新型聚合物电解质基复合质子传输膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜(PEM)作为质子交换膜燃料电池(PEMFC)的核心部件在很大程度上决定了PEMFC性能的好坏。现在广泛应用于PEMFC的PEM是杜邦公司生产的Nafion膜。虽然Nafion膜具有高质子传导、化学稳定性好等优点,但它的质子传导强烈依赖膜内的水含量,高温时膜性能急剧下降,在作为直接甲醇燃料电池(DMFC)的PEM时燃料渗透严重,并且Nafion的生产过程复杂,造价昂贵。这些问题都是影响Nafion广泛应用的重要原因。磺化的芳香族聚电解质由于具有良好的机械性能,化学稳定性和热稳定性,尤其是低于Nafion的甲醇渗透和生产成本,使其在近年的PEM研究中备受科研和能源开发机构的青睐。我们知道,在PEM中质子的传导主要是在膜的亲水区域内,亲水区的连续性越好越有利于质子传导。在磺化的无规共聚物膜中,磺酸基会聚集形成大的离子簇,亲水区之间的相对间距很大,因此质子不能在这种结构中快速的传导。为了获得综合性能好,并且具有连续质子传输通道的PEM,很多方法被用于制备改性PEM。
     在本论文中,我们以磺化芳香聚电解质作为基体,用不同的方法构筑了一系列综合性能好,具有连续离子簇网络和长程质子传输通道的复合质子交换膜材料。具体工作分为四个部分:
     在第一部分工作中,我们利用原位聚合的方法将具有大量酰胺键的聚异丙基丙烯酰胺(PNIPAm)引入到无规共聚合SPI基体中,制备了一系列具有不同PNIPAm含量的SPI-cPNIPAm半互穿网络PEM。PNIPAm中的酰胺键与SPI中的磺酸基之间形成的氢键相作用以及半互穿的三维网络结构能够调节复合膜的微观结构和性能。当磺酸基和酰胺键摩尔比为1:1时,SPI-20%-cPNIPAm膜样品中离子簇尺寸最小,分布均匀且连续,形成了利于质子传导的通道。25oC时,该样品膜的质子传导是纯SPI膜的2倍,电池能量密度由纯膜的44mW cm2提高到72mW cm2。同时复合膜也具有良好的机械性能和热稳定性。
     在第二部分工作中,我们从不同尺寸石墨出发,制备了三种具有不同尺寸的氧化石墨烯(GO)。将不同尺寸的GO与SPI复合,用于考察GO的尺寸效应对SPI/GO复合膜微观结构和性能的影响。研究发现,在相同的含量下,尺寸最小的GO对SPI基体的微观结构和性能影响最大。在最小GO掺杂为0.5wt%的PEM中离子簇从纯SPI膜中的25nm缩小到6nm,分布均匀且连续,形成了有利于质子传导的微观结构。同时25oC下,这个样品膜的质子传导高于纯SPI膜4倍。复合膜的机械性能、抗氧化稳定性、尺寸稳定性和阻醇性能也都有不同程度上的提高。实验结果说明,GO的引入能够调节PEM的微观结构,优化PEM的综合性能。
     在第三部分工作中,我们通过8-羟基喹啉-5-磺酸盐中的羟基与3-异氰酸酯基丙基三乙氧基硅烷中的异氰酸酯的反应,得到了含有氮杂环和磺酸基的有机硅氧烷偶联剂(SiSQ)。在表面活性剂(模板剂)的存在下,采用溶胶-凝胶的方法将SiSQ引入到SPI基体中,得到了一系列含有不同介孔有硅氧烷(MsiSQ)掺杂量的SPI-MSiSQ复合膜。研究发现MSiSQ相与SPI基体之间有更好的相容性,磺酸基的引入减少了掺杂组分对SPI膜中磺酸基浓度的稀释作用。复合膜的质子传导和阻醇性随着MSiSQ含量的增加而增加。当MSiSQ含量为40wt%时,在25oC下,复合膜的质子传导为0.23S cm-1,甲醇渗为1.8×10-8cm2/S,选择性为12.8×106Sscm-3,这与纯膜相比分别提高了3、6、23倍。这主要归因于:一方面是MSiSQ中的喹啉氮原子与SPI中的磺酸基之间的相互作用促使SPI中的大尺寸离子簇分散成尺寸更小的离子簇,在膜中形成了均一连续的质子传输通道;另一方面则是磺化有机硅氧烷中的磺酸基与表面活性剂作用,去除表面活性剂后磺酸基聚集在介孔内,为质子的传导提供了长程的质子传导通道。此外,复合膜的电池性能、机械性能、热稳定性和抗氧化性都有很大程度的提高,有望用于DMFC。
     在第四部分工作中,我们以聚酯纤维为基底,利用GO与SPES之间的氢键相互作用,使两者通过层层组装的方式在聚酯纤维的表面形成GO与SPES组装的多层结构,每一层中磺酸基都沿纤维轴向排列,这为质子的传导提供了长程的质子传导通道,促进质子的快速传导。将SPES与多层组装聚酯纤维复合,并对复合膜的结构和性质进行了表征。结果表明:随着组装层的增加复合膜中的质子传导率逐渐升高。同时复合膜的机械性能和阻醇性也比纯SPES膜有明显的提高。实验证明层层结构修饰的纤维能构筑更多长程质子传输通道。
Proton exchange membrane (PEM), a core component of Proton exchangemembrane fuel cell (PEMFC), determines the performances of PEMFC to a greatextent. Today, Nafion membrane produced by DuPont is still widely used in PMFC asPEM. Although the Nafion membrane has high proton conductivity, good chemicalstability and other advantages, it also has many disadvantages, such as protonconductivity strongly depends on the water content in membrane, high fuelpenetrability, performances rapidly decline in high temperature, complex productionprocess, high cost etc. These problems are important reasons for limiting the wideapplication of Nafion. Sulfonated aromatic polymer electrolytes are promisingmaterial for PEM due to its good mechanical properties, chemical and thermalstability. Especially, the low methanol permeability and production cost comparedwith Nafion. Therefore sulfonated aromatic polymer electrolytes are widelyconcerned by scientific and energy institutions. As we know, the proton conduction ismainly occurred in the hydrophilic region of PEM, continuous hydrophilic region isadvantageous to the proton conduction. In the sulfonated random copolymermembrane, sulfonic acid groups will aggregate to large clusters and form hydrophilicregions, and the distance between the hydrophilic regions is correspondingly big, sothe proton can not fast conducting in this structure. In order to obtain PEMs withexcellent comprehensive performances and continuous proton transmission channel,many methods have been used for modifying PEM.
     In this paper, base on sulfonated aromatic polymer electrolyte, we have constructeda serie of PEM with outstanding comprehensive performances, continuous ioniccluster network or long-range proton transmission channel by different approaches.The specific work is divided into four parts:
     In the first part, we introduced the poly N-isopropylacrylamide (PNIPAm) with alot of amido bonds into SPI via in situ polymerization reaction, and prepared a seriesof semi-interpenetrating polymer networks (semi-IPNs) with different content ofPNIPAm. The hydrogen bond interaction between sulfonic acid groups of SPI andamido bonds of cPNIPAm and the semi-IPNs structure could regulate themicrostructure and properties of composite membranes. When the molar ratio ofsulfonic acid groups and amido bonds is1:1, the SPI-20%-cPNIPAm membrane hassmall size ionic clusters (>6nm) with uniform and continuous distribution which isbeneficial to the proton conduction. At25oC, the proton conductivity ofSPI-20%-cPNIPAm membrane is one time higher than that of the pure SPI membrane, the power density is improved from44mW cm2of SPI to72mW cm2. The resultsshow that the proton transmission channels beneficial to the proton are formed. At thesame time, the semi-IPNs PEMs also have good mechanical properties and thermalstability.
     In the second part, we synthesized three kinds of GO with different sizes fromvarious sizes of graphite. Different sizes of GO were incorporated into SPI toinvestigate the size effect on the microstructure and performance of SPI/GOcomposite membranes. The study found that in the three kinds of GO, the small sizeGO has the biggest influence on the microstructure and performance of compositePEM at the same content. In the composite PEM with0.5wt%small GO, the ionicclusters are shrinked from25nm of SPI to6nm and dispersed uniformly, resulting inan advantageous microstructure for proton conduction. At25oC, the protonconductivity of this composite PEM is four times higher than that of pure SPI. Themechanical properties, oxidative stability, dimensional stability and methanol--resistance of composite membranes are also improved. This experimental resultsshow that the incorporation of GO can control the microstructure and optimize theperformances of composite PEM.
     In the third part, we synthesized a kind of organic silane coupling agent(SiSQ)with sulfonic group and N-heterocycle through the reaction between8-hydroxyquinoline-5-sulfonate and3-isocyanatepropyltriethoxysilane. In thepresence of surfactant (template), SiSQ was introduced into SPI matrix using sol-gelmethod, and obtained a series of SPI-MSiSQ composite membranes with differentMSiSQ content. The study found that a better compatibility is formed betweenMSiSQ phase and SPI matrix. The introduction of sulfonic group has diminished thedilution effect of the inorganic component to the concentration of sulfonic acid groupin SPI. The proton conductivities and methanol-resistances of composite membranesare increased with the increasing of MSiSQ content. At25oC, the composite PEMwith40wt%MSiSQ has the best result, high proton conductivity (0.23S cm-1), lowmethanol permeability (1.8×10-8cm2S-1), optimal selectivity (12.8×106Ss cm-3),which is3,6and23times higher than that of pure SPI respectively. The excellentperformances of the composite membranes can be summed up in two points: One isthe interaction between the nitrogen atoms of quinoline in MSiSQ and sulfonic acidgroups in SPI reduced the large size ionic clusters in SPI into smaller one, andforming a uniform and continuous proton transmission channel. Another is theinteraction between sulfonic acid groups of sulfonated organic siloxane and surfactant.When removing the surfactant, the sulfonic acid groups will gather within themesopores, which also provides a long-range proton transmission channel to proton.Cell performance of composite membranes and other properties are all improvedlargely, which is expected to be used in DMFC.
     In the fourth part, base on the polyester fibers, using the hydrogen-bondinginteraction between GO and sulfonated polyethersulfone (SPES), we layer-by-layerassembled GO and SPES on the surface of polyester fibers, then multilayer structureis formed on the surface of polyester fiber. In each layer, sulfonic acid groups arearranged along the axis of fiber, which provide long-range proton transmissionchannels, promoting rapidly proton conduction. The performances of compositemembranes base on SPES and multilayer assembled polyester fiber were tested. Theexperimental results show that, the proton conductivity of composite membrane isincreased by increasing the assembly layers. At the same time, the mechanicalproperties and methanol-resistances of the composite membranes are obviouslyincreased.
引文
[1]衣宝廉.燃料电池:高效、环境友好的发电方式[M].北京化学工业出版社,2000.
    [2]肖钢.燃料电池技术[M].北京电子工业出版社,2009.
    [3]毛宗强.可再生能源丛书-燃料电池[M].北京化学工业出版社,2005.
    [4]江船.燃料电池[M].北京:国防工业出版社,1983.
    [5]王诚.燃料电池技术开发现状及发展趋势[J].新材料产业,2012,37-43.
    [6]曹殿学,王贵领,吕艳卓.燃料电池系统[M].北京航空航天大学出版社,2009.
    [7] Grove W R. On voltaie series and the combination of gases by Platinum[J]. Philos Mag,1839,314:127-130.
    [8] Appleby A J. From Sir William Grove to today: fuel cells and the future[J]. J Power Sources,1990,29:3-11.
    [9] Mond L, Langer C. A new form of gas battery[J]. Jstor,1889,46:296-30.
    [10] Osteald W Z[J]. Elektrochemie,1894,1:1-22.
    [11] Kordesch K, O1iverira J. Fuel cells, in: ulmann’s encyclopedia of industrial technology[J].Weinheim, Germany: VCH,1989, A-12:55.
    [12] Bacon F T[J]. Beama J,1954,6:61-67.
    [13]衣宝廉.燃料电池—原理、技术、应用[M].化学工业出版社,2003.
    [14]李瑛,王林山.燃料电池[M].北京冶金工业出版社,2000.
    [15] Sjunnesson L. Utilities and their investments in fuel cells[J]. J Power Sources,1998,71:41-44.
    [16]侯明,衣宝廉.燃料电池技术发展现状与展望[J].电化学,2012,1:13.
    [17] Omar Z S, Mehmet F O. An overview of fuel cell technology: Fundamentals and applications[J]. Renewable Sustainable Energy Rev,2014,32:810-853.
    [18] óscar G E, Teresa J L, Emilio N A. Fuel cells: A real option for unmanned aerial vehiclespropulsion [J]. The Scientific World J,2014,1:1-12.
    [19] Beckhaus P, Dokupil M, Heinzel A, et al. On-board fuel cell power supply for sailing yachts[J]. J Power Sources,2005,145:639-643.
    [20] Patil A S, Dubois T G, Sifer N, et al. Portable fuel cell systems for Americans army:technology transition to the field [J]. J Power Sources,2004,136:220-225.
    [21] Cowey K, Green K J, Mepsted G O, et al. Portable and military fuel cells[J]. Curr Opin SolidState Mater Sci,2004,8:367-371.
    [22]Varkaraki E, Lymberopoulos N, Zachariou A. Hydrogen based emergency back-up system fortelecommunication applications[J]. J Power Sources,2003,118:14-22.
    [23]Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells:technology, applications, and needs on fundamental research[J]. Appl Energy,2011,88:981-1007.
    [24] Agnolucci P. Prospects of fuel cell auxiliary power units in the civil markets[J]. Int J HydrogEnergy,2007,32:4306-4318.
    [25] Plunkett J W. Plunkettos automobile industry almanac2011[R]. Houston, TX:PlunkettResearch,2010.
    [26] The department of energy hydrogen and fuel cells program plan: an integrated strategic planfor the research, development, and demonstration of hydrogen and fuel cell technologies. USDepartment of Energy,2011.
    [27] Fuel cell technologies office: multi-year research, development, and demonstration plan. USDepartment of Energy,2011.
    [28] Heinze1A, BarraganV M. A review of the state-of-the-art of the methanol cerossover in directmethanol fuel cells[J]. J Power Sourees,1999,84:70-74.
    [29] Vladimir N, Jonathan M, Hai J W, et al. A review of polymer electrolyte membranes fordirect methanol fuel cells[J]. J Power Sources,2007,169:221-238.
    [30] Ahmad H, Kamarudin S K, Hasran U A, et al. Overview of hybrid membranes fordirect-methanol fuel-cell applications[J]. Int J Hydrogen Energy,2010,35:2160-2175.
    [31] Hong W Z, Pei K S. Recent development of polymer electrolyte membranes for fuel cells[J].Chem Rev,2012,112:2780-2832.
    [32] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature,2001,414:345-352.
    [33] Kerres J A. Development of ionomer membranes for fuel cells[J]. J Membr Sci,2001,185:3-27.
    [34] Miehael A H, Hossein G, Yu S K, Brian R E, James E M. Altemative polmer systems forproton exehange membranes(PEMs)[J]. Chem Rev,2004,104:4587-4612.
    [35] Savadogo O. Emerging membranes for electrochemical systems solid polymer electrolytemembranes for fuel cell systems[J]. J New Mat Electr Sys,1998,1:47-65.
    [36] Russell B, Hodgdon J. Polyelectrolytes prepared from perfluoroalkylaryl macromolecules[J].J Polym Sci, Part A,1968,6:171-191.
    [37] Wang H, Capuano G A. Behavior of raipore radiation-grafted polymer membranes in H2/O2fuel cells[J]. J Electrochem Soc,1998,145:780-784.
    [38] Mattsson B, Ericson H, Torell L M, et al. Degradation of a fuel cell membrane, as revealed bymicro-Raman spectroscopy[J]. Electrochimica Acta,2000,45:1405-1408.
    [39] Beattie P D, Orfino F P, Basura V I, et al. Ionic conductivity of proton exchangemembranes[J]. J Electroanal Chem,2001,503:45-56.
    [40] Livingston D I, Kamath P M, Corley R S. Poly-α,α,β-trifluorostyrene[J]. J Polym Sci,1956,20:485-490.
    [41] Schuster M, Kreuer K D, Andersen H T. Sulfonated poly(phenylene sulfone) polymers ashydrolytically and thermooxidatively stable proton conducting ionome[J]. Macromolecules,2007,40:598-607.
    [42] Seesukphronrarak S, Ohira A. Novel highly proton conductive sulfonated poly(p-phenylene)from2,5-dichloro-4-(phenoxypropyl)benzophenone as proton exchange membranes for fuel cellapplications[J]. Chem Commun,2009,31:4744-4746.
    [43] Zhang X, Sheng L, Higashihara T, et al. Polymer electrolyte membranes based onpoly(m-phenylene)s with sulfonic acid via long alkyl side chains[J]. Polym Chem,2013,4:1235-1242.
    [44] Xuan Z, Li S, Teruaki H, et al. Polymer electrolyte membranes based on poly(phenyleneether)s with sulfonic acid via long alkyl side chains[J]. J Mater Chem A,2013,1:11389-11396.
    [45] Li S, Tomoya H, Mitsuru U, et al. Poly(arylene ether ether nitrile)s containing flexiblealkylsulfonated side chains for polymer electrolyte membranes[J]. J Appl Polym Sci, Part A:Polym Chem,2014,52:21-29.
    [46] Ueda M, TOyota H, Oehi T, et al. Synthesis and charaeterization of aromatie Poly(ethersulfone)s containing pendant sodium sulfonate groups [J]. J Appl Polym Sci, Part A: Polym Chem,1993,31:853-858.
    [47] Wyman P, Crook V, Hunt B J, et al. Improved synthesis of Phosphoru-containiog styreniemonomers [J]. Des Monmers Polym,2004,7:301-309.
    [48] Derouet D, Mulder-Houdayer S, Brosse J C. Chemieal modifieation of polydienes in latexmedium: study of epoxidation and ring opening of oxiranes[J]. J Appl Polym Sci, Part A: PolymChem,2005,95:39-52.
    [49] Kim D S, Shin K H, Park H B, et al. Synthesis and characterization of sulfonatedpoly(arylene ether sulfone) copolymers containing carboxyl groups for direct methanol fuel cells[J]. J Membr Sci,2006,278:428-436.
    [50] Jing M X, Chun L R, Hai L C, et al. Sulfonated poly (aryl ether sulfone) containing-1,3,4-oxadiazole as proton exchange membranes for medium-high temperature fuel cells[J]. J PolymRes,2013,20:1-9.
    [51] Yu C, Jarrett R R, Chang H L, et al. Synthesis and characterization of multiblock partiallyfluorinated hydrophobic poly(arylene ether sulfone)-hydrophilic disulfonated poly(arylene ethersulfone) copolymers for proton exchange membranes[J]. J Polym Sci, Part A: Polym Chem,2013,51:2301-2310.
    [52] Myung S J, Tae-Ho K, Young J Y, et al. Sulfonated poly(arylene sulfone) multiblockcopolymers for proton exchange membrane fuel cells[J]. J Membr Sci,2014,459:72-85.
    [53] Park C H, Lee C H, Guiver M D, et al. Sulfonated hydrocarbon membranes formedium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)[J]. ProgPolym Sci,2011,36:1443-1498.
    [54] Ji F Z, Jing W, Suo B Z, et al. Synthesis of novel cardo poly(arylene ether sulfone)s withbulky and rigid side chains for direct methanol fuel cells[J]. J Power Sources,2014,245:1005-1013.
    [55] Young T H, Chang H L, Hyung S P, et al. Improvement of electrochemical performances ofsulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene etherbenzimidazole)[J]. J Power Sour,2006,175:724-731.
    [56] Anand S B,Ozma L, Hae-Seung L, et al. Fundamental investigations of the effect of thelinkage group on the behavior of hydrophilic–hydrophobic poly(arylene ether sulfone) multiblockcopolymers for proton exchange membrane fuel cells[J]. J Membr Sci,2009,333:1-11.
    [57] Hang H, Wei L, Liu Y, et al. Sulfonated poly(fluorenyl ether ketone) ionomers containingaliphatic functional segments for fuel cell applications[J]. Int J Hydrogen Energy,2012,37:4553-4562.
    [58] Jin X, Bishop M T, Ellis T S, et al. A sulphonated poly(aryl ether ether ketone)[J]. BritishPolym J,1985,17:4-10.
    [59] Lafitte B, Karlsson L E, Jannasch P. Sulfophenylation of polysulfones for proton-conductingfuel cell membranes[J]. Macromol Rapid Commun,2002,23:896-900.
    [60] Xing P X, Robertson G P, Guiver M D, et al. Synthesis and characterization of sulfonatedpoly(ether ether ketone) for proton exchange membranes[J]. J Membr Sci,2004,229:95-106.
    [61] Liu B J, Robertson G P, Kim D S, et al. Aromatic poly(ether ketone)s with pendant sulfonicacid phenyl groups prepared by a mild sulfonation method for proton exchange membranes[J].Macromolecules,2007,40:1934-1944.
    [62] Genies C, Mercier R, Sillion B, et al. Stability study of sulfonated phthalic and naphthalenicpolyimide structures in aqueous medium[J]. Polymer,2001,42:5097-5105.
    [63] Gemes C, Mercier R, Sillion B, et al. Soluble sulfonated naphthalenic polyimides as materialsfor proton exchange membranes [J]. Polymer,2001,42:359-373.
    [64] Li N W, Cui Z M, Zhang S B, et al. Preparation and evaluation of a proton exchangemembrane based on oxidation and water stable sulfonated polyimides[J]. J Power Sources,2007,172:511-519.
    [65] Zhang F, Li N W, Cui Z M, et al. Novel acid-base polyimides synthesized from binaphthalenedianhydrie and triphenylamine-containing diamine as proton exchange membranes[J]. J MembrSci,2008,314:24-32.
    [66] Lei R, Kang C Q, Huang Y J, et al. Novel sulfonated polyimide ionomers by incorporatingpyridine functional group in the polymer backbone[J]. J Appl Polym Sci, Part A: Polym Chem,2009,114:3190-3197.
    [67] Chen X B, Chen K C, Chen P, et al. Effects of tetracarboxylic dianhydrides on the propertiesof sulfonated polyimides[J]. J Appl Polym Sci, Part A: Polym Chem,2010,48:905-915.
    [68] Hu Z X, Ogou T, Yoshino M, et al. Direct methanol fuel cell performance of sulfonatedpolyimide membranes[J]. J Power Sources,2009,194:674-682.
    [69] Watari T, Fang J H, Tanaka K, et al. Synthesis, water stability and proton conductivity ofnovel sulfonated polyimides from4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid[J]. JMembr Sci,2004,230:111-120.
    [70] Fang J H, Zhai F X, Guo X X, et al. A facile approach for the preparation of cross-linkedsulfonated polyimide membranes for fuel cell application[J]. J Mater Chem,2007,17:1102-1108.
    [71] Yin Y, Suto Y, Sakabe T, et al. Water stability of sulfonated polyimide membranes[J].Macromolecules,2006,39:1189-1198.
    [72] Bor K C, Tzi Y W, Chung W K, et al.4,4’-Oxydianiline (ODA) containing sulfonatedpolyimide/protic ionic liquid composite membranes for anhydrous proton conduction[J]. Int JHydrogen Energ,2013,8:11321-11330.
    [73] Asano N, Miyatake K, Watanabe M. Hydrolytically stable polyimide ionomer for fuel cellapplications[J]. Chem Mater,2004,16:2841-2843.
    [74] Song J M, Asano N, Miyatake K, et al. Application of sulfonated polyimide membranes todirect methanol fuel cells[J]. Chem Lett,2005,34:996-997.
    [75] Miyatake K, Zhou H, Matsuo T, et al. Proton conductive polyimide electrolytes containingtrifluoromethyl groups: synthesis, properties, and DMFC performance[J]. Macromolecules,2004,37:4961-4966.
    [76] Souzy R, Ameduri B, Boutevin B, et al. Proton conducting polymer electrolyte membranesbased on fluoropolymers incorporating perfluorovinyl ether sulfonic acids and fluoroalkenes:synthesis and characterization[J]. Fuel Cells,2005,5:383-397.
    [77] Nan W L, Zhi M C, Suo B Z, et al. Sulfonated polyimides bearing benzimidazole groups forproton exchange membranes[J]. Polymer,2007,48:7255-7263.
    [78] Wei L, Xiao X G, Jian H F. Synthesis and properties of sulfonated polyimide–polybenzimidazole copolymers as proton exchange membranes[J]. J Mater Sci,2014,49:2745-2753.
    [79] Wang J T, Savinell R F, Wainright J S, et al. A H2/O2fuel cell using acid dopedpolybenzimidazole as polymer electrolyte[J]. Electrochim Acta,1996,41:193-197.
    [80] Glipa X, Haddad E, Jones M, et al. Synthesis and characterization of sulfonatedpolybenzimidazole: A highly conducting proton exchange polymer[J]. Solid State Ionics,1997,97:323-331.
    [81] Asensio J A, Borros S, Gomez-Romero P. Proton-conducting polymers based onbenzimidazoles and sulfonated benzimidazoles[J]. J Appl Polym Sci, Part A: Polym Chem,2002,40:3703-3710.
    [82] Li Q F, Rudeck H C, Chromik A, et al. Properties, degradation and high temperature fuel celltest of different types of PBI and PBI blend membranes[J]. J Membr Sci,2010,347:260-270.
    [83] Jones D J, Roziere J. Recent advances in the functionalisation of polybenzimidazole andpolyetherketone for fuel cell applications[J]. J Membr Sci,2001,185:41-58.
    [84] Lobato J, Canizares P, Rodrigo M A, et al. Study of the influence of the amount ofPBI-H3PO4in the catalytic layer of a high temperature PEMFC[J]. Int J Hydrogen Energ,2010,35:1347-1355.
    [85] Jing S Y, David A, Qing F L, et al. Benzimidazole grafted polybenzimidazoles for protonexchange membrane fuel cells[J]. Polym Chem,2013,4:4768-4775.
    [86] Xiao L, Zhang H, Scanlon E, et al. High-temperature polybenzimidazole fuel cell membranesvia a sol gel process[J]. Chem Mater,2005,17:5328-5333.
    [87] Yang J, He R. Preparation and characterization of polybenzimidazole membranes prepared bygelation in phosphoric acid[J]. Polym Adv Technol,2010,21:874-880.
    [88] Sung K K, Ki H K, Jung O P, et al. Highly durable polymer electrolyte membranes atelevated temperature:cross-linked copolymer structure consisting of poly(benzoxazine) andpoly(benzimidazole)[J]. J Power Sources,2013,226:346-353.
    [89] Honma I, Nomura S, Nakajima H. Protonic conducting organic/inorganic nanocomposites forpolymer electrolyte membrane [J]. J Membr Sci,2001,185:83-94.
    [90] Zou H, Wu S, Shen J. Polymer/silica nanocomposites:preparation, characterization, properties,and applications[J]. Chem Rev,2008,108:3893-957.
    [91] Lee C H, MIin K A, Park H B, et al. Sulfonated poly(arylene ether sulfone)–silicananocomposite membrane for direct methanol fuel cell (DMFC)[J]. J Membr Sci,2007,303:258-266.
    [92] Chen D Y, Wang S J, Xiao M, et al. Sulfonate poly(fluorenyl ether ketone) membrane withembedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery[J]. JPower Sources,2010,195:7701-7708.
    [93] Liu D, Geng L, Fu Y Q, et al. Novel nanocomposite membranes based on sulfonatedmesoporous silica nanoparticles modified sulfonated polyimides for direct methanol fuel cells[J]. JMembr Sci,2011,366:251-257.
    [94] Kim D S, Liu B J, Guiver M D. Influence of silica content in sulfonated poly(arylene etherether ketone ketone)(SPAEEKK) hybrid membranes on properties for fuel cell application[J].Polymer,2006,47:7871-7880.
    [95] Li T, Yang Y. A novel inorganic/organic composite membrane tailored by various organicsilane coupling agents for use in direct methanol fuel cells[J]. J Power Sources,2009,187:332-340.
    [96] Lin H D, Zhao C J, Na H, et al. Novel hybrid polymer electrolyte membranes prepared by asilane-cross-linking technique for direct methanol fuel cells[J]. J Power Sources,2010,195:762-768.
    [97] Lei G, Yao H, Dan L, et al. New organic–inorganic hybrid membranes based on sulfonatedpolyimide/aminopropyltriethoxysilane doping with sulfonated mesoporous silica for directmethanol fuel cells[J]. J Appl Polym Sci,2012,123:3164-3172.
    [98] So S Y, Yoon Y J, Kim T H, et al. Sulfonated poly(arylene ether sulfone)/functionalizedsilicate hybrid proton conductors for high-temperature proton exchange membrane fuel cells[J]. JMembr Sci,2011,381:204-210.
    [99] Chalkoa E, Pague M B, Fedkin M V, et al. Nafion/TiO2proton conductive compositemembranes for PEMFCs operating at elevated temperature and reduced relative humidity[J]. JElectrochem Soc,2005,152:1035-1040.
    [100] Debora M, Alessandra D E, Enrico T, et al. Titania nanosheets (TNS)/sulfonated poly etherether ketone (SPEEK) nanocomposite proton exchange membranes for fuel cells[J]. Chem Mater,2010,22:1126-1133.
    [101] Ay e A, Ayhan B. Nanocomposite membranes based on sulfonated polysulfone and sulfatednano-titania/NMPA for proton exchange membrane fuel cells[J]. Solid State Ionics,2014,255:89-95.
    [102] Hong W, Xiao H S, Tao X, et al. Sulfonated poly(ether ether ketone)/amino-acidfunctionalized titania hybrid proton conductive membranes[J]. J Power Sources,2012,213:83-92.
    [103] Croce F, Settimi L, Scrosati B. Superacid ZrO2-added, composite polymer electrolytes withimproved transport properties[J]. Electrochem Commun,2006,8:364-368.
    [104]Ren S Z, Sun G Q, Li C N, et al. Sulfated zirconia–Nafion composite membranes for highertemperature direct methanol fuel cells[J]. J Power Sources,2006,157:724-726.
    [105] Taeyoung K, Young W C, Chang S K, et al. Sulfonated poly(arylene ether sulfone)membrane containing sulfated zirconia for high-temperature operation of PEMFCs[J]. J MaterChem,2011,21:7612-7621.
    [106] Guinevere A G, Matteo P, Sandra L, et al. Characterization of sulfated-zirconia/Nafioncomposite membranes for proton exchange membrane fuel cells[J]. J Power Sources,2012,198:66-75.
    [107] Silva V S, Ruffmann B, Silva H, etal. Proton electrolyte membrane properties and directmethanol fuel cell performance: characterization of hybrid sulfonated poly(ether etherketone)/zirconium oxide membranes[J]. J Power Sources,2005,140:34-40.
    [108] Lin Y F, Yen C Y, Ma C C M, et al. Preparation and properties of high performancenanocomposite proton exchange membrane for fuel cell [J]. J Power Sources,2007,165:692-700.
    [109] Zheng W H, Gao H H, Shuang G, et al. Montmorillonite-reinforced sulfonatedpoly(phthalazinone ether sulfone ketone) nanocomposite proton exchange membranes for directmethanol fuel cells[J]. J Appl Polym Sci,2014, in press.
    [110] Deuk J K, Hae Y H, Sang Y N, et al. Characterization of a composite membrane based onSPAES/sulfonated montmorillonite for DMFC application[J]. Macromol Res,2012,20:21-29.
    [111] Ramani V, Kunz H R, Fenton J M. Stabilized heteropolyacid/Nafion composite membranesfor elevated temperature/low relative humidity PEFC operation[J]. Electrochim Acta,2005,50:1181-1187
    [112] Ni J, Zhang G, Zhao C J, et al. Crosslinked hybrid membranes based on sulfonatedpoly(ether ether ketone)/g-methacryloxypropyltrimethoxysilane/phosphotungstic acid by an in situsol–gel process for DMFCs[J]. J Mater Chem,2010,20:6352-6358.
    [113]Xiu P L, Cheng L, Shou H Z, et al. Acid doped polybenzimidazoles containing4-phenylphthalazinone moieties for high-temperature PEMFC[J]. J Membr Sci,2012,423-424:128-135.
    [114] Kannan R, Kakade B A, Pillai V K. Polymer electrolyte fuel cells using nafion-basedcomposite membranes with functionalized carbon nanotubes[J]. Angew Chem, Int Ed,2008,47:2653-2656.
    [115] Kannan R, Parthasarathy M, Maraveedu S U, et al. Size manipulation of perflouorinatedpolymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cellperformance[J]. Langmuir,2009,25:8299-8305.
    [116] Liu Y L, Su Y H, Chang C M, et al. Preparation and applications of Nafion-functionalizedmultiwalled carbon nanotubes for proton exchange membrane fuel cells[J]. J Mater Chem,2010,20:4409-4416.
    [117]Gutru R, Santoshkumar D B. Simultaneous tuning of methanol crossover and ionicconductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs:a comparative study in DMFCs[J]. Chem Eng J,2014,243:517-525.
    [118] Ananta K M, Nam H K, Daeseung J, et al. Enhanced mechanical properties and protonconductivityof Nafion–SPEEK–GO composite membranes for fuel cell applications[J]. J MembrSci,2014,458:128-135.
    [119] Choi B G, Hong J, Park Y C, et al. Innovative polymer nanocomposite electrolytes:nanoscale manipulation of ion channels by functionalized graphenes[J]. ACS Nano,2011,5:5167-5174.
    [120] Zarrin H, Higgins D, Jun Y, et al. Functionalized graphene oxide nanocomposite membranefor low humidity and high temperature proton exchange membrane fuel cells[J]. J Phys Chem C,2011,115:20774-20781.
    [121]Jeon J D, Kwak S Y. Nafion/sulfated-cyclodextrin composite membranes for direct methanolfuel cells [J]. J Power Sources,2008,185:49-54.
    [122]Luo H, Vaivars G, Mathe M. Covalent-ionically cross-linked polyetheretherketone protonexchange membrane for direct methanol fuel cell[J]. J Power Sources,2010,195:5197-5200.
    [123] Chun L F, Xin N T, Qiao F Y, et al. Semi-interpenetrating polymer network proton exchangemembranes with narrow and well-connected hydrophilic channels[J]. J Power Sources,2013,226:289-298.
    [124] Gang Z, Hong T L, Wen J M, et al. Cross-linked membranes with a macromolecularcross-linker for direct methanol fuel cells[J]. J Mater Chem,2011,21:5511-5518.
    [125] Jing M X, Hai L C, Li M, et al. Construction of a new continuous proton transport channelthrough a covalent crosslinking reaction between carboxyl and amino groups[J]. Int J HydrogenEnerg,2013,38:10092-10103.
    [126] Yao J H, Yun S Y, Ying C Y, et al. Synthesis and characterization of new sulfonatedpolytriazole proton exchange membrane by click reaction for direct methanol fuel cells (DMFCs)[J]. Int J Hydrogen Energ,2011,36:15333-15343.
    [127] Seung C G, Jin C K, Dahee A, et al. Thermally crosslinked sulfonated polyethersulfoneproton exchange membranes for direct methanol fuel cells[J]. J Membr Sci,2012,417-418:2-9.
    [128] Shuang G, Gao H H, Xue M W, et al. Preparation and characteristics of crosslinkedsulfonated poly (phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchangemembrane[J]. J Membr Sci,2008,312:48-58.
    [129] Jing W, Cheng J Z, Hai D L, et al. Design of a stable and methanol resistant membrane withcross-linked multilayered polyelectrolyte complexes for direct methanol fuel cells[J]. J PowerSources,2011,196:5432-5437.
    [130] San P J, Zeng C L, Zhi Q T. Layer-by-Layer self-Assembly of composite polyelectrolyte–Nafion membranes for direct methanol fuel cells[J]. Adv Mater,2006,18:1068-1072.
    [131] Wen L, Arumugam M. Sulfonated poly(arylene ether sulfone) as a methanol-barrier layer inmultilayer membranes for direct methanol fuel cells[J]. J Power Sources,2010,195:962-968.
    [132] Guo B J, Fang B W, Ay S, et al. Nafion/PTFE/silicate membranes for high-temperatureproton exchange membrane fuel cells[J]. Int. J. Hydrogen Energy,2008,33:2413-2417.
    [133] Hsiu L L, Leon Y T, Wei K C, et al. Preparation of a low proton resistance PBI/PTFEcomposite membrane[J]. J Power Sources,2007,164:481-487.
    [134] Jingye L, Shogo I, Saneto A, et al. Proton exchange membranes prepared by grafting ofstyrene/divinylbenzene into crosslinked PTFE membranes [J]. Instrum Methods Phys Res, Sect. B,2005,236:333-337.
    [135] Jonghyun C, Kyung M L, Ryszard W, et al. Nanofiber network ion-exchange membranes[J].Macromolecules,2008,41:4569-4572.
    [136] Takuya T, Hiroyoshi K. Aligned electrospun nanofiber composite membranes for fuel cellelectrolytes[J]. Nano Lett,2010,10:1324-1328.
    [137] Ying F Y, Li W J, Zhan L, et al. Sulfonated polystyrene fiber network-induced hybrid protonexchange membranes[J]. ACS Appl Mater Interfaces,2011,3:3732-3737.
    [138] Hsieh Y L, Ying L L. Nafion-functionalized electrospun poly(vinylidene fluoride)(PVDF)nanofibers for high performance proton exchange membranes in fuel cells[J]. J Mater Chem A,2014,2:3783-3793.
    [139] Hsu W Y, Gierke T D. Elastic theory for ionic clustering in perfluorinated ionomers[J].Macromolecules,1982,15:101-105.
    [140] Haubold H G, Vad T, Jungbluth H, et al. Nano structure of Nafion:a SAXS study[J].Electrochim Acta,2001,46:1559-1563.
    [141] Rubatat L, Rollet A L, Gebel G, et al. Evidence of elongated polymeric aggregates inNafion[J]. Macromolecules,2002,35:4050-4055.
    [142] Rubatat L, Gebel G, Diat O. Fibrillar structure of Nafion: Matching fourier and real spacestudies of corresponding films and solutions[J]. Macromolecules,2004,37:7772-7783.
    [143] Marx D, Tuckerman M E, Hutter J, et al. The nature of the hydrated excess proton inwater[J]. Nature,1999,397:601-604.
    [144] Eigen M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis part1: elementaryprocesses[J]. Angew Chem,1963,75:489-409.
    [145] Kreuer K D. On the development of proton conducting polymer membranes for hydrogenand methanol fuel cells[J]. J Membr Sci,2001,185:29-39.
    [146] Cho C G, Kim Y S, Yu X, et al. Synthesis and characterization of poly(arylene ether sulfone)copolymers with sulfonimide side groups for a proton-exchange membrane[J]. J Polym Sci, Part A:Polym Chem,2006,44:6007-6014.
    [147] Takimoto N, Wu L B, Ohira A, et al. Hydration behavior of perfluorinated andhydrocarbon-type proton exchange membranes: relationship between morphology and protonconduction[J]. Polymer,2009,50:534-540.
    [148] Jutemar E P, Jannasch P. Locating sulfonic acid groups on various side chains topoly(arylene ethersulfone)s: Effects on the ionic clustering and properties of proton-exchangemembranes[J]. J Membr Sci,2010,351:87-95.
    [149] Savard O, Peckham T J, Yang Y S, et al. Structure–property relationships for a series ofpolyimide copolymers with sulfonated pendant groups[J]. Polymer,2008,49:4949-4959.
    [150] Zhang Z H, Wu L, Xu T W. Synthesis and properties of side-chain-type sulfonatedpoly(phenylene oxide) for proton exchange membranes [J]. J Membr Sci,2011,373:160-166.
    [151] Matsumoto K, Higashihara T, Ueda M. Locally and densely sulfonated poly(ether sulfone)sas proton exchange membrane[J]. Macromolecules,2009,42:1161-1166.
    [152] Wang C Y, Li N W, Shin D W, et al. Fluorene-based poly(arylene ether sulfone)s containingclustered flexible pendant sulfonic acids as proton exchange membranes[J]. Macromolecules,2011,44:7296-7306.
    [153] Chen D Y, Wang S J, Xiao M, et al. Novel polyaromatic ionomers with large hydrophilicdomain and long hydrophobic chain targeting at highly proton conductive and stablemembranes[J]. J Mater Chem,2011,21:12068-12077.
    [154] Khandpur A K, Forster S. From self-organizing polymers to nanohybrid and biomaterials[J].Angew Chem Int Ed,2002,41:688-714.
    [155] Byungchan B, Takeshi Y, Ken J M, et al. Proton-conductive aromatic ionomers containinghighly sulfonated blocks for high-temperature-operable fuel cells[J]. Angew Chem Int Ed,2010,49:317-320.
    [156] Einsla M L, Kim Y S, Hawley M, et al. Toward improved conductivity of sulfonatedaromatic proton exchange membranes at low relative humidity[J]. Chem Mater,2008,20:5636-5642.
    [157] Li W, Fu Y Z, Manthiram A, et al. Blend membranes consisting of sulfonated poly(etherether ketone) and polysulfone bearing4-nitrobenzimidazole for direct methanol fuel cells[J]. JElectrochem Soc,2009,156:B258-B263.
    [158] Jian L W, Jun B L, Lan Y, et al. Highly compatible acid–base blend membranes based onsulfonated poly(ether ether ketone) and poly(ether ether ketone-alt-benzimidazole) for fuel cellsapplication[J]. J Membr Sci,2012,415-416:644-653.
    [159] Zhang W, Tang C M, Kerres J. Development and characterization of sulfonated-unmodiftiedand sulfonated-aminated PSU Udel blend membranes[J]. Sep Purif Technol,2001,22-23:209-221.
    [160] Seung E N, Sang O K, Yongku K, et al. Preparation of Nafion/sulfonatedpoly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes[J]. JMembr Sci,2008,322:466-474.
    [161] Miyatake K, Tombe T, Chikashige Y, et al. Enhanced proton conduction in polymerelectrolyte membranes with acid-functionalized polysilsesquioxane[J]. Angew Chem Int Ed,2007,46:6646-6649.
    [162] Xu K, Chanthad C, Gadinski M R, et al. Acid-functionalized polysilsesquioxane-Nafioncomposite membranes with high proton conductivity and enhanced selectivity[J]. ACS ApplMaterInterfaces,2009,1:2573-2579.
    [1] Dillon R, Srinivasan S, Aricò A S, et al. International activities in DMFC R&D: status oftechnologies and potential applications[J]. J Power Sources,2004,127:112-116.
    [2]Ahmed M, Dincer I. A review on methanol crossover in direct methanol fuel cells: challengesand achievements[J]. Int J Energ Res,2011,35:1213-1228.
    [3]Ren X M, Zelenay P, Thomas S, et al. Recent advances in direct methanolfuel cells at losalamos national laboratory[J]. J Power Sources,2000,86:111-116.
    [4]Neburchilov V, Martin J, Wang H J, et al. A review of polymer electrolyte membranes for directmethanol fuel cells[J]. J Power Sources,2007,169:221-238.
    [5]Mauritz K A, Moore R B. State of understanding of Nafion[J]. Chem Rev,2004,104:4535-4585.
    [6]Li Q F, He R H, Jensen J O, et al. Approaches and recent development of polymer electrolytemembranes for fuel cells operating above100oC[J]. Chem Mater,2003,15:4896-4915.
    [7]Kreuer K D. On the development of proton conducting polymer membranes for hydrogen andmethanol fuel cells[J]. J Membr Sci,2001,185:29-39.
    [8]Maier G, Haack J M. Sulfonated Aromatic Polymers for Fuel Cell Membranes[J]. Adv PolymSci,2008,216:1-62.
    [9]Higashihara T, Matsumoto K, Ueda M. Sulfonated aromatic hydrocarbon polymers as protonexchange membranes for fuel cells[J]. Polymer,2009,50:5341-5357.
    [10]Yan J L, Liu C P, Wang Z, et al. Water resistant sulfonated polyimides based on4,4’-binaphthyl-1,1’,8,8’-tetracarboxylic dianhydride (BNTDA) for proton exchangemembranes[J]. Polymer,2007,48:6210-6214.
    [11]Li N W, Cui Z M, Zhang S B, et al. Sulfonated polyimides bearing benzimidazole groups forproton exchange membranes[J]. Polymer,2007,48:7255-7263.
    [12]Park C H, Lee C H, Guiver M D, et al. Sulfonated hydrocarbon membranes formedium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)[J]. ProgPolym Sci,2011,36:1443-1498.
    [13]Rikukawa M, Sanui K. Proton-conducting polymer electrolyte membranes based onhydrocarbon polymers[J]. Prog Polym Sci,2000,25:1463-1502.
    [14]Elabd Y A, Hickner M A. Block Copolymers for Fuel Cells[J]. Macromolecules,2011,44:1-11.
    [15]Zhang H W, Shen P K. Recent development of polymer electrolyte membranes for fuelcells[J]. Chem Rev,2012,112:2780-2832.
    [16] Hai B W, Guo F C, Lu J C, et al. Enhanced hydrolytic stability of sulfonatedpolyimideionomers using bis(naphthalic anhydrides) with lowelectron a nity[J]. J Mater Chem A,2013,1:10412-10421.
    [17]Pang J H, Zhang H B, Li X F, et al. Synthesis and characterization of sulfonated poly(aryleneether)s with sulfoalkyl pendant groups for proton exchange membranes[J]. J Membr Sci,2008,318:271-279.
    [18]Pang J H, Zhang H B, Li X F, et al. Novel wholly aromatic sulfonated poly(arylene ether)copolymers containing culfonic acid groups on the pendants for proton exchange membranematerials[J]. Macromolecules,2007,40:9435-9442.
    [19]Tian S H, Shu D, Wang S J, et al. Poly(arylene ether)s with sulfonic acid groups on thebackbone and pendant for proton exchange membranes used in PEMFC applications[J]. Fuel Cells,2007,3:232-237.
    [20]Gong F X, Zhang S B. Synthesis of poly(arylene ether sulfone)s with locally and denselysulfonated pentiptycene pendants as highly conductive polymer electrolyte membranes[J]. J PowerSources,2011,196:9876-9883.
    [21]Tripathi B P, Chakrabarty T, Shahi V K. Highly charged, stable cross-linked4,40-bis(4-aminophenoxy)biphenyl-3,30-disulfonic acid (BAPBDS)-sulfonated poly(ether sulfone)polymer electrolyte membranes impervious to methanol[J]. J Mater Chem,2010,20:8036-8044.
    [22]Park K T, Chun J H, Kim S G, et al. Synthesis and characterization of crosslinked sulfonatedpoly(arylene ether sulfone) membranes for high temperature PEMFC applications[J]. Int JHydrogen Energy,2011,36:1813-1819.
    [23]Bai Z W, Price G E, Yoonessi M, et al. Proton exchange membranes based on sulfonatedpolyarylenethioethersulfone and sulfonated polybenzimidazole for fuel cell applications[J]. JMembr Sci,2007,305:69-76.
    [24]Wang G, Xiao G Y, Yan D Y. Synthesis and properties of soluble sulfonatedpolybenzimidazoles derived from asymmetric dicarboxylic acid monomers with sulfonate groupas proton exchange membrane[J]. J Membr Sci,2011,369:388-396.
    [25]Jones D J, Roziere J. Recent advances in the functionalisation of polybenzimidazole andpolyetherketone for fuel cell applications[J]. J Membr Sci,2001,185:41-58.
    [26]Mamlouk M, Ocon P, Scott K. Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells[J]. J Membr Sci,2014,245:915-926.
    [27]Zhao C J, Lin H D, Shao K, et al. Block sulfonated poly(ether ether ketone)s (SPEEK)ionomers with high ion-exchange capacities for proton exchange membranes[J]. J Power Sources,2006,162:1003-1009.
    [28]Sengül E, Erdener H, Akay R G, et al. Effects of sulfonated polyether-etherketone (SPEEK)and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance[J].Int J Hydrogen Energy,2009,34:4645-4652.
    [29]Song J M, Shin J, Sohn J Y, et al. Preparation and characterization of SPEEK membranescrosslinked by electron beam irradiation[J]. Macromol Res,2011,19:1082-1089.
    [30]Lee S, Jang W, Choi S, et al. Sulfonated Polyimide and Poly (ethylene glycol) diacrylatebased semi-Interpenetrating polymer network membranes for fuel cells[J]. J Appl Polym Sci,2007,104:2965-2972.
    [31]Seo J, Jang W, Lee S, et al. The stability of semi-interpenetrating polymer networks based onsulfonated polyimide and poly(ethylene glycol)diacrylate for fuel cell applications[J].PolymDegrad Stab,2008,93:298-304.
    [32]Xu K, Chanthad C, Gadinski M R, et al. Acid-Functionalized polysilsesquioxane-Nafioncomposite membranes with high proton conductivity and enhanced selectivity[J]. ACS ApplMaterInterfaces,2009,1:2573-2579.
    [33]Geng L, He Y, Liu D, et al. Facile in situ template synthesis of sulfonatedpolyimide/mesoporous silica hybrid proton exchange membrane for direct methanol fuel cells[J].Micropor Mesopor Mater,2012,148:8-14.
    [34]Liu D, Geng L, Fu Y Q, et al. Novel nanocomposite membranes based on sulfonatedmesoporous silica nanoparticles modified sulfonated polyimides for direct methanol fuel cells[J]. JMembr Sci,2011,366:251-257.
    [35]Xu T, Hou W Q, Shen X H, et al. Sulfonated titania submicrospheres-doped sulfonatedpoly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reducedmethanol permeability[J]. J Power Sources,2011,196:4934-4942.
    [36] Sahu A K, Bhat S D, Pitchumani S, et al. Shukla A K, Novel organic–inorganic compositepolymer-electrolyte membranes for DMFCs[J]. J Membr Sci,2009,345:305-314.
    [37]Kim J D, Mori T, Honma I. Proton exchange membrane with chemically tolerant organicallymodified zirconia[J]. J Membr Sci,2006,281:735-740.
    [38]Chu F Q, Lin B C, Qiu B, et al. Polybenzimidazole/zwitterion-coated silica nanoparticlehybrid proton conducting membranes for anhydrous proton exchange membrane application[J]. JMater Chem,2012,22:18411-18417.
    [39]Navarra M A, Croce F, Scrosati B. New, high temperature superacid zirconia-doped NafionTM composite membranes[J]. J Mater Chem,2007,17:3210-3215.
    [40]Marani D, Epifanio A D, Traversa E, et al. Titania nanosheets (TNS)/sulfonated poly etherether ketone (SPEEK) nanocomposite proton exchange membranes for fuel cells[J]. Chem Mater,2010,22:1126-1133.
    [41]Mohammad M H, Seyyed R G, Philippe R. Nafion/benzotriazole functionalizedmontmorillonite nanocomposites: novel high-performance proton exchange membranes[J]. RSCAdv,2013,3:19357-19365.
    [42]DeLuca N W, Elabd Y A. Nafion/poly(vinyl alcohol) blends: Effect of composition andannealing temperature on transport properties[J]. J Membr Sci,2006,282:217-224.
    [43]Kang M S, Choi Y J, Moon S H. Water-swollen cation-exchange membranes prepared usingpoly(vinyl alcohol)(PVA)/poly(styrene sulfonic acid-co-maleic acid)(PSSA-MA)[J]. J MembrSci,2002,207:157-170.
    [44]Mollá1S, Compa1V, Lafuente S L, et al. On the methanol permeability through pristineNafion and Nafion/PVA membranes measured by different techniques. a comparison ofmethodologies[J]. Fuel Cells,2011,6:897-906.
    [45]Mollá S, Compa V. Performance of composite Nafion/PVA membranes for direct methanolfuel cells[J]. J Power Sources,2011,196:2699-2708.
    [46]Jia N Y, Lefebvre M C, Halfyard J, et al. Modification of Nafion proton exchange membraneto reduce methanol crossover in PEM fuel cells[J]. Electrochem Solid-State Lett,2000,12:529-531.
    [47]Xue S, Yin G P. Proton exchange membranes based on modified sulfonated poly(ether etherketone) membranes with chemically in situ polymerized polypyrrole[J]. Electrochim Acta,2006,52:847-853.
    [48]Sadrabadi M M H, Dashtimoghadam E, Majedi F S, et al. A high-performance chitosan-baseddouble layer proton exchange membrane with reduced methanol crossover[J]. Int J HydrogenEnergy,2011,36:6105-6111.
    [49]Lin H D, Zhao C J, Ma W J, et al. Low water swelling and high methanol resistant protonexchange membranefabricated by cross-linking of multilayered polyelectrolyte complexes[J]. JMembr Sci,2009,345:242-248.
    [50]Zhang Y W, Cui Z M, Liu C P, et al. Implantation of Nafion ionomer into polyvinylalcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuelcells[J]. J Power Sources,2009,194:730-736.
    [51]Deimede V A, Kallitsis J K. Synthesis of poly(arylene ether) copolymers containing pendantPEO groups and evaluation of their blends as proton conductive membranes[J]. Macromolecules,2005,38:9594-9601.
    [52]Bai H, Ho W S W. New poly(ethylene oxide) soft segment-containing sulfonated polyimidecopolymers for high temperature proton-exchange membrane fuel cell[J]. J Membr Sci,2008,313:75-85.
    [53]Jeon J D, Kwak S Y. Nafion/sulfated-cyclodextrin composite membranes for direct methanolfuel cells[J]. J Power Sources,2008,185:49-54.
    [54]Yang T, Liu C T. SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuelcell[J]. Int J Hydrogen Energy,2011,36:5666-5674.
    [55]Chikh L, Delhorbe V, Fichet O.(Semi-)Interpenetrating polymer networks as fuel cellmembranes[J]. J Membr Sci,2011,368:1-17.
    [56]Luo H, Vaivars G, Mathe M. Covalent-ionically cross-linked polyetheretherketone protonexchange membrane for direct methanol fuel cell[J]. J Power Sources,2010,195:5197-5200.
    [57] Kang M S, Kim J H, Won J, et al. Highly charged proton exchange membranes prepared byusing water soluble polymer blends for fuel cells[J]. J Membr Sci,2005,247:127-135.
    [58]Seo J, Jang W, Lee S, et al. The stability of semi-interpenetrating polymer networks based onsulfonated polyimide and poly(ethylene glycol)diacrylate for fuel cell applications[J]. PolymDegrad Stab,2008,93:298-304.
    [59]Li T, Zhong G M, Fu R Q, et al. Synthesis and characterization of Nafion/cross-linked PVPsemi-interpenetrating polymer network membrane for direct methanol fuel cel[J]. J Membr Sci,2010,354:189-197.
    [60]Virginie D, Xavier T, Céline C, et al. Fluorohexane network and sulfonated PEEK basedsemi-IPNs for fuel cell membranes[J]. J Membr Sci,2013,389:57-66.
    [61]Chun L F, Xin N T, Qiao F Y, et al. Semi-interpenetrating polymer network proton exchangemembranes with narrow and well-connected hydrophilic channels[J]. J Power Sources,2013,226:289-298.
    [62]Gürdag G, Kurtulus B. Synthesis and Characterization of Novel Poly(N-isopropylacrylamide-co-N,N’-dimethylaminoethyl ethacrylate sulfate) Hydrogels[J]. Ind Eng Chem Res,2010,49:12675-12684.
    [63]Recillas M, Silva L L, Peniche C, et al. Thermoresponsive behavior ofchitosan-g-N-isopropylacrylamide copolymer solutions[J]. Biomacromolecules,2009,10:1633-641.
    [64]Feil H, Bae Y H, Fei J J, et al. Effect of comonomer hydrophilicity and ionization on the lowercritical solution temperature of N-isopropylacrylamide copolymers[J]. Macromolecules,1993,26:2496-2500.
    [65]Schld H G. Poly(N-isopropylacrylamide):experiment, theory and application[J]. Prog PolymSci,1992,17:163-249.
    [66]Kreuer K D, Paddison S J, Spohr E, et al. Transport in proton conductors for fuel-cellapplications: simulations,elementary reactions, and phenomenology[J]. Chem Rev,2004,104:4637-4678.
    [67]Fang J H, Guo X X, Harada S, et al. Novel Sulfonated Polyimides as Polyelectrolytes for fuelcell application.1. synthesis, proton conductivity, and water stability of polyimides from4,4′-diaminodiphenyl ether-2,2′-disulfonic acid[J]. Macromolecules,2002,35:9022-9028.
    [68]Ye Y S, Chen W Y, Huang Y J, et al. Preparation and characterization of high-durabilityzwitterionic crosslinked proton exchange membranes[J]. J Membr Sci,2010,362:29-37.
    [69]Tang Q W, Yuan S S, Cai H Y. High-temperature proton exchange membranes frommicroporous polyacrylamide caged phosphoric acid[J]. J Mater Chem A,2013,1:630-636.
    [70]Zhou X, Goh S H, Lee S Y, et al. Studies of interactions in poly(carboxylicacid)/poly(vinylpyridine)complexes[J]. Polymer,1998,39:3631-3640.
    [71]Tsai M H, Chang C J, Chen P J, et al. Preparation and characteristics of poly(amide–imide)/titania nanocomposite thin films[J]. Thin Solid Films,2008,516:5654-5658.
    [72]Huang Y J, Ye Y S, Syu Y J, et al. Synthesis and characterization of sulfonatedpolytriazole-clay proton exchange membrane by in situ polymerization and click reaction fordirect methanol fuel cells[J]. J Power Sources,2012,208:144-152.
    [73]Beers K M, Balsara N P. Design of cluster-free polymer electrolyte membranes andimplications on proton conductivity[J]. ACS Macro Lett,2012,1:1155-1160.
    [74] Zhang G, Li H T, Ma W J, et al. Cross-linked membranes with a macromolecular cross-linkerfor direct methanol fuel cells[J]. J Mater Chem,2011,21:5511-5518.
    [75]Bai Z W, Dang T D. Direct synthesis of fully sulfonated polyarylenethioether sulfones asproton-conducting polymers for fuel cells[J]. Macromol Rapid Commun,2006,27:1271-1277.
    [76]Feng S, Shen K Z, Wang Y, et al. Concentrated sulfonated poly (ether sulfone)s as protonexchange membranes[J]. J Power Sources,2013,224:42-49.
    [77]Deng Y, Zhang J Z, Li Y J, et al. Thermoresponsive graphene oxide-PNIPAM nanocompositeswith controllable grafting polymer chains via moderate in situ SET–LRP[J]. J Polym Sci, Part A:Pol Chem,2012,50:4451-4458.
    [78]Kim D S, Liu B J, Guiver M D. Influence of silica content in sulfonated poly(arylene etherether ketone ketone)(SPAEEKK) hybrid membranes on properties for fuel cell application[J].Polymer,2006,47:7871-7880.
    [79]Kreuer K D. Proton conductivity: materials and applications[J].Chem Mater,1996,8:610-641.
    [80] Li X F, Liu C P, Lu H, et al. Preparation and characterization of sulfonated poly(ether etherketone ketone) proton exchange membranes for fuel cell application[J]. J Membr Sci,2005,255:149-155.
    []Dillon R, Srinivasan S, Aricò A S, et al. International activities in DMFC R&D: status oftechnologies and potential applications[J]. J Power Sources,2004,127:112-126.
    [2] Ahmed M, Dincer I. A review on methanol crossover in direct methanol fuel cells: challengesand achievements[J]. Int J Energy Res,2011,35:1213-1228.
    [3] Neburchilov V, Martin J, Wang H J, et al. A review of polymer electrolyte membranes fordirect methanol fuel cells[J]. J Power Sources,2007,169:221-238.
    [4] Chen Z W, Holmberg B, Li W Z, et al. Nafion/Zeolite nanocomposite membrane by in situcrystallization for a direct methanol fuel cell[J]. Chem Mater,2006,18:5669-5675.
    [5] Yan J L, Liu C P, Wang Z, et al. Water resistant sulfonated polyimides based on4,4’-binaphthyl-1,1’,8,8’-tetracarboxylic dianhydride (BNTDA) for proton exchangemembranes[J]. Polymer,2007,48:6210-6214.
    [6] Feng S, Shen K Z, Wang Y, et al. Concentrated sulfonated poly (ether sulfone)s as protonexchange membranes[J]. J Power Sources,2013,224:42-49.
    [7] Mistri E A, Mohanty A K, Banerjee S, et al. Naphthalene dianhydride based semifluorinatedsulfonated copoly(ether imide)s:Synthesis, characterization and proton exchange properties[J]. JMembr Sci,2013,441:168-177.
    [8] Ni J, Zhang G, Zhao C J, et al. Crosslinked hybrid membranes based on sulfonated poly(etherether ketone)/γ-methacryloxypropyltrimethoxysilane/phosphotungstic acid by an in situ sol–gelprocess for direct methanol fuel cells[J]. J Mater Chem,2010,20:6352-6358.
    [9] Seo J, J W B, Lee S, et al. The stability of semi-interpenetrating polymer networks based onsulfonated polyimide and poly(ethylene glycol) diacrylate for fuel cell applications[J]. PolymDegrad Stab,2008,93:298-304.
    [0] Cele N, Ray S S. Recent progress on nafion-based nanocomposite membranes for fuel cellapplications[J]. Macromol Mater Eng,2009,294:719-738.
    [1] Tripathi B P, Shahi V K. Organic–inorganic nanocomposite polymer electrolyte membranesfor fuel cell applications[J]. Prog Polym Sci,2011,7:945-979.
    [2] Choi Y, Kim Y, Kim H K, et al. Direct synthesis of sulfonated mesoporous silica as inorganicfillers of proton-conducting organic–inorganic composite membranes[J]. J Membr Sci,2010,357:199-205.
    [3] Geng L, He Y, Liu D, et al. Facile in situ template synthesis of sulfonated polyimide/mesoporous silica hybrid proton exchange membrane for direct methanol fuel cells[J]. MicroporMesopor Mater,2012,148:8-14.
    [4] Xu T, Hou W Q, Shen X H, et al. Sulfonated titania submicrospheres-doped sulfonatedpoly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reducedmethanol permeability[J]. J Power Sources,2011,196:4934-4942.
    [5] Sahu A K, Bhat S D, Pitchumani S, et al. Novel organic–inorganic compositepolymer-electrolyte membranes for DMFCs[J]. J Membr Sci,2009,345:305-314.
    [6] Joo S H, Park C, Kim E A, et al. Functionalized carbon nanotube-poly(arylene sulfone)composite membranes for direct methanol fuel cells with enhanced performance[J]. J PowerSources,2008,180:63-70.
    [7] Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev,20103,9:228-240.
    [8] Cote L J, Kim F, Huang J X. Langmuir-Blodgett assembly of graphite oxide single layers[J]. JAm Chem Soc,2009,131:1043-1049.
    [9] Salavagione H J, Martínez G, Ellis G. Recent advances in the covalent modifi cation ofgraphene with polymers[J]. Macromol Rapid Commun,2011,32:1771-1789.
    [20] Sengupta R, Bhattacharya M, Bandyopadhyay S, et al. A review on the mechanical andelectrical properties of graphite and modified graphite reinforced polymer composites[J]. ProgPolym Sci,2011,36:638-670.
    [2] Zhang X, Cheng C, Zhao J, et al. Polyethersulfone enwrapped graphene oxide porous particlesfor water treatment[J]. Chem Eng J,2013,215-216:72-81.
    [22] Huang X, Yin Z Y, Wu, S X, et al. Graphene-based materials: synthesis, characterization,properties, and applications[J]. Small,2011,7:1876-1902.
    [23] Suhas D P, Raghu A V, Jeong H M, et al. Graphene-loaded sodium alginate nanocompositemembranes with enhanced isopropanol dehydration performance via a pervaporation technique[J].RSC Adv,2013,3:17120-17130.
    [24] Raghu A V, Lee Y R, Jeong H M, et al. Preparation and physical properties of waterbornepolyurethane/functionalized graphene sheet nanocomposites[J]. Macromol Chem Phys,2008,209:2487-2493.
    [25] Cao Y C, Xu C X, Wu X, et al. A poly (ethylene oxide)/graphene oxide electrolyte membranefor low temperature polymer fuel cells[J]. J Power Sources,2011,196:8377-8382.
    [26] Choi B G, Huh Y S, Park YC, et al. Enhanced transport properties in polymer electrolytecomposite membranes with graphene oxide sheets[J]. Carbon,2012,50:5395-5402.
    [27] Zarrin H, Higgins D, Jun Y, et al. Functionalized graphene oxide nanocomposite membranefor low humidity and high temperature proton exchange membrane fuel cells[J]. J Phys Chem C,2011,115:20774-20781.
    [28] Choi B G, Hong J, Park Y C, et al. Innovative polymer nanocomposite electrolytes: nanoscalemanipulation of ion channels by functionalized graphenes[J]. ACS Nano,2011,5:5167-5174.
    [29] Lee C H, Min K A, Park H B, et al. Sulfonated poly(arylene ether sulfone)–silicananocomposite membrane for direct methanol fuel cell (DMFC)[J]. J Membr Sci,2007,303:258-266.
    [30] Klaysom C, Moon S H, Ladewig B P, et al. The influence of inorganic filler particle size oncomposite ion-exchange membranes for desalination[J]. J Phys Chem C,2011,115:15124-15132.
    [31] Feng K, Tang B B, Wu P Y.“Evaporating” graphene oxide sheets (GOSs) for rolled upGOSs and its applications in proton exchange membrane fuel cell[J]. ACS Appl Mater Inter,2013,5:1481-1488.
    [32] Chen J L, Zhang X M, Zheng X L, et al. Size distribution-controlled preparation of grapheneoxide nanosheets with different C/O ratios[J]. Mater Chem Phys,2013,139:8-11.
    [33] Zhang L, Liang J J, Huang Y, et al. Size-controlled synthesis of graphene oxide sheets on alarge scale using chemical exfoliation[J]. Carbon,2009,47:3365-3380.
    [34] Qi G Q, Cao J, Bao R Y, et al. Tuning the structure of graphene oxide and the properties ofpoly(vinyl alcohol)/graphene oxide nanocomposites by ultrasonication[J]. J Mater Chem A,2013,1:3163-3170.
    [35] Yan J L, Liu C P, Wang Z, et al. Water resistant sulfonated polyimides based on4,4’-binaphthyl-1,1’,8,8’-tetracarboxylic dianhydride (BNTDA) for proton exchangemembranes[J]. Polymer,2007,48:6210-6214.
    [36] Fang J H, Guo X X, Harada S, et al. Novel sulfonated polyimides as polyelectrolytes for fuelcell application.1. synthesis, proton conductivity, and water stability of polyimides from4,4’-diaminodiphenyl ether-2,2’-disulfonic acid[J]. Macromolecules,2002,35:9022-9028.
    [37] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc,1958,80:1339.
    [38] Ye Y S, Chen W Y, Huang Y J, et al. Preparation and characterization of high-durabilityzwitterionic crosslinked proton exchange membranes[J]. J Membr Sci,2010,362:29-37.
    [39] Lin Y, Jin J, Song M. Preparation and characterisation of covalent polymer functionalizedgraphene oxide[J]. J Mater Chem,2011,21:3455-3461.
    [40] Li R, Tao X Y, Li X D. Low temperature, organic-free synthesis of Ba3B6O9(OH)6nanorodsand b-BaB2O4nanospindles[J]. J Mater Chem,2009,19:983-987.
    [41] Li R, Bao L H, Li X D. Synthesis, structural, optical and mechanical characterization ofSrB2O4nanorods[J]. Crystengcomm,2011,13:5858-5862.
    [42] Park S J, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalentions—enhancing mechanical properties via chemical cross-linking[J]. ACS Nano,2008,2:572-578.
    [43] Yang X M, Li L, Shang S M, et al. Synthesis and characterization of layer-aligned poly(vinylalcohol)/graphene nanocomposites[J]. Polymer,2010,51:3431-3435.
    [44] Chien H C, Tsai L D, Huang C P, et al. Sulfonated graphene oxide/Nafion compositemembranes for high-performance direct methanol fuel cells[J]. Int J Hydrogen Energ,2013,38:3792-13801.
    [45] Ravikumar, Scott K. Freestanding sulfonated graphene oxide paper: a new polymerelectrolyte for po lymer electrolyte fuel cells[J]. Chem Commun,2012,48:5584-5586.
    [46] Huang Y J, Ye Y S, Syu Y J, et al. Synthesis and characterization of sulfonatedpolytriazole-clay proton exchange membrane by in situ polymerization and click reaction fordirect methanol fuel cells[J]. J Power Sources,2012,208:144-152.
    [47] Beers K M, Balsara N P. Design of cluster-free polymer electrolyte membranes andimplications on proton conductivity[J]. ACS Macro Lett,2012,1:1155-1160.
    [48] Bai Z W, Dang T D. Direct synthesis of fully sulfonated polyarylenethioether sulfones asproton-conducting polymers for fuel cells[J]. Macromol Rapid Commun,2006,27:1271-1277.
    [49] Jiang H, Guo X, Zhang G, et al. Cross-linked high conductive membranes based on watersoluble ionomer for high performance proton exchange membrane fuel cells[J]. J Power Sources,2013,241:529-535.
    [50] Nguyen D A, Raghu A V, Choi J T, et al. Properties of thermoplastic polyurethane/functionalised graphene sheet nanocomposites prepared by the in situ polymerisation method[J].Polym Polym Compos,2010,18:351-358.
    [51] Nguyen D A, Lee Y R, Raghu A V, et al. Morphological and physical properties of athermoplastic polyurethane reinforced with functionalized graphene sheet[J]. Polym Int,2009,58:412-417.
    [52] Heo Y, Im H, Kim J. The effect of sulfonated graphene oxide on sulfonated poly (ether etherketone) membrane for direct methanol fuel cells[J]. J Membr Sci,2013,425-426:11-22.
    [53] Agmon N. The grotthuss mechanism[J]. Chem Phys Lett,1995,244:456-462.
    [54] Tseng C Y, Ye Y S, Cheng M Y, et al. Sulfonated polyimide proton exchange membraneswith graphene oxide show improved proton conductivity, methanol crossover impedance, andmechanical properties[J]. Adv Energy Mater,2011,1:1220-1224.
    [55] Enotiadis A, Angjeli K, Baldino N, et al. Graphene-based nafion nanocomposite membranes:enhanced proton transport and water retention by novel organo-functionalized graphene oxidenanosheets[J]. Small,2012,8:3338-3349.
    [56] Jiang Z Q, Zhao X S, Fu Y Z, et al. Composite membranes based on sulfonated poly(etherether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells[J]. J Mater Chem,2012,22:24862-24869.
    [57] Li N, Li S H, Zhang S B, et al. Novel proton exchange membranes based on water resistantsulfonated poly[bis (benzimidazobenzisoquinolinones)][J]. J Power Sources,2009,187:67-73.
    [1] Miyatake K, Tombe T, Chikashige Y, et al. Enhanced proton conduction in polymer electrolytemembranes with acid-functionalized polysilsesquioxane[J]. Angew Chem, Int Ed,2007,46:6646-6649.
    [2] Tripathi B P, Chakrabarty T, Shahi V K, et al. Highly charged and stablecross-linked,4-bis(4-aminophenoxy)biphenyl-3,3-disulfonic acid (BAPBDS)-sulfonated poly(ether sulfone) polymer electrolyte membranes impervious to methanol[J]. J Mater Chem,2010,20:8036-8044.
    [3] Asano N, Miyatake K, Watanabe M. Hydrolytically stable polyimide ionomer for fuel cellapplications[J]. Chem Mater,2004,16:2841-2843.
    [4] Yin Y, Yamada O, Tanaka K, et al. On the development of naphthalene-based sulfonatedpolyimide membranes for fuel cell applications[J]. Polym J,2006,38:197-219.
    [5] Antonucci P L, Arico A S, Creti P, et al. Investigation of a direct methanol fuel cell based on acomposite nafion-silica electrolyte for high temperature operation[J]. Solid State Ionics,1999,125:431-439.
    [6] Tchicaya-Bouckary L, Jones D J, Roziere J. Hybrid polyaryletherketone membranes for fuelcell applications[J]. Fuel Cell,2002,2:40-45.
    [7] Deng Q, Moore R B, Mauritz K A. Nafion/(SiO2, ORMOSIL, and dimethylsiloxane) hybridsvia in situ sol–gel reactions: characterization of fundamental properties[J]. J Appl Polym Sci,1998,68:747-763.
    [8] Jeong H C, Sang G K, Ji Y L, et al. Crosslinked sulfonated poly(arylene ether sulfone)/silicahybrid membranes for high temperature proton exchange membrane fuel cells[J]. RenewableEnergy,2013,51:22-28.
    [9] Sanchez C, Ribot F. Design of hybrid organic-inorganic materials synthesized via sol-gelchemistry[J]. New J Chem,1994,18:1007-1047.
    [10]Wu H, Hou W Q, Wang J T, et al. Preparation and properties of hybrid direct methanol fuelcell membranes by embedding organophosphorylated titania submicrospheres into a chitosanpolymer matrix[J]. Journal of Power Sources,2010,195:4104-4113.
    [11] Xu T, Hou W Q, Shen X H, et al. Sulfonated titania submicrospheres-doped sulfonatedpoly(ether ether ketone) hybrid membranes with enhanced proton conductivity and reducedmethanol permeability[J]. J Power Sources,2011,196:4934-4942.
    [12] Namazi H, Ahmadi H. Improving the proton conductivity and water uptake ofpolybenzimidazole-based proton exchange nanocomposite membranes with TiO2and SiO2nanoparticles chemically modified surfaces[J]. J Power Sources,2011,196:2573-2583.
    [13] Ossiander T, Heinzl C, Gleich S. Influence of the size and shape of silica nanoparticles on theproperties and degradation of a PBI-based high temperature polymer electrolyte membrane[J]. JMembr Sci,2014,454:12-19.
    [14] Lin Y F, Yen C Y, Liao S H, et al. High proton-conducting Nafion/–SO3H functionalizedmesoporous silica composite membranes[J]. J Power Sources,2007,171:388-395.
    [15] Pereira F, Vallé K, Belleville P, et al. Advanced mesostructured hybrid silica-Nafionmembranes for high-performance PEM fuel cell[J]. Chem Mater,2008,20:1710-1718.
    [16] Younggeun C, Youngkwon K, Hae K K, et al. Direct synthesis of sulfonated mesoporoussilica as inorganic fillers of proton-conducting organic–inorganic composite membranes[J]. JMembr Sci,2010,357:199-205.
    [17] Jin Y G., Qiao S, Zhang L, et al. Novel Nafion composite membranes with mesoporous silicananospheres as inorganic fillers[J]. J Power Sources,2008,185:664-669.
    [18] Tominaga Y C, Hong I C, Asai S G, et al. Proton conduction in Nafion composite membranesfilled with mesoporous silica[J]. J Power Sources,2007,171:530-534.
    [19] Kim Y J, Choi W C, Woo S I, et al. Proton conductivity and methanol permeation in NafionTM/ormosil prepared with various organic silanes[J]. J Membr Sci,2004,238:213-222.
    [20] Ji-Hye W, Hyeon-Ji L, Kyung-Suk Y, et al. Sulfonated Sulfonated SBA-15mesoporoussilica-incorporated sulfonated poly(phenylsulfone) composite membranes for low-humidity protonexchange membrane fuel cells: Anomalous behavior of humidity-dependent proton conductivity[J].Int J Hydrogen Energ,2012,37:9202-9211.
    [21] Jie Z, Maria M, Marijn M C G W. Surface modification of TiO2nanoparticles with silanecoupling agents[J]. Colloid Surface A: Physicochem. Eng. Aspects,2012,413:273-279.
    [22] Park K T, Kim S G, Chun J H, et al. Composite membranes based on a sulfonatedpoly(arylene ether sulfone) and proton-conducting hybrid silica particles for high temperaturePEMFCs[J]. Int J Hydrogen Energ,2011,36:10891-10900.
    [23] Hai Q Z, Xian F L, Cheng J Z, et al. Composite membranes based on highly sulfonated PEEKand PBI: morphology characteristics and performance[J]. J Membr Sci,2008,308:66-74.
    [24] Jian L W, Jun B L, Lan Y, et, al. Highly compatible acid–base blend membranes based onsulfonated poly(ether ether ketone) and poly(ether ether ketone-alt-benzimidazole) for fuel cellsapplication[J]. J Membr Sci,2012,415-416:644-653.
    [25] Gavrilko T, Fedorovich R, Dovbeshko G, et al. FTIR spectroscopic and STM studies ofvacuum deposited aluminium (III)8-hydroxyquinoline thin films[J]. J Mol Struct,2004,704:163-168.
    [26] Hong C P, Hong Y L, Qing M S, et al. Cadmium(II)(8-hydroxyquinoline) chloridenanowires:synthesis, characterization and glucose-sensing application[J]. Adv Funct Mater,2008,18:3692-3698.
    [27]Geng L, He Y, Liu D, et al. Facile in situ template synthesis of sulfonatedpolyimide/mesoporous silica hybrid proton exchange membrane for direct methanol fuel cells[J].Micropor Mesopor Mater,2012,148:8-14.
    [28] Chien H C, Tsai L D, Huang C P, et al. Sulfonated graphene oxide/Nafion compositemembranes for high-performance direct methanol fuel cells[J]. Int J Hydrog Energy,2013,38:13792-13801.
    [29] Cheng C F, Cheng H H, Cheng P W, et al. Effect of reactive channel functional groups andnanoporosity of nanoscale mesoporous silica on properties of polyimide composite[J].Macromolecules,2006,39:7583-7590.
    [30] Lin J J, Wang X D. Novel low-κ polyimide/mesoporous silica composite films: Preparation,microstructure, and properties[J]. Polymer,2007,48:318-329.
    [31] Keith M B, Nitash P B. Design of cluster-free polymer electrolyte membranes andimplications on proton conductivity[J]. ACS Macro Lett,2012,1:1155-1160.
    [32] Bong G C, Jin K H, Young C P, et al. Innovative polymer nanocomposite electrolytes:nanoscale manipulation of ion channels by functionalized graphenes[J]. ACS Nano,2011,5(6):5167-5174.
    [1]龚光明,吴俊涛,江雷.静电纺丝法制备聚酰亚胺新型材料[J].化学进展,2011,23:750-759.
    [2]师奇松,于建香,顾克壮,等.静电纺丝技术及其应用[J].化学世界,2005,5:313-316.
    [3] Yi J Z, Qiang W, Quan C Z, et al. Molecularly imprinted electrospinning polyethersulfonenano-scale fibers for the binding and recognition of bisphenol A[J]. Sep Sci Technol,2011,46:1615-1620.
    [4] Yu F Y, Hua M W, Kai S, et al. A facile and sensitive fluorescent sensor using electrospunnanofibrous film for nitroaromatic explosive detection[J]. J Mater Chem,2011,21:11895-11900.
    [5] Wei W, Zhen Y L,Ting T J, et al. Sulfonated poly(ether ether ketone)/polypyrrole core shellnanofibers: a novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gassensors[J]. ACS Appl Mater Interfaces,2012,4:6080-6084.
    [6] Choi J, Wycisk R, Zhang W, et al. High conductivity perfluorosulfonic acid nanofibercomposite fuel-cell membranes[J]. ChemSusChem,2010,3:1245-1248.
    [7] Choi J, Lee K M, Wycisk R, et al. Nanofiber composite membranes with low equivalentweight perfluorosulfonic acid polymers[J]. J Mater Chem,2010,20:6282-6290.
    [8] Choi J, Lee K M, Wycisk R, et al. Sulfonated polysulfone/POSS nanofiber compositemembranes for PEM fuel cells[J]. J Electrochem Soc,2010,157:B914-B919.
    [9]Bin D, Liang G, David S C, et al. Super proton conductive high-purity nafion nanofibers[J].Nano Lett,2010,10:3785-3790.
    [10] Ying F Y, Li W J, Zhan L, et al. Sulfonated polystyrene fiber network-induced hybrid protonexchange membranes[J]. Appl Mater Interfaces,2011,3:3732-3737.
    [11] Yao F Y, Guo B, Ji L, et al. Highly proton conductive electrolyte membranes: fiber-inducedlong-range ionic channels[J]. Electrochem Commun,2011,13:1005-1008.
    [12] Sergio M, Vicente C. Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cellApplications[J]. J Membr Sci,2011,372:191–200.
    [13] Iman S, Mohammad M H, Vahid H, et al. Nanofiber-based polyelectrolytes as novelmembranes for fuel cell applications[J]. J Membr Sci,2011,368:233-240.
    [14] Hsiu L L, Shr-Hua W, Chiu-Kai C, et al. Preparation of Nafion/poly(vinyl alcohol)electro-spun fiber composite membranes for direct methanol fuel cells[J]. J Membr Sci,2010,365:114-122.
    [15] Shih-Hua W, Hsiu-Li L. Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzim-idazole blend nanofiber supported Nafion membranes for direct methanol fuel cells[J]. J PowerSources,2014,257:254-263.
    [16] Peng C, Hui J W, Ting Y, et al. Electronspun nanofiber network anode for a passive directmethanol fuel cell[J]. J Power Sources,2014,255:70-75.
    [17] Jonghyun C, Kyung M L, Ryszard W, et al. Nanofiber network ion-exchange membranes[J].Macromolecules,2008,41:4569-4572.
    [18] Takuya T, Hiroyoshi K. Aligned electrospun nanofiber composite membranes for fuel cellelectrolytes[J]. Nano Lett,2010,10:1324-1328.
    [19] Ying F Y, Li W J, Zhan L, Y et al. Sulfonated polystyrene fiber network-induced hybridproton exchange membranes[J]. ACS Appl Mater Interfaces,2011,3:3732-3737.
    [20] Mohammad M H, Erfan D, Seyed R G, et al. Novel high-performance nanocomposite protonexchange membranes based on poly (ether sulfone)[J]. Renewable Energy,2010,35:226-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700