循环冷却水软化微碱化协同防垢防腐防污研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业上用水量最大的循环冷却水系统,最常见的问题是结垢、腐蚀、微生物污染、浓水排放与环境污染。针对这些问题,本文提出的循环冷却水软化微碱化处理方法,无需外加化学药剂,通过杂质减量和水质调节,协同防垢、防腐蚀、防微生物污染。取得“三防”功效,同时实现节水和污染物减排。
     本文通过系列模型计算和试验研究,取得主要成果如下:
     1、提出了离子交换软化微碱化方法及工艺
     文中计算了铁、铜、锌—碳酸盐溶液三个体系中的热力学平衡,进行了碳钢和黄铜的腐蚀控制试验,结果显示:在全碱度为6-10mmol/L (pH为9.2-9.5)的钠型碳酸盐溶液中,碳钢和黄铜表面都形成稳定氧化膜,腐蚀速率低于循环冷却水系统腐蚀控制国家标准。同时进行了RHCO3型树脂特性试验,研究了RHCO3型树脂中HCO3-/CO32-反应机理和平衡常数,优化了其运行及再生工艺参数。
     在此基础上,提出了适用于小型循环冷却水系统(如中央空调循环冷却系统)的离子交换软化微碱化方法,设计了针对两种循环冷却水系统的微碱化工艺:对无铜循环系统,补给水处理采用RNa型树脂和RHCO3型树脂串联工艺;对有铜循环系统,补给水处理采用2个串联流程进行并联的工艺,分配流量调节水质,一个是RNa型树脂和ROH型树脂串联,另一个是弱酸树脂、RH强酸树脂和弱碱树脂串联。同时研究了工艺的经济性,结果表明:与加药法相比,该工艺运行费用节省35%-44%。
     2、提出了纳滤—阴离子交换软化微碱化方法及工艺
     对于大型循环冷却水系统(如火力发电厂循环冷却系统),文中提出了利用纳滤去除水中全部硬度和部分一价离子,再利用RHCO3型树脂将产水中阴离子交换成碳酸氢根,实现软化微碱化。进行了NF90纳滤膜与RHCO3树脂串联工艺试验,结果表明:该工艺可同时实现部分脱盐(脱盐率约为80%)和软化微碱化,产水达到软化微碱化系统补水要求,预处理可采用超滤。
     3、研究了微碱化系统稳定性及“三防”效果
     本文进行了微碱化水中CO2传质模型计算和动态模拟试验,模拟计算了循环系统水质水量变化过程,结果表明:运行中的微碱化系统受到弱酸性补水冲击时,系统将在1-2h内与空气中CO2达成平衡而恢复。循环流量上升或系统碱度增大都有助于提高系统抗冲击性能,保持水质和水量稳定。
     之后,研究了调质水的“三防”效果,黄铜试片表面成膜动力学研究表明:微碱化调质水中,黄铜表面氧化膜稳定化过程只需24h,膜层致密,对电子传递起阻隔作用,具有良好的防腐效果;微碱化循环系统防微生物污染效果试验表明:微碱化方法控制了循环冷却水中的氮磷元素含量,同比之下,微生物总量减少了68%;去除硬度在防止污垢生成同时,使好氧异养菌总量减少33%。
     试验研究结果证实了循环冷却水软化微碱化方法的可行性,基于2个技术创新点,申请了2项发明专利,可望在此基础上开发出循环冷却水处理的实用性新技术。
The recirculating cooling water system is the biggest water consumer in industrial field, in which the normal problem is scaling, corrosion and microbial reproduction as well as drainage pollution and water resource waste. Accordingly, the paper proposes recirculating cooling water softening and micro-alkalizing through removing contamination and adjusting water quality, which can prevent scaling, corrosion and microorganism pollution without any chemicals coordinately. In the same time, it succeeds to save water resource and decrease drainage.
     After a series of model calculation and experiment, the main achievements are listed:
     1. A method and a process of ion-exchange softening and micro-alkalizing has been proposed
     The thermodynamic balance of the three system-Fe, Cu and Zn in carbonate slution has been calculated, and the corrosion contraling experiment of carbon steel and brass has been carried out, the result tells that:when the total alkalinity of the sodium carbonate solution is adjusted to 6-10mmol/L(pH=9.2-9.5), the A3 carbon steel and the brass is coated well by oxide film, of which the corrosion speed is controlled under the Chinese national standard in anti-corrosion of the recirculating cooling system. In the same time, the property test of RHCO3 resin has been carried out. The change merchanism and the equilibrium constant between HCO3- and CO32- in the resin have been researched, and the operation and regeneration process parameters have been optimized.
     Based on the test, a method of ion-exchange softening and micro-alkalizing, which was suitable to small-sized recirculating cooling water system (such as central air conditioning system), has been proposed, and the process for two different systems has been designed:for the recirculating cooling system without copper, the makeup water treating used the series connection process between RNa resin and RHCO3 resin. And for that containing copper is the parallel connection of between the two series connection, one conclude RNa resin and ROH resin, and the other conclude weak acidic resin, RH strong acerbic resin and weak anionic resin. In the same time, the economic characteric of the process has beed researched, the results tells that:it can save 35~44% operational fee than the process of adding chemicals.
     2. A method and a process of nanofiltration combining with anion-exchange softening and micro-alkalizing has been proposed
     For the large-scale recirculating cooling system (such as the cooling recirculating cooling system in thermal power plant), the paper propose that softening and micro-alkalizing by removing all the hardness and a part of monovolant ions in water with nanofiltration and then change the anion into HCO3 with RHCO3 resin. The process experiment of series connecting between NF90 membrane and RHCO3 resin has been carried out, the results tell that:when the nanofiltraion membrane-NF90 is series connected with RHCO3 anionic resin, the process can remove much monovalent ion (about 80%), and can soften as well as alkalize the water. The product water quality will fill the makeup water quality requirement of softening and micro-alkalizing system.
     3. The stability of softening and micro-alkalizing system and the "three preventing effects" has been studied
     The model calculation of the CO2 mass transfer from the adjusted water to the air and the simulating test has been carried out, the result tells that:when flushed by weak acidic makeup water in running, the micro-alkalized system will recover in 1-2 hours and kept balance with the CO2 in the air. The increasing of the flow rate and the system alkality will help increasing resistance capacity and keeping water quality and quantity stable.
     Then, the "three preventing effects" of the adjusted water has been studied, the kinetic experiment results of coating on brass surface tell that:there will need 24 hours to create an integrated film on the brass surface. The oxide film is much dense and cover the surface to prevent the brass corrosion; the preventing microorganism effect tests results tell that:the population of the microorganism will decrease 68% after removing nitrogen and phosphorus by softening and micro-alkalizing process, and the population of aerobic heterotrophic bacteria will decrease 33% and there is no scaling after softening.
     The fesxibility of the recirculating cooling water softening and micro-alkalizing method is confirmed by the experimental results. Based on the two innovative points, we have appled for two invention patents. We hope that a new pratical technique will be exploited to treat with the recirculating cooling water.
引文
[1]工业循环冷却水处理新技术与水质控制方法标准规范实用手册[M].北京:北方工业出版社,2007:3-5;
    [2]李永立,张福太.大同第二发电厂循环水对凝汽器铜管的腐蚀特性试验研究[J].华北电力技术,1998(8):18-23;
    [3]Hawa Kazdal Zeytin. Failure analysis of cooling water pipes used in the condensation system of a gas turbine[J]. MATERIALS CHARACTERIZATION (2007) in press;
    [4]张秀丽,谢生源.化学镀镍技术在凝汽器铜管上的应用[J].材料保护,2003,36(11):53-54;
    [5]解群,葛红花.Cl-、SO42-对凝汽器不锈钢管的作用研究[J].华东电力,2002(8):14-17;
    [6]Ismail, Kh.M., Jayaraman, A., Wood, T.K., Earthman, J.C.. The influence of bacteria on the passive film stability of 304 stainless steel[J]. Electrochim. Acta,1999(44):4685-4692;
    [7]杨武,顾浚祥,黎憔焱木等.金属的局部腐蚀[M].北京:化学工业出版社,1993,5-40;
    [8]路琼华.工科无机化学[M].上海:华东化工学院出版社,1992:775;
    [9]刘俊新,李伟光,王秀蘅.循环水中铁对腐蚀结垢的作用及缓蚀阻垢研究[J].哈尔滨建筑大学学报,2001,34(1):59-62;
    [10]孙立新,田民格,李爱兵等.电厂凝汽器铜管清洗后的预膜处理[J].清洗世界,2008,8(24):20-23;
    [11]中华人民共和国国家发展和改革委员会.DL/T 957-2005火力发电厂凝汽器化学清洗及成膜导则[S].北京:中国电力出版社,2005;
    [12]沈仲韬,李鹏.电厂循环冷却水系统不停车清洗预膜实践.净水技术,2007,3(26):73-75;
    [13]魏学新,魏聚广,肖桂红.循环水系统不停车清洗预膜方案.河南化工,2007(24):34-35;
    [14]胡丽华.免化学清洗预膜方案在循环水系统中的应用[J].工业给排水,2007,7(33):55-58;
    [15]赵曦,魏刚.有机膦系预膜剂在碳钢表面的成膜机理[J].中国腐蚀与防护学报,2007,3(27):147-150;
    [16]尚广辰,杨俊章,张印辉等.循环冷却水系统清洗预膜总结[J].河南化工,200(72):36-37;
    [17]Chun-Song Ye, Jin-Chu Fan, et al. Controlling Corrosion of Copper Within a Turbine Generator by Conditioning Inner Cooling Water Quality. The Conference on Industrial Water Official Proceedings of the International Water Conference,62nd Annual meeting, Oct.21-25,2001. Pittburgh, Pennsylvania, USA. IWC-01-28.205-211;
    [18]Felix Ziegler. Recent Developments and Future Prospects of Sorption Heat Pump Systems[J]. International Journal of Thermal Science,1999,38(3):191-208;
    [19]Felix Ziegler. State of the Art in Sorption Heat Pumping and Cooling Technologies[J]. International Journal of Refrigeration,2002,25(4):450-459.
    [20]HU Xian-qi, LIANG Cheng-hao, HUANG Nai-bao. Anticorrosion Performance of Carbon Steel in 55% LiBr Solution Containing PMA/SbBr3 Inhibitor[J]. JOURNAL OF IRON AND STEEL RESEARCH,2006,13(4):56-60;
    [21]M. Saremi, C. Dehghanian, M. Mohammadi Sabet, The effect of molybdate concentration and hydrodynamic effect on mild steel corrosion inhibition in simulated cooling water[J], Corrosion Science,48 (2006):1404-1412;
    [22]楼宏铭,邱学青,杨东杰.绿色缓蚀阻垢剂GCL2的研制及性能研究[J].四川大学学报(工程科学版),2002,34(5):93—97;
    [23]A. Guenbour, A. Kacemi, A. Benbachir, Corrosion protection of copper by polyaminophenol films[J]. Progress in Organic Coatings 2000 (39) 151-155;
    [24]Tao Liu, Shougang Chen and Sha Cheng, Corrosion behavior of super-hydrophobic surface on copper in seawater[J]. Electrochimica Acta 2007 (52) 8003
    [25]S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari, Preparation of polyaniline-Fe2O3 composite and its anticorrosion performance[J]. Synthetic Metals 157 (2007) 751-757;
    [26]Bin Yao, Gengchao Wang, Jiankun Ye. Corrosion inhibition of carbon steel by polyaniline nanofibers[J]. Materials Letters (2007), in press;
    [27]Jianguo Wang, Charlie C. Torardi, Michael W. Duch, Polyaniline-related ion-barrier anticorrosion coatings II. Protection behavior of polyaniline, cationic, and bipolar films[J]. Synthetic Metals (2007) in press;
    [28]郭敏.钛的应用与腐蚀[J].全面腐蚀控制,2000,14(2);
    [29]韩静云,张小伟,田永静等.污水处理系统中混凝土结构的腐蚀现状调查及分析[J].混凝土2000(5):51-54;
    [30]张小伟等.模拟城市生活污水对混凝土的加速腐蚀[J].腐蚀科学与防护技术,2003,15(4):234-237;
    [31]张秀环,王世成.换热器水系统结垢机理[J].化学工程师,2004,101(2):31;
    [32]P. Shakkthivel, T. Vasudevan. Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems[J]. Desalination,2006 (197): 179-189;
    [33]P. Shakkthivel, R. Sathiyamoorthi and T. Vasudevan. Development of acrylonitrile copolymers for scale control in cooling water systems[J]. Desalination,2004(164):111-123;
    [34]宋彦梅.绿色阻垢剂的研究现状及应用进展[J].工业水处理,2005,25(9):12;
    [35]张林华,曲云霞.臭氧法水处理在空调冷却水系统中的应用[J].暖通空调,HV&AC,2002,32(4):110-111;
    [36]王佩琼.高频电磁场防垢技术在循环水中的应用机理初探[J].电力建设,2001(9):43-47;
    [37]周新良,李石湘,朱江.高频电磁场防垢技术在灰水回收管道上的应用[J].电力环境保护,2001,17(1):18-21;
    [38]范玉东,李永庆,马世平.高频电磁式水处理装置在循环水处理中的应用[J].东北电力技术,2004(7):51-52;
    [39]Sung H. Lee, Young I. Cho. Velocity effect on electronic-antifouling technology to mitigate mineral fouling in enhanced-tube heat exchanger[J]. International Journal of Heat and Mass Transfer 2002 (45):4163-4174;
    [40]陈菲,舒民.防治加热管壁结垢的研究与探讨[J].中国井矿盐,2006,36(1):11-14;
    [41]T.S.RAO and K.V.K. NAIR, Microbiologically influenced stress corrosion cracking failure of admiralty brass condenser tubes in a nuclear power plant cooled by freshwater[J]. Corrosion Science,1998,40(11):1821-1836;
    [42]胥聪敏,张耀亨和程光旭.Corrosion and Electrochemical Behavior of 316L Stainless Steel in Sulfate-reducing and Iron-oxidizing Bacteria Solutions[J]. Chinese J. Chem. Eng.,2006,14(6): 829-834;
    [43]Chamritski I.G., Bums GR., Webster B.J.. Effect of iron-oxidizing bacteria on pitting of stainless steel[J]. Corrosion,2004,60(7):658-669;
    [44]Rosenfeld, LL., Corrosion Inhibitors, Chemistry[M]. Publishing Ltd., Moscow (1977).
    [45]Starosvetsky, J.O., Armon, R., Groysman, Fouling of carbon steel heat exchanger caused by iron bacteria[J]. Mate,:Performance,1999,38 (1),55-61;
    [46]Rao, T.S., Sairam, T.N., Viswanathan, B., Nair, K.V.K., Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system[J]. Corros. Sci.,2000(42): 1417-1431;
    [47]Starosvetsky, D., Armon, R., Pitting corrosion of carbon steel caused by iron bacteria[J]. Int. Biodete,:Biodegr.,2001(47):79-87;
    [48]Y.C. Chen, C.M. Lee, S.K. Yen, S.D. Chyou, The effect of denitrifying e-oxidizing bacteria TPH-7 on corrosion inhibition of sodium molybdate[J]. Corrosion Science,2007 (49):3917-3925;
    [49]Bott TR. Fouling of heat exchangers[J]. Chemical engineering monographs,1995(26);
    [50]Bott TR, Techniques for reducing the amount of biocide necessary to counteract the effects of biofilm growth in cooling water systems[J]. Appl. Therm. Eng.,1998(18),1059-66;
    [51]Geesey G.G, Bryers J.D. Biofouling of engineered materials and systems[J]. Biofilms II, process analyses and applications.2000:237-79;
    [52]Keller DW, Hajjeh R, DeMaria A, Fields BS, Pruckler JM, Benson RS, Kludt PE, Lett SM, Mermel LA, Giorgio C, Breiman RF. Community outbreak of Legionaires'disease:an investigation confirming the potential for cooling towers to transmit Legionella species[J]. Clin Infect Dis,1996(22):257-61;
    [53]Fiore AE, Nuorti JP, Levine OS, Marx A, Weltman AC, Yeager S, Benson RF, Pruckler J, Edelstein PH, Greer P, Zaki R, Fields BS, Butler JC. Epidemic Legionairs'disease two decades later:old sources, new diagnostic methods[J]. Clin Infect Dis,1998(26):426-33;
    [54]Lett SM, Mermel LA, Giorgio C, Breiman RF. Community outbreak of Legionairs'disease:an investigation confirming the potential for cooling towers to transit legionella species [J]. Clin Infect Dis,1996(22):257-61;
    [55]Sanjeevi Rajagopal, Gerard Van der Veldea, Marinus Van der Gaaga, Henk A. Jenner. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems[J]. Water Research,2003 (37):329-338;
    [56]G. Petruccia, M. Rosellini. Chlorine dioxide in seawater for fouling control and post-disinfection in potable waterworks, Desalination[J],2005 (182),283-291;
    [57]Susana Silva Martinez, Alberto Alvarez Gallegos, Esteban Martinez, Electrolytically generated silver and copper ions to treat cooling water:an environmentally friendly novel alternative[J], International Journal of Hydrogen Energy 2004 (29) 921-93;
    [58]Nazmiye Ozlem Sanli-Yurudu, Ayten Kimiran-Erdem, Aysin Cotuk, Studies on the efficacy of Chloramine T trihydrate (N-chloro-p-toluene sulfonamide) against planktonic and sessile populations of different Legionella pneumophila strains[J], Int. J. Hyg. Environ.-Health 2007 (210):147-153;
    [59]王雪峰等.微电解水处理器的杀菌作用研究[J].给水排水,2001(11):40-43;
    [60]苏腾,陈中兴.酶法处理工业循环水中生物粘泥的研究[J].中国给水排水,2002(8):5-9;
    [61]刘铁军.采用戊二醛类对循环水系统中微生物的治理[J].资源与环境,2007(20): 177-178;
    [62]刘杨,沙继学.循环冷却水微生物的处理[J].林业科技情报,2001,33(1):50;
    [63]Daamen EJ, Wouters JW, Savelkoul JTG. Side stream biofiltration for improved biofouling control in cooling water systems[J]. Water Sci Tech 2000(41):445-51;
    [64]K.P.H. Meesters, J.W. Van Groenestijn, J. Gerritse, Biofouling reduction in recirculating cooling systems through biofiltration of process water[J]. Water Research,2003(37),525-532;
    [65]邢红,邓华.循环水系统的结垢及其防护[J].安徽建筑,2001(2):98;
    [66]许立国.弱酸处理补充水时的循环水高浓缩倍率试验研究[J].山东电力技术,2005(5):3-7;
    [67]祁利明,田雁冰,肖志坚等.循环水弱酸处理系统的技术改造[J].内蒙古电力技术,2003,21(2):50:
    [68]Mauno Into, Ann-Sofi Jonsson, Goran Lengden, Reuse of industrial wastewater following treatment with reverse osmosis[J]. Journal of Membrane Science 2004 (242),21-25;
    [69]O. Bayat, V. Arslan, B. Bayat, C. Poole. Application of a flocculation-ultrafiltration process for bacteria (Desulfovibrio desulfuricans) removal from industrial plant process water[J]. Biochemical Engineering Journal 2004 (18),105-110;
    [70]王栋坤.澳大利亚佩斯沃特电厂零排放管理系统[J].山东电力技术,1994(3):70-77;
    [71]张贵祥,董建国,李志民,穆小桂,火电厂废水“零排放”设计研究与应用[J].电力建设,2004,25(2):52-55;
    [72]王锦,石诚,王晓昌.纳滤膜处理火力发电厂循环冷却排污水的探讨[J].工业水处理,2002,22(2): 17-19:
    [73]刘玲.用于中央空调水处理技术的探讨[J].甘肃科技,2002(19):86-87;
    [74]李志生,张国强,李利新.中央空调冷却水处理技术比较分析[J].制冷与空调,2006,6(4):89-91;
    [75]吴淑焕,李茂东.中央空调水处理技术现状与发展[J].制冷,2004,23(2):34-37;
    [76]魏广宏,张万友,徐佳等.空调冷却水系统节水技术研究[J].工业水处理,2005,25(11):57-59;
    [77]李迎建,孙慧斌.中央空调冷却水的喷泉方式处理[J].水处理技术,2005,31(9):75-78;
    [78]王雅珍.中央空凋冷水机组水处理中应注意的儿个问题[J].制冷空调与电力机械,2003(2):55-56:
    [79]E. Rakanta, E. Daflou, G. Batis, Evaluation of corrosion problems in a closed air-conditioning system:a case study[J], Desalination 2007 (213) 9-17;
    [80]Ying Wang, Bo Wang, Hongzhu Ma, Electrochemical catalytic treatment of wastewater by metal ion supported on cation exchange resin[J], Journal of Hazardous Materials 2006 (B137) 1853-1858;
    [81]ZHU Zhi-liang, MA Hong-mei, ZHANG Rong-hua, GE Yuan-xin, ZHAO Jian-fu, Removal of cadmium using MnO2 loaded D301 resin[J], Journal of Environmental Sciences 2007 (19), 652-656;
    [82]S. Meenakshi, Natrayasamy Viswanathan, Identification of selective ion-exchange resin for fluoride sorption[J], Journal of Colloid and Interface Science 2007 (308),438-450;
    [83]Sofia A. Cavaco, Sandra Fernandes, Margarida M. Quina, Lic'inio M. Ferreira Removal of chromium from electroplating industry effluents by ion exchange resins[J], Journal of Hazardous Materials 2007 (144),634-638;
    [84]Fethiye Gode, Erol Pehlivan, Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins[J], Journal of Hazardous Materials 2005 (B119) 175-182;
    [85]R.-S. Juang, H.-C. Kao,W. Chen, Column removal of Ni(Ⅱ) from synthetic electroplating waste water using a strong-acid resin[J], Separ. Purif. Technol.2006 (49) 36-42;
    [86]Mourad Amara, Hac6ne Kerdjoudj, Separation and recovery of heavy metals using a cation-exchange resin in the presence of organic macro-cations[J], Desalination 2004 (168) 195-200;
    [87]Abdelaziz Smara, Rachid Delimi, Eric Chainet, Jacqueline Sandeaux, Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/ electrodialysis process[J], Separation and Purification Technology 2007 (57),103-110;
    [88]Xiao Feng, Zucheng Wu, Xuefen Chen, Removal of metal ions from electroplating effluent by EDI process and recycle of purified water[J], Separation and Purification Technology 2007 (57) 257-263
    [89]Saba Samatya, Nalan Kabay, U" mran Yu" ksel, Mu" s_erref Arda, Mithat Yu'ksel, Removal of nitrate from aqueous solution by nitrate selective ion exchange resins[J], Reactive & Functional Polymers 2006 (66) 1206-1214;
    [90]M. Ben Sik Ali, B. Hamrounl, S. Bouguecha, M. Dhahbi, Silica removal using ion-exchange resins[J], Desalination 2004 (167) 273-279;
    [91]E.R. Cornelissena, N. Moreau, W.G. Siegers, A.J. Abrahamse, L.C. Rietveldc, A. Grefte, M. Dignum, G. Amy, L.P. Wessels, Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions[J], WATER RESEARCH, in press;
    [92]Yongrui Tan, James E. Kilduff, Factors affecting selectivity during dissolved organic matter removal by anion-exchange resins[J], WATER RESEARCH 2007 (41),4211-4221;
    [93]Gokhan Ekrem U" stun, Seval Kutlu Akal Solmaz, As kin Birg'ul, Regeneration of industrial district wastewater using a combination of Fenton process and ion exchange—A case study[J], Resources, Conservation and Recycling 2007 (52),425-440;
    [98][94] Seval Kutlu Akal Solmaz, Gokhan Ekrem Ustun, Askin Birgul, Yucel Tasdemir, Treatability studies with chemical precipitation and ion exchange for an organized industrial district (OID) effluent in Bursa, Turkey[J], Desalination 2007 (217) 301-312;
    [99][95] Z. Beril Gonder, Yasemin Kaya, Ilda Vergili, Hulusi Barlas, Capacity loss in an organically fouled anion exchanger[J], Desalination 2006 (189) 303-307;
    [96]王锦,石诚,王晓昌.纳滤膜处理火力发电厂循环冷却排污水的探讨[J].工业水处理,2002,22(2): 17-19:
    [97]A. Gaid, G. Bablon, G. Turner, J. Franchet, J.C. Protais, Performance of 3 years operation of nanofiltration plants[J], Desalination 1998,117 (1-3),149-158;
    [98]R.G.J. Radier, C.W. van Oers, A. Steenbergen, M. Wessling, Desalting a process cooling water using nanofiltration[J], Separ. Purif. Technol.2001 (22),159-168;
    [99]B. Van der Bruggen, K. Everaert, D. Wilms, C. Vandecasteele, Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water:rejection properties and economic evaluation, Journal of Membrane Science 2001 (193) 239-248;
    [100]Ch. Tzotzi, T. Pahiadaki, S.G. Yiantsios, A study of CaCO3 scale formation and inhibition in RO and NF membrane processes[J], Journal of Membrane Science 2007 (296) 171-184;
    [101]D. Lisitsin, Q. Yang, D. Hasson, R. Semiat, Inhibition of CaCO3 scaling on RO membranes by trace amounts of zinc ions[J], Desalination 2005 (186) 311-318;
    [102]Nghiem, L.D., Schafer, A.I.,2002. Adsorption and transport of trace contaminant estrone in NF/RO membranes[J]. Environ.Eng. Sci.1996 (6),441-451;
    [103]Nghiem, L.D., Scha" fer, A.I., Elimelech, M.,2004. Removal of natural hormones by nanofiltration membranes:measurement, modeling, and mechanisms. Environ. Sci. Technol.38, 1888-1896.
    [104]Yoon, Y., Westerhoff, P., Snyder, S.A., Wert, E.C.,2006. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membr. Sci.270, 88-100.
    [105]B. Van der Bruggen, D. Segers, C. Vandecasteele, L. Braeken, A. Volodin, C. Van Haesendonck, How a microfiltration pre-treatment affects the performance in nanofiltration[J], Sep. Sci. Technol. 2004 (39),1443-1459;
    [106]A.R. Costa, M.N. de Pinho, Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions[J], J. Membr. Sci.2005 (255),49-56;
    [107]L. Song, K.L. Chen, S.L. Ong, W.J. Ng, A new normalization method for determination of colloidal fouling potential in membrane processes[J], Colloid Interface Sci.2004 (271),426-433;
    [108]P. Van der Meeren, H. Saveyn, S.B. Kassa, W. Doyen, R. Leysen, Colloid-membrane interaction effects on flux decline during cross-flow UF of colloidal silica on semi-ceramic membranes, Phys. Chem. Chem. Phys.2004 (6),1408-1412;
    [109]K. Boussu, A. Belpaire, A. Volodin, C. Van Haesendonck, P. Van der Meeren, C. Vandecasteele. Van der Bruggen, Influence of membrane and colloid characteristics on fouling of nanofiltration membranes[J], Journal of Membrane Science 2007 (289) 220-230;
    [110]A.R.D. Verliefde, S.G.J. Heijman, E.R. Cornelissen, G. Amy,B. Van der Bruggen, J.C. van Dijk, Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water[J], WATER RESEARCH 2007 (41) 3227-3240;
    [111]Ismail Koyuncu, Mark R. Wiesner, Cecile Bele, Gabriel Coriton, Malik Djafer, Jacques Cavard, Bench-scale assessment of pretreatment to reduce fouling of salt-rejecting membranes[J], Desalination 2006 (197) 94-105;
    [112]Hyun-Ah Kim, Jae-Hoon Choi, Satoshi Takizawa, Comparison of initial filtration resistance by pretreatment processes in the nanofiltration for drinking water treatment[J], Separation and Purification Technology 2007 (56) 354-362;
    [113]Johannes Meier, Thomas Melin, Wastewater reclamation by the PAC-NF process[J], Desalination 2005 (178):27-40;
    [114]R.G.J. Radier, C.W. van Oers, A. Steenbergen, M. Wessling, Desalting a process cooling water using nanofiltration[J], Separation and Purification Technology 2001(22-23):159-168;
    [115]Ines Frenzel, Dimitrios F. Stamatialis, Matthias Wessling, Water recycling from mixed chromic acid waste effluents by membrane technology[J]. Separation and Purification Technology 2006 (49) 76-83;
    [116]Donaldson J D, Grime S M. Lift the scales from our pipes [J]. New Scientist,1988,18(2):43-46;
    [117]Barrett R A; Parsons S A. the influence of magenetic fields on calcium carbonate precipitation [J]. Water Research,1998,32(3):609-612;
    [118]罗漫,陆柱.磁场对结晶过程的影响[J].华东理工大学学报,2000,26(2):177-179;
    [119]周爱东;杨红晓;张志炳.磁处理在抑制碳酸钙结垢中应用[J].应用化工,2006,35(2)86-88;
    [120]周本省.工业水处理技术[M].化学工业出版社,2002,第二版:102-103;
    [121]DL/T794-2001.火力发电厂锅炉化学清洗导则[S].北京:中国标准出版社,2001。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700