,321(5897): 1815-7.
    [46]Zhao G, Wen T, Yang X, Yang S, Liao J, Hu J, Shao D, Wang X. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans,2012, 41(20):6182-8.
    [47]Lin LC, Thirumavalavan M, Wang YT, Lee JF. Effect of preparation conditions on the adsorption of heavy metal ions from aqueous solution by mesoporous silica materials prepared using organic template (HDTMAB). J Chem Eng Data,2010,55:3667-73.
    [48]Thirumavalavan M, Lai YL, Lin LC. Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution:Langmuir adsorption isotherms. J Chem Eng Data,2010,55:1186-92.
    [49]Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Functionalization of Graphene:Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem Rev,2012,112:6156-214.
    [50]Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feista B, Wrzalikb R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans,2013,42(16):5682-9.
    [51]Whitby R, Korobeinyk A, Glevatska K, Morphological changes and covalent reactivity assessment of single-layer graphene oxides under carboxylic group-targeted chemistry. Carbon,2011,49:718-36.
    [52]Guo Z, Xu J, Shi K, Tang Y, Wu W, Tao Z. Eu (Ⅲ) adsorption/desorption on Na-bentonite: Experimental and modeling studies. Colloids Surf A,2009,339(1-3):126-133.
    [53]Swedlund PJ, Webster JG, Miskelly GM. Goethite adsorption of Cu (Ⅱ), Pb (Ⅱ), Cd (Ⅱ), and Zn (II) in the presence of sulfate:Properties of the ternary complex. Geochim Cosmochim Acta,2009,73(6):1548-1562.
    [54]Tertre E, Castet S, Berger G, Loubet M, Giffaut E. Surface chemistry of kaolinite and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60 C:Experimental and modeling study. Geochim Cosmochim Acta,2006,70(18):4579-4599.
    [55]Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S. Effect of Mild Nitric Acid Oxidation on Dispersability, Size, and Structure of Single-Walled Carbon Nanotubes. Chem Mater, 2007,19:5765-72.
    [56]Verdejo R, Lamoriniere S, Cottam B, Bismarck A, Shaffer M. Removal of oxidation debris from multi-walled carbon nanotubes. Chem Commun,2007,513-5.
    [57]Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR. The Real Graphene Oxide Revealed:Stripping the Oxidative Debris from the Graphene-like Sheets. Angew Chem Int Edit,2011,50(14):3173-7.
    [58]Fogden S, Verdejo R, Cottam B, Shaffer M. Purification of single walled carbon nanotubes: The problem with oxidation debris. Chem Phys Lett,2008,460(1-3):162-7.
    [59]Shen.1, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M. Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets. Chem Mater,2009,21(15):3514-20.
    [60]Price BK, Lomeda JR, Tour JM. Aggressively Oxidized Ultra-Short Single-Walled Carbon Nanotubes Having Oxidized Sidewalls. Chem Mater,2009,21(17):3917-23.
    [61]Rosca ID, Watari F, Uo M, Akasaka T.Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon,2005,43(15):3124-31.
    [62]Wang Z, Shirley MD, Meikle ST, Whitby RL.D, Mikhalovsky SV. The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon,2009,47(1):73-9.
    [63]Rinaldi A, Frank B, Su DS, Hamid SBA, Schlogl R. Facile Removal of Amorphous Carbon from Carbon Nanotubes by Sonication. Chem Mater 2011,23(4):926-8.
    [64]Salzmann CG, Llewellyn SA, Tobias G, Ward MA.H, Huh Y, Green ML.H. The Role of Carboxylated Carbonaceous Fragments in the Functionalization and Spectroscopy of a Single-Walled Carbon-Nanotube Material. Adv Mater,2007,19(6):883-7
    [65]Yang S, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci,2010,351:122-7.
    [66]Zhao G, Li J, Ren X, Chen C, Wang X. Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management. Environ Sci Technol,2011, 45(24):10454-62
    [67]Sun Y, Wang Q, Chen C, Tan X and Wang X. Interaction between Eu (Ⅲ) and graphene oxide nanosheets investigated by batch, EXAFS spectroscopy and modeling techniques. Environ Sci Technol,2012,46:6020-7.
    [68]Zhang K, Dwivedi V, Chi C, Wu J. Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater,2010,182:162-8.
    [69]Barroso-Bujans F, Cerveny S, Alegria A. Sorption and desorption behavior of water and organic solvents from graphite oxide. Carbon,2010,48:3277-86.
    [70]Liu L, Liu S, Zhang Q, Li C, Bao C, Liu X, Xiao P. Adsorption of Au(Ⅲ), Pd(Ⅱ), and Pt(Ⅳ) from Aqueous Solution onto Graphene Oxide. J Chem Eng Data,2013,58(2):209-16.
    [71]Li Z, Chen F, Yuan Y, Liu Y, Zhao Y, Chai Z, Shi W. Uranium(Ⅵ) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J,2012,210:539-46.
    [72]Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc,1958,80: 1339.
    [73]Mei X. Ouyang J. Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon,2011,49(15):5389-97.
    [74]Gao Y, Chen X, Xu H, Zou Y, Gu R, Xu M, Jen A, Chen H. Highly-efficient fabrication of nanoscrolls from functionalized graphene oxide by Langmuir-Blodgett method. Carbon, 2010,48(15):4475-82.
    [75]Chen W, Yan L, Bangal PR. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon,2010,48(4):1146-52.
    [76]Ramm M, Ata M, Brzezinka KW, Gross T, Unger W. Studies of amorphous carbon using X-ray photoelectron spectroscopy, near-edge X-ray-absorption fine structure and Raman spectroscopy. Thin Solid Films,1999,354(1-2):106-110.
    [77]Valentini L, Cantalini C, Lozzi L, Armentano I, Kenny J, Santucci S. Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications. Mater Sci Eng C,2003, 23(4):523-529.
    [78]Okpalugo T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N. High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon,2005,43(1): 153-161.
    [79]Hsiao M, Liao S, Yen M, Liu P, Pu N, Wang C, Ma C. Preparation of Covalently Functionalized Graphene Using Residual Oxygen-Containing Functional Groups. Appl Mater Inter,2010,2(11):3092-9.
    [80]Zhang L, Liang J, Huang Y, Ma Y, Wang Y, Chen Y.Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon,2009,47(14):3365-8.
    [81]Mei X, Ouyang J. Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon,2011,49:5389-97.
    [82]Luo Z, Lu Y, Somers LA., Johnson ATC. High Yield Preparation of Macroscopic Graphene Oxide Membranes. J Am Chem Soc,2009,131:898-9.
    [83]Fairhurst AJ, Warwick P. The influence of humic acid on europium-mineral interactions. Colloids Surf A,1998,145:229-34.
    [84]Fan Q, Tan X, Li J, Wang X, Wu W, Montavon G. Sorption of Eu(Ⅲ) on Attapulgite Studied by Batch, XPS, and EXAFS Techniques. Environ Sci Technol,2009,43:5776-82.
    [85]吴王锁.放射化学与核化学基础(试用教材),2008,106-109.
    [86]邓冰,刘宁,王和义,蒋树斌.铀的毒性研究进展.中国辐射卫生,2010,19(1):113-6.
    [87]蒋树斌,王和义,钟志京,et al.u(Ⅵ)在人体组织液中的形态模拟.同位素,2011,24(1):52-7.
    [88]Baeyens B, Bradbury MH. A mechanistic description of Ni and Zn sorption on Na-montmorillonite Part I:Titration and sorption measurements. J Contam Hydrol,1997, 27(3-4):199-222.
    [89]Chisholm J. Powder-diffraction patterns and structural models for palygorskite. Canadian Mineralogist,1992,30(1):61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700