Mg-Al合金熔体在三种常用增强体陶瓷基板上的润湿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷增强镁基和铝基复合材料因具有低密度、高比强度和比模量等诸多优点近年来受到了人们的广泛关注。众所周知,采用铸造或熔体浸渗等液相法制备金属基复合材料时,陶瓷增强体与金属基体的润湿性好坏很大程度上决定了复合材料制备的难易程度以及其界面结合质量和最终性能的优劣。另一方面,液态金属尤其是蒸气压高的金属(如Mg)高温时普遍存在蒸发现象,而且Mg-Al合金熔体与大部分陶瓷都能发生反应。对于这种高温下润湿、蒸发和反应相互耦合的材料体系,如何评价其真实润湿性及润湿动力学是一个重要的基础科学问题。
     尽管如此,由于Mg易挥发、Mg-Al熔体易氧化且与陶瓷反应等特征增加了润湿实验的难度,目前人们对Mg-Al合金熔体与陶瓷的润湿性及界面结合特征了解甚少,这在一定程度上阻碍了镁铝基复合材料的开发。因此,本文采用一种改良座滴法对全成分范围内的Mg-Al合金熔体与三种常用增强体陶瓷(Al2O3. SiC和Si02)的润湿性进行了系统地测定,利用XRD和SEM-EDS等手段对冷却试样的界面微结构及其演变行为进行了细致地考察,并结合热力学计算对体系界面反应进行了深入分析,获得的主要研究结果如下:
     (1)提出了蒸发和反应共存下润湿行为的科学评价方法。体系真实润湿性建议用改良座滴法测得的初始平衡接触角进行表征。体系润湿动力学表征必须综合考虑接触角θ和接触直径D(或半径R)随时间的变化情况:(i) dD/dt>0, dθ/dt/dt=O, dθ/dt<0,表明三相线被滞留;蒸发引起接触角降低,此时接触角为后退接触角,润湿性并未真正得到改善。(iii) dD/dt<0,表明三相线发生回撤;接触角的变化(增大、减小或不变)取决于三相线回撤与蒸发之间的竞争。
     (2)揭示了Mg-Al/(Al2O3、SiC和Si02)三个体系中Mg对润湿性影响的共性机制。Mg既能降低A1滴表面张力(σlv)又能降低固-液界面张力(σsl)。如果液滴表面洁净(无氧化膜)且原始体系不润湿(0>90°),则Mg的加入不一定能够改善体系的润湿性,表观上观察到的润湿性改善往往是由于Mg通过蒸发破除了Al滴表面的氧化膜所致。反之,如果原始体系润湿(θ<90°),那么Mg能够显著改善体系的润湿性。
     (3)揭示了高温下三相线运动的内在控制机制。三相线运动趋势(铺展或回撤)主要取决于体系瞬时表观接触角[θa(t)]和瞬时理想平衡接触角[θe(t)]之间的大小关系。若θa(t)>θe(t),液滴倾向于铺展;若θa(t)>θe(t),则液滴倾向于回撤。三相线能否运动主要受控于三相线铺展(或回撤)驱动力[Fd(t)]与滞留作用力[Fp(t)]之间的竞争。若Fd(t)>Ep(t),则三相线发生运动;否则,三相线被滞留。Fd(t)可表述为Fd (t)=σlv(t)[cosθe (t)-cosθa (t)], σlv(t)为瞬时液体表面张力;Fp(t)主要源于固体表面上的物理缺陷(如粗糙度)和化学缺陷(如化学不均匀性)。
     (4)建立了润湿、蒸发、界面反应及Mg-Al合金浓度之间的内在联系。蒸发不仅能够减小液滴体积和瞬时表观接触角[θa(t)],而且会显著改变合金浓度,从而影响体系的润湿性。界面反应能够改变界面性质及合金浓度进而影响润湿性。合金浓度的变化不但本身会影响体系的润湿性和液滴的蒸发速度,而且会影响界面反应尤其是反应产物的生成从而进一步影响润湿性。此外,通过热力学计算确定了界面反应与Mg-Al合金浓度之间的定量关系。
     (5)揭示了Mg-Al/Al2O3体系液滴三相线回撤的内在机理。三相线回撤分为两种情况:第一种发生在液滴体积不断减小的阶段,主要归因于Mg蒸发引起合金中A1含量的升高[增大θe(t)]和液滴体积的减小[降θa(t)];第二种发生在液滴体积几乎不变的阶段,主要归因于界面处MgAl2O4的形成[增大θe(t)]和液滴中少量残留Mg的蒸发[增大σlv(t)]。
     (6)揭示了Mg-Al/SiC体系三相线铺展的内在机理。润湿前期液滴三相线铺展主要受控于SiC基板表面的去氧化过程。1173K时低Mg含量Mg-Al合金(如8、20和43mol.%Mg-Al)在α-SiC基板上的铺展出现由慢变快的现象主要归因于Mg向固-液界面的偏聚以及其对SiC表面去氧化速度大于Al的特征。
     (7)揭示了Mg-Al/SiO2体系三相线铺展的内在机理与界面组织结构的形成机制。液滴三相线铺展主要归因于界面上尤其是三相线处Mg2Si的形成。增加Mg含量会显著提高液滴的铺展速度。体系界面反应产物区域呈现出典型的层状结构特征。它们的形成在热力学上主要受蒸发和反应导致瞬时合金浓度变化的影响;在动力学上主要受控于Mg、Al和Si的渗透与扩散。
     上述研究结果可望为镁铝基复合材料的制备和开发提供一定的理论指导,并进一步丰富人们对金属-陶瓷高温润湿性及其界面化学特征的科学认识。
Ceramic reinforced magnesium-and aluminum-matrix composites have received great attention because of outstanding properties such as low density, high specific strength and stiffness. As we know, when a liquid casting or infiltration route is employed in the fabrication of metal matrix composites, the wettability between metallic matrix and ceramic reinforcement largely determines the ease of the process, the bonding quality and the final properties of the composites. On the other hand, the evaporation is ubiquitous for liquid metals especially the volatile substances such as Mg at high temperature, and most of ceramics can react with molten Mg-Al alloys. For a material system under the circumstance of the coupling of wetting, evaporation and reaction at high temperature, how to evaluate the intrinsic wettability and wetting kinetics is an important basic scientific topic.
     However, Mg is highly volatile, and Mg-Al alloy is easily oxidized and also easy to react with ceramics, which would lead to difficulty in the wetting experient. As a result, up to date, the understanding of the wettability and interfacial bonding characteristics between molten Mg-Al alloy and ceramic is very poor, which could hinder the development of magnesium-aluminum matrix composites. Therefore, in this paper, we investigated systematically the wetting of three ceramic substrates normally used as reinforcements (Al2O3, SiC and SiO2) by molten Mg-Al alloys over a full composition range using an improved sessile drop method, and examined thoroughly the interfacial microstructures of some cooled samples as well as their behavior of evolution by using XRD, SEM-EDS and other means. Furthermore, the interfacial reaction was analyzed deeply by combining thermodynamic calculations and experimental results. The main studies obtained are as follows:
     (1) A scientific criterion for evaluation of the wetting behavior under the circumstance of the coupling of evaporation and reaction was proposed. The initial contact angles measured by improved sessile drop method were suggested to be used to characterize the intrinsic wettability of the original systems. The characterization of wetting kinetics should simultaneously concern the variation in contact angle θ and contact diameter D (or radius R) with time:(i) dD/dt>0, d0/dt<0, suggesting that the interfacial reaction promotes the spreading of the triple line; the contact angles are advancing angles and the wetting is really improved.(ii) dD/dt=0, dθ/dt<0, suggesting that the triple line is pinned; the contact angle decreases due to the evaporation; the contact angles are receding angles and the wetting is not actually improved,(iii) dD/dt<0, suggesting that the triple line recedes; the change (increase, decrease or unchange) in contact angle depends on the competition between the recession of the triple line and the evaporation.
     (2) The common mechanism for the effects of Mg on the wettability in the Mg-Al/(Al2O3, SiC and SiO2) systems was revealed. Mg can decrease not only the surface tension of the A1drop (σ/ν) but also the solid-liquid interfacial tension (σsl). Provided that the drop surface is clean (non-oxidation), if the oiginal system is non-wetting (θ>90°), the addition of Mg does not always improve the wettability; the improvement of the wetting observed is usually attributed to the disruption of the oxide film on the Al drop surface caused by the Mg evaporation. Conversely, if the original system is wetting (θ<90°), Mg can significantly improve the wettability of the system.
     (3) The controlling mechanism for the movement of the triple line at high temperature was revealed. The trend of the triple line movement (spreading or receding) mainly depends on the difference in the instantaneous apparent contact angle [θa(t)] and the instantaneous assumed equilibrium contact angle [θe(t)]-If θα(t)>θe(t), the drop tends to spread; if θa(t)<θe(t), the drop tends to recede. The movement of the triple line was cotrolled by the competition between the driving force for the spreading or recession [Fd(t)] and the pinning force [Fp(t)]. If Fd(t)>Fp(t), the triple line moves. Conversely, the triple line is pinned. Fd(t) could be written as Fd(t)=σlv,(t)[cosθe(t)-cosθa(t)],σlv(t) is the instantaneous liquid surface tension; Fp(t) arises mainly from the physical (such as roughness) and chemical (such as chemical heterogeneities) defects of the solid surface.
     (4) The underlying relationships between wetting, evaporation, interfacial reaction and Mg-Al alloy concentration were established. The evaporation can not only reduce the drop volume and instantaneous apparent contact angle [θa(t)], but also change significantly the alloy concentration, thereby affecting the wetting. The interfacial reaction can influence the interfacial condition, the alloy concentration, and thus the wetting. The variation in alloy concentration could affect the wetting and the evaporation rate of the drop; in addition, it would influence the interfacial reaction, especially the formation of reaction products, and further make an effect on the wetting. Furthermore, the relationship between the interfacial reaction and the Mg-Al alloy concentration was established quantificationally based on thermodynamic considerations.
     (5) The underlying mechanism for the recession of the triple line in the Mg-Al/Al2O3 system was revealed. The recession of the triple line could be roughly classified into two cases. The first occurred in the stage with a decreasing drop volume and was mainly attributed to the increasing Al concentration in the alloy, which increased [θe(t)], and the diminishing drop volume, which decreased [θa(t)], resulting from the Mg evaporation; while the second in the stage with a constant drop volume and to the formation of MgAl2O4at the interface, which increased [θe(t)], and the evaporation of small amount of residual Mg in the drop, which increased [σlv(t)].
     (6) The underlying mechanism for the drop spreading in the Mg-Al/SiC system was revealed. The initial spreading was mainly controlled by the deoxidation of SiC substrate surface. At1173K, for the Mg-Al alloys with lower Mg concentrations such as8,20and43mol.%on the a-SiC substrate surface, the spreading showed a transition from slow to fast, which was primarily attributed to the segregation of Mg at the solid-liquid interface and the larger deoxidation rate of SiC substrate surface for Mg than Al.
     (7) The underlying mechanism for the spreading of the drop and the formation mechanism of the interfacial structures in the Mg-Al/SiO2system were revealed. The spreading was mainly attributed to the formation of Mg2Si at the interface, especially at the triple junction. The spreading rate increased with increasing the Mg concentration. Interfacial reaction product zones exhibited characteristic layered structures. The formation of these complex structures was controlled by the variation in instantaneous alloy concentration due to the evaporation and reaction from the viewpoint of thermodynamics and by the penetration and diffusion of Mg, Al and Si from the viewpoint of kinetics.
     The above results are expected to not only provide helpful guidance for the preparation and development of the magnesium-aluminum matrix composites, but also further enrich the scientific understanding of the wetting and interfacial chemistry in the metal-ceramic systems at high temperatures.
引文
[1]IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metal matrix composites-a review [J]. Journal of Materials Science,1991,26(5):1137-1156.
    [2]HANUMANTH G S, IRONS G A. Particle incorporation by melt stirring for the production of metal-matrix composites [J]. Journal of Materials Science,1993,28(9): 2459-2465.
    [3]SAHIN Y, MURPHY S. The effect of fibre orientation of the dry sliding wear of borsic-reinforced 2014 aluminium alloy [J]. Journal of Materials Science,1996,31(20): 5399-5407.
    [4]PURAZRANG K, KAINER K U, MORDIKE B L. Fracture toughness behaviour of a magnesium alloy metal-matrix composite produced by the infiltration technique [J]. Composites,1991,22(6):456-462.
    [5]MIRACLE D B. Metal matrix composites-from science to technological significance [J]. Composites Science and Technology,2005,65(15):2526-2540.
    [6]LLOYD D J. Particle reinforced aluminium and magnesium matrix composites [J]. International Materials Reviews,1994,39(1):1-23.
    [7]潘复生,周守则,丁培道.轻金属基复合材料的概况和发展[J].铝加工,1990,2:1-6.
    [8]RAJAN T P D, PILLAI R M, PAI B C. Reinforcement coatings and interfaces in aluminium metal matrix composites [J]. Journal of Materials Science,1998,33(14): 3491-3503.
    [9]ROHATGI P. Cast aluminum-matrix composites for automotive applications [J]. JOM: Journal of the Minerals, Metals and Materials Society,1991,43(4):10-15.
    [10]PRASAD S V, ASTHANA R. Aluminum metal-matrix composites for automotive applications:tribological considerations [J]. Tribology Letters,2004,17(3):445-453.
    [11]YE H Z, LIU X Y. Review of recent studies in magnesium matrix composites [J]. Journal of Materials Science,2004,39(20):6153-6171.
    [12]KACZMAR J W, PIETRZAK K, WLOSINSKI W. The production and application of metal matrix composite materials [J]. Journal of Materials Processing Technology,2000, 106(1):58-67.
    [13]SRIVATSAN T S, IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Processing techniques for particulate-reinforced metal aluminium matrix composites [J]. Journal of Materials Science,1991,26(22):5965-5978.
    [14]DELANNAY F, FRO YEN L, DERUYTTERE A. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites composites [J]. Journal of Materials Science,1987,22(1):1-16.
    [15]ASTHANA R. Reinforced cast metals:Part II Evolution of the interface [J]. Journal of Materials Science,1998,33(8):1959-1980.
    [16]CLYNE T W, BADER M G, CAPPLEMAN G R, HUBERT P A. The use of a δ-alumina fibre for metal-matrix composites [J]. Journal of Materials Science,1985,20(1):85-96.
    [17]KOK M. Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites [J]. Journal of Materials Processing Technology,2005, 161(3):381-387.
    [18]PODDAR P, SRIVASTAVA V C, DE P K, SAHOO K L. Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process [J]. Materials Science and Engineering:A,2007,460:357-364.
    [19]LUO A. Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites [J]. Metallurgical and Materials Transactions A,1995,26(9): 2445-2455.
    [20]KANEDA H, CHOH T. Fabrication of particulate reinforced magnesium composites by applying a spontaneous infiltration phenomenon [J]. Journal of Materials Science,1997, 32(1):47-56.
    [21]SARAVANAN R A, SURAPPA M K. Fabrication and characterisation of pure magnesium-30 vol.% SiCp particle composite [J]. Materials Science and Engineering: A,2000,276(1):108-116.
    [22]SQUIRES H V, RAYSON H W. Thermal degradation of silica fibre-reinforced aluminium [J]. Journal of Materials Science,1977,12(5):1010-1018.
    [23]ROHATGI P K, PAI B C, PANDA S C. Preparation of cast aluminium-silica particulate composites [J]. Journal of Materials Science,1979,14(10):2277-2283.
    [24]STEPHENSON T, LE PETITCORPS Y, QUENISSET J M. Silica-aluminium alloy composites:a kinetic study [J]. Materials Science and Engineering:A,1991,135: 101-104.
    [25]THANH L N, SUERY M. Influence of oxide coating on chemical stability of SiC particles in liquid aluminium [J]. Scripta Metallurgica et Materialia,1991,25(12): 2781-2786.
    [26]URENA A, MARTINEZ E E, RODRIGO P, GIL L. Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites [J]. Composites Science and Technology,2004,64(12):1843-1854.
    [27]SUERY M, L'ESPERANCE G, HONG, B D, THANH L N, BORDEAUX F. Development of particulate treatments and coatings to reduce SiC degradation by liquid aluminum [J]. Journal of Materials Engineering and Performance,1993,2(3): 365-373.
    [28]KUMAR G, PRABHU K N. Review of non-reactive and reactive wetting of liquids on surfaces [J]. Advances in Colloid and Interface Science,2007,133(2):61-89.
    [29]YOUNG T. An essay on the cohesion of fluids [J]. Philosophical Transaction Royal Society London,1805,95:65-87.
    [30]LI J G. Energetics of metal/ceramic interfaces, metal-semiconductor Schottky contacts, and their relationship [J]. Materials Chemistry and Physics,1997,47(2):126-145.
    [31]LANDRY K, EUSTATHOPOULOS N. Dynamics of wetting in reactive metal/ceramic systems:linear spreading [J]. Acta Materialia,1996,44(10):3923-3932.
    [32]DEZELLUS O, EUSTATHOPOULOS N. Fundamental issues of reactive wetting by liquid metals [J]. Journal of Materials Science,2010,45(16):4256-4264.
    [33]TANNER L H. The spreading of silicone oil drops on horizontal surfaces [J]. Journal of Physics D:Applied Physics,1979,12(9):147-1484.
    [34]DE GENNES P G. Wetting:statics and dynamics [J]. Reviews of Modern Physics,1985, 57(3):827-863.
    [35]LOEHMAN R, TOMSIA A. Joining of ceramics [J]. American Ceramic Society Bulletin,1988,67:375-380.
    [36]LANDRY K, RADO C, VOITOVICH R, EUSTATHOPOULOS N. Mechanisms of reactive wetting:the question of triple line configuration [J]. Acta Materialia,1997, 45(7):3079-3085.
    [37]FUJII H, NAKAE H, OKADA K. Four wetting phases in AlN/Al and AlN Composites/Al systems, models of nonreactive, reactive, and composite systems [J]. Metallurgical Transactions A,1993,24(6):1391-1397.
    [38]MORTIMER D A, NICHOLAS M. The wetting of carbon by copper and copper alloys [J]. Journal of Materials Science,1970,5(2):149-155.
    [39]MORTIMER D A, NICHOLAS M. The wetting of carbon and carbides by copper alloys [J]. Journal of Materials Science,1973,8(5):640-648.
    [40]EUSTATHOPOULOS N, NICHOLAS M, DREVET B. Wettability at high temperatures [M], Pergamon, Oxford, UK,1999.
    [41]AKSAY I A, HOGE C E, PASK J A. Wetting under chemical equilibrium and nonequilibrium conditions [J]. The Journal of Physical Chemistry,1974,78(12): 1178-1183.
    [42]AMBROSE J C, NICHOLAS M G, STONEHAM A M. Dynamics of liquid drop spreading in metal-metal systems [J]. Acta metallurgica et materialia,1993,41(8): 2395-2401.
    [43]EUSTATHOPOULOS N. Dynamics of wetting in reactive metal/ceramic systems [J]. Acta Materialia,1998,46(7):2319-2327.
    [44]ESPIE L, DREVET B, EUSTATHOPOULOS N. Experimental study of the influence of interfacial energies and reactivity on wetting in metal/oxide systems [J]. Metallurgical and materials Transactions A,1994,25(3):599-605.
    [45]SAIZ E, CANNON R M, TOMSIA A P. Reactive spreading:adsorption, ridging and compound formation [J]. Acta materialia,2000,48(18):4449-4462.
    [46]SAIZ E, CANNON R M, TOMSIA A P. Reactive spreading in ceramic/metal systems [J]. Oil & Gas Science and Technology,2001,56(1):89-96.
    [47]EUSTATHOPOULOS N. Progress in understanding and modeling reactive wetting of metals on ceramics [J]. Current Opinion in Solid State and Materials Science,2005, 9(4):152-160.
    [48]DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Chemical reaction-limited spreading:the triple line velocity versus contact angle relation [J]. Acta Materialia, 2002,50(19):4741-4753.
    [49]BOUGIOURI V, VOYTOVYCH R, DEZELLUS O, EUSTATHOPOULOS N. Wetting and reactivity in Ni-Si/C system:experiments versus model predictions [J]. Journal of Materials Science,2007,42(6):2016-2023.
    [50]DEZELLUS O, HODAJ F, RADO C, BARBIER J N, EUSTATHOPOULOS N. Spreading of Cu-Si alloys on oxidized SiC in vacuum:experimental results and modelling [J]. Acta Materialia,2002,50(5):979-991.
    [51]DREVET B, VOYTOVYCH R, ISRAEL R, EUSTATHOPOULOS N. Wetting and adhesion of Si on Si3N4 and BN substrates [J]. Journal of the European Ceramic Society, 2009,29(11):2363-2367.
    [52]DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Progress in modelling of chemical-reaction limited wetting [J]. Journal of the European Ceramic Society,2003, 23(15):2797-2803.
    [53]MORTENSEN A, DREVET B, EUSTATHOPOULOS N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting [J]. Scripta Materialia,1997,36(6): 645-652.
    [54]DEZELLUS O, HODAJ F, MORTENSEN A, EUSTATHOPOULOS N. Diffusion limited reactive wetting:spreading of Cu-Sn-Ti alloys on vitreous carbon [J]. Scripta Materialia,2001,44(11):2543-2550.
    [55]VOITOVITCH R, MORTENSEN A, HODAJ F, EUSTATHOPOULOS N. Diffusion limited reactive wetting:study of spreading kinetics of Cu-Cr alloys on carbon substrates [J]. Acta Materialia,1999,47(4):1117-1128.
    [56]HODAJ F, DEZELLUS O, BARBIER J N, MORTENSEN A, EUSTATHOPOULOS N. Diffusion-limited reactive wetting:effect of interfacial reaction behind the advancing triple line [J]. Journal of Materials Science,2007,42(19):8071-8082.
    [57]CARNAHAN R D, JOHNSTON T L, LI C H. Some observations on the wetting of Al2O3 by aluminum [J]. Journal of the American Ceramic Society,1958,41(9): 343-347.
    [58]WOLF S M, LEVITT A P, BROWN J. Whisker-metal matrix bonding [J]. Chemical Engineering Progress,1966,62(3):74-78.
    [59]BRENNAN J J, PASK J A. Effect of nature of surfaces on wetting of sapphire by liquid aluminum [J]. Journal of the American Ceramic Society,1968,51(10):569-573.
    [60]CHAMPION J A, KEENE B J, SILLWOOD J M. Wetting of aluminium oxide by molten aluminium and other metals [J]. Journal of Materials Science,1969,4(1): 39-49.
    [61]NAIDICH Y V, CHUBASHOV Y N, ISHCHUK N F, KRASOVSKII V P. Wetting of some nonmetallic materials by aluminum [J]. Powder Metallurgy and Metal Ceramics, 1983,22(6):481-483.
    [62]NAKA M, HIRONO Y, OKAMOTO I. Wetting of alumina by molten aluminum and aluminum-copper alloys (welding physics, process & instrument) [J]. Transactions of JWRI,1984,13(2):201-206.
    [63]JOHN H, HAUSNER H. Influence of oxygen partial pressure on the wetting behaviour in the system Al/Al2O3 [J]. Journal of Materials Science Letters,1986,5:549-551.
    [64]JOHN H, HAUSNER H. Wetting of aluminum oxide by liquid aluminum [J]. International Journal of High Technology Ceramics,1986,2(1):73-78.
    [65]LAURENT V, CHATAIN D, CHATILLON C, EUSTATHOPOULOS N. Wettability of monocrystalline alumina by aluminium between its melting point and 1273 K [J]. Acta Metallurgica,1988,36(7):1797-1803.
    [66]WEIRAUCH D A. Interfacial phenomena involving liquid metals and solid oxides in the Mg-Al-O system[J]. Journal of Materials Research,1988,3(04):729-739.
    [67]WEIRAUCH D A, KRAFICK W J. The effect of carbon on wetting of aluminum oxide by aluminum [J]. Metallurgical and Materials Transactions A,1990,21(6):1745-1751.
    [68]OWNBY P D, LI K W K, WEIRAUCH D A. High-temperature wetting of sapphire by aluminum [J]. Journal of the American Ceramic Society,1991,74(6):1275-1281.
    [69]IP S W, KUCHARSKI M, TOGURI J M. Wetting behaviour of aluminium and aluminium alloys on Al2O3 and CaO [J]. Journal of Materials Science Letters,1993, 12(21):1699-1702.
    [70]WANG D J, WU S T. The influence of oxidation on the wettability of aluminum on sapphire [J]. Acta Metallurgica et Materialia,1994,42(12):4029-4034.
    [71]WANG D J, WU S T. The wettability of copper-containing aluminum melt on sapphire [J]. Acta Metallurgica et Materialia,1995,43(8):2917-2920.
    [72]ZHOU X B, HOSSON J T M. Wetting kinetics of liquid aluminium on an A12O3 surface [J]. Journal of Materials Science,1995,30(14):3571-3575.
    [73]JUNG W, SONG H, PARK S W, KIM D Y. Variation of contact angles with temperature and time in the Al-Al2O3 system [J]. Metallurgical and Materials Transactions B,1996, 27(1):51-55.
    [74]HO H N, WU S T. The influences of temperature and residual gas on the wettability of aluminum melt on sapphire [J]. Japanese Journal of Applied Physics,1998,37: 274-278.
    [75]KSIAZEK M, SOBCZAK N, MIKULOWSKI B, RADZIWILL W, SUROWIAK I. Wetting and bonding strength in Al/Al2O3 system, [J]. Materials Science and Engineering:A,2002,324(1):162-167.
    [76]LEVI G, KAPLAN W D. Oxygen induced interfacial phenomena during wetting of alumina by liquid aluminium [J]. Acta Materialia,2002,50(1):75-88.
    [77]SAIZ E, TOMSIA A P, SUGANUMA K. Wetting and strength issues at Al/α-alumina interfaces [J]. Journal of the European Ceramic Society,2003,23(15):2787-2796.
    [78]SHEN P, FUJII H, MATSUMOTO T, NOGI K. Wetting of (0001) α-Al2O3 single crystals by molten Al [J]. Scripta Materialia,2003,48(6):779-784.
    [79]KLINTER A J, MENDOZA-SUAREZ G, DREW R A L. Wetting of pure aluminum and selected alloys on poly crystalline alumina and sapphire [J]. Materials Science and Engineering:A,2008,495(1):147-152.
    [80]SANGGHALEH A, HALALI M. An investigation on the wetting of polycrystalline alumina by aluminium [J]. Journal of Materials Processing Technology,2008,197(1): 156-160.
    [81]AGUILAR-SANTILLAN J. Wetting of Al/sapphire (0001) system:measurement effect and affecting factors [J]. Metallurgical and Materials Transactions B,2009,40(3): 376-387.
    [82]AGUILAR-SANTILLAN J. Wetting of the (0001) α-Al2O3 sapphire surface by molten aluminum:effect of surface roughness [J]. Metallurgical and Materials Transactions A, 2010,41(3):676-685.
    [83]SHAO N, DAI J W, LI G Y, NAKAE H, HANE T. Effect of La on the wettability of A12O3 by molten aluminum [J]. Materials Letters,2004,58(14):2041-2044.
    [84]KLINTER A J, LEON-PATINO C A, DREW R A L. Wetting phenomena of Al-Cu alloys on sapphire below 800℃ [J]. Acta Materialia,2010,58(4):1350-1360.
    [85]BAO S, KVITHYLD A, GAAL S, ENGH T A, TANGSTAD M. Wetting of pure aluminium on filter materials graphite, AlF3 and Al2O3 [J]. Light Metals,2009: 767-773.
    [86]BAO S, TANG K, KVITHYLD A, TANGSTAD M, ENGH T A. Wettability of aluminum on alumina [J]. Metallurgical and Materials Transactions B,2011,42(6): 1358-1366.
    [87]FUJII H, NAKAE H, OKADA K. Interfacial reaction wetting in the boron nitride/molten aluminum system [J]. Acta Metallurgica et Materialia,1993,41(10): 2963-2971.
    [88]EUSTATHOPOULOS N, JOUD J C, DESRE P, HICTER J M. The wetting of carbon by aluminium and aluminium alloys [J]. Journal of Materials Science,1974,9(8): 1233-1242.
    [89]MADELENO U, LIU H, SHINODA T, MISHIMA Y, STTZUKI T. Compatibility between alumina fibres and aluminium [J]. Journal of Materials Science,1990,25(7): 3273-3280.
    [90]SHEN P, FUJII H, MATSUMOTO T, NOGI K. Critical factors affecting the wettability of a-alumina by molten aluminum [J]. Journal of the American Ceramic Society,2004, 87(11):2151-2159.
    [91]EUSTATHOPOULOS N, DREVET B. Determination of the nature of metal-oxide interfacial interactions from sessile drop data [J]. Materials Science and Engineering:A, 1998,249(1):176-183.
    [92]EUSTATHOPOULOS N, SOBCZAK N, PASSERONE N, NOGI K. Measurement of contact angle and work of adhesion at high temperature [J]. Journal of Materials Science,2005,40(9):2271-2280.
    [93]LIVEY D T, MURRAY P. Wetting properties of solid oxides and carbides by liquid metals [R]. Atomic Energy Research Establishment, Harwell (England),1955.
    [94]SAIZ E, TOMSIA A P, CANNON R M. Ridging effects on wetting and spreading of liquids on solids [J]. Acta Materialia,1998,46(7):2349-2361.
    [95]SAIZ E, CANNON R M, TOMSIA A P. Energetics and atomic transport at liquid metal/Al2O3 interfaces [J]. Acta Materialia,1999,47(15):4209-4220.
    [96]SAIZ E, CANNON R M, TOMSIA A P. High-temperature wetting and the work of adhesion in metal/oxide systems [J]. Annual Review of Materials Research,2008,38(1): 197-226.
    [97]SAIZ E, TOMSIA A P, CANNON R M. Triple line ridging and attachment in high-temperature wetting [J]. Scripta Materialia,2001,44(1):159-164.
    [98]SANGGHALEH A, HALALI M. Effect of magnesium addition on the wetting of alumina by aluminium [J]. Applied Surface Science,2009,255(19):8202-8206.
    [99]WAHEED M S, SALIH A I. Wettability of A12O3 by aluminum and Al-Mg alloys [J]. Engineering & Technology Journal,2010,28(9):1771-1777.
    [100]PAI B C, RAMANI G, PILLAI R M, SATYANARAYANA K G. Role of magnesium in cast aluminium alloy matrix composites [J]. Journal of materials science,1995,30(8): 1903-1911.
    [101]JONAS T R, CORNIE J A, RUSSELL K C. Infiltration and wetting of alumina participate preforms by aluminum and aluminum-magnesium alloys [J]. Metallurgical and Materials Transactions A,1995,26(6):1491-1497.
    [102]FRITZE C, NIENTIT G. The wettability of oxide ceramics by magnesium alloys [J]. Journal of Materials Science Letters,1995,14(7):464-466.
    [103]SHI W, KOBASHI M, CHOH T. Wetting of alumina, iron and stainless steel substrates by molten magnesium [J]. Zeitschrift fur Metallkunde,2001,92(4):382-385.
    [104]FUJII H, IZUTANI S. Wetting of MgO and α-Al2O3 by molten Mg:a model of droplet with high vapor pressure [J]. Journal of Materials Science,2012,47(24):8387-8394.
    [105]MUNITZ A, METZGER M, MEHRABIAN R. The interface phase in Al-Mg/Al2O3 composites [J]. Metallurgical Transactions A,1979,10(10):1491-1497.
    [106]LEVI C G, ABBASCHIAN G J, MEHRABIAN R. Interface interactions during fabrication of aluminum alloy-alumina fiber composites [J]. Metallurgical and Materials Transactions A,1978,9(5):697-711.
    [107]QUIGLEY B F, ABBASCHIAN G J, WUNDERLIN R, MEHRABIAN R. A method for fabrication of aluminum-alumina composites [J]. Metallurgical and Materials Transactions A,1982,13(1):93-100.
    [108]FISHKIS M. Interfaces and fracture surfaces in Saffil/Al-Mg-Cu metal-matrix composites [J]. Journal of Materials Science,1991,26(10):2651-2661.
    [109]PAI B C, RAY S, PRABHAKAR K V, ROHATGI P K. Fabrication of aluminium-alumina (magnesia) particulate composites in foundries using magnesium additions to the melts [J]. Materials Science and Engineering,1976,24(1):31-44.
    [110]PFEIFER M, RIGSBEE J M, CHAWLA K K. The interface microstructure in alumina (FP) fibre/magnesium alloy composite [J]. Journal of Materials Science,1990,25(3): 1563-1567.
    [111]MCLEOD A D, GABRYEL C M. Kinetics of the growth of spinel, MgAl2O4, on alumina particulate in aluminum alloys containing magnesium [J]. Metallurgical and Materials Transactions A,1992,23(4):1279-1283.
    [112]LEPETITCORPS Y, QUENISSET J M, LE BORGNE G, BARTHOLE M. Segregation of magnesium in squeeze-cast aluminium matrix composites reinforced with alumina fibres [J]. Materials Science and Engineering:A,1991,135(4):37-40.
    [113]LLOYD D J, JIN I, WEATHERLY G C. Controlling the interface reaction in alumina reinforced aluminum composites [J]. Scripta Metallurgica et Materialia,1994,31(4): 393-396.
    [114]CAPPLEMAN G R, WATTS J F, CLYNE T W. The interface region in squeeze-infiltrated composites containing 8-alumina fibre in an aluminium matrix [J]. Journal of Materials Science,1985,20(6):2159-2168.
    [115]MOLINS R, BARTOUT J D, BIENVENU Y. Microstructural and analytical characterization of Al2O3-(Al-Mg) composite interfaces [J]. Materials Science and Engineering:A,1991,135:111-117.
    [116]ZHONG W M, L'ESPERANCE G, SUERY M. Interfacial reactions in Al-Mg (5083)/Al2O3p composites during fabrication and remelting [J]. Metallurgical and Materials Transactions A,1995,26(10):2625-2635.
    [117]ZHONG W M, L'ESPERANCE G, SUERY M. Effect of current Mg concentration on interfacial reactions during remelting of Al-Mg(5083)/Al2O3p composites [J]. Materials Characterization,2002,49(2):113-119.
    [118]CHANG H, HIGGINSON R L, BINNER J G P. Interface study by dual-beam FIB-TEM in a pressureless infiltrated Al(Mg)-Al2O3 interpenetrating composite [J]. Journal of Microscopy,2009,233(1):132-139.
    [119]CHOH T, OKI T. Wettability of SiC to aluminium and aluminium alloys [J]. Materials Science and Technology,1987,3(5):378-385.
    [120]LAURENT V, CHATAIN D, EUSTATHOPOULOS N. Wettability of SiC by aluminium and Al-Si alloys [J]. Journal of Materials Science,1987,22(1):244-250.
    [121]OH S Y, CORNIE J A, RUSSELL K C. Particulate wetting and metal:ceramic interface phenomena [C].11th Annual Conference on Composites and Advanced Ceramic Materials:Ceramic Engineering and Science Proceedings. John Wiley & Sons, Inc.,1987:912-936.
    [122]OH S Y, CORNIE J A, RUSSELL K C. Wetting of ceramic particulates with liquid aluminum alloys:Part II. Study of wettability [J]. Metallurgical and Materials Transactions A,1989,20(3):533-541.
    [123]ROCHER J P, QUENISSET J M, NASLAIN R. Wetting improvement of carbon or silicon carbide by aluminium alloys based on a K2ZrF6 surface treatment:application to composite material casting [J]. Journal of Materials Science,1989,24(8): 2697-2703.
    [124]NOGI K, OGINO K. Wettability of SiC by liquid pure metals [J]. Journal of the Japan Institute of Metals,1988,52(8):786-791.
    [125]SHIMBO M, NAKA M, OKAMOTO I. Wettability of silicon carbide by aluminium, copper and silver [J]. Journal of Materials Science Letters,1989,8(6):663-666.
    [126]HASHIM J, LOONEY L, HASHMI M S J. The wettability of SiC particles by molten aluminium alloy [J]. Journal of Materials Processing Technology,2001,119(1): 324-328.
    [127]HASHIM J, LOONEY L, HASHMI M S J. The enhancement of wettability of SiC particles in cast aluminium matrix composites [J]. Journal of Materials Processing Technology,2001,119(1):329-335.
    [128]FERRO A C, DERBY B. Wetting behaviour in the Al-Si/SiC system:interface reactions and solubility effects [J]. Acta Metallurgica et Materialia,1995,43(8): 3061-3073.
    [129]LEON C A, DREW R A L. The influence of nickel coating on the wettability of aluminum on ceramics [J]. Composites Part A:Applied Science and Manufacturing, 2002,33(10):1429-1432.
    [130]LAURENT V, RADO C, EUSTATHOPOULOS N. Wetting kinetics and bonding of Al and Al alloys on α-SiC [J]. Materials Science and Engineering:A,1996,205(1):1-8.
    [131]TAKAHASHI S, KUBOI O. Study on contact angles of Au, Ag, Cu, Sn, Al and Al alloys to SiC [J]. Journal of Materials Science,1996,31(7):1797-1802.
    [132]LEON C A, MENDOZA-SUAREZ G, DREW R A L. Wettability and spreading kinetics of molten aluminum on copper-coated ceramics [J]. Journal of Materials Science,2006,41(16):5081-5087.
    [133]OUYANG Q B, ZHOU W M, ZHANG G D, ZHANG D. Wettability and its improvement at Al/SiC interfaces [J]. Key Engineering Materials,2007,351:52-57.
    [134]LIU G W, MUOLO M L, VALENZA F, PASSERONE A. Survey on wetting of SiC by molten metals [J]. Ceramics International,2010,36(4):1177-1188.
    [135]BAO S, KVITHYLD A, ENGH T A, TANGSTAD M. Wettability of Aluminium with SiC and Graphite in Aluminium Filtration [J]. Light Metals,2011,775-782.
    [136]MOLINA J M, TIAN J, GARCIA-CORDOVILLA C, LOUIS E, NARCISO J. Wettability in pressure infiltration of SiC and oxidized SiC particle compacts by molten Al and Al-12wt%Si alloy [J]. Journal of Materials Research,2007,22(8): 2273-2278.
    [137]TEKMEN C, SAD AY F, COCEN U, LJUNGBERG L Y. An investigation of the effect of SiC reinforcement coating on the wettability of Al/SiC system [J]. Journal of Composite Materials,2008,42(16):1671-1679.
    [138]CANDAN E, ATKINSON H V, TUREN Y, SALAORU I, CANDAN S. Wettability of aluminum-magnesium alloys on silicon carbide substrates [J]. Journal of the American Ceramic Society,2011,94(3):867-874.
    [139]PREWO K, MCCARTHY G. Interfacial characteristics of silicon carbide-coated boron-reinforced aluminium matrix composites [J]. Journal of Materials Science, 1972,7(8):919-928.
    [140]NIEH T G, KARLAK R F. Hot-rolled silicon carbide-aluminium composites [J]. Journal of Materials Science Letters,1983,2(3):119-122.
    [141]KANNIKESWARAN K, LIN R Y. Trace element effects on Al-SiC interfaces [J]. Journal of Metals,1987,39:17-19.
    [142]ISEKI T, KAMEDA T, MARUYAMA T. Interfacial reactions between SiC and aluminium during joining [J]. Journal of Materials Science,1984,19(5):1692-1698.
    [143]VIALA J C, FORTIER P, BOUIX J. Stable and metastable phase equilibria in the chemical interaction between aluminium and silicon carbide [J]. Journal of Materials Science,1990,25(3):1842-1850.
    [144]ELLIS M B D. Joining of aluminium based metal matrix composites [J]. International Materials Reviews,1996,41(2):41-58.
    [145]LLOYD D J, LAGACE H, MCLEOD A, MORRIS P L. Microstructural aspects of aluminium-silicon carbide particulate composites produced by a casting method [J]. Materials Science and Engineering:A,1989,107:73-80.
    [146]LIU H, MADALENO U, SHINODA T, MISHIMA Y, SUZUKI T. Interfacial reaction and strength of SiC fibres coated with aluminium alloys [J]. Journal of Materials Science,1990,25(10):4247-4254.
    [147]PETEVES S D, TAMBUYSER P, HELBACH P, AUDIER M, LAURENT V, CHATAIN D. Microstructure and microchemistry of the Al/SiC interface [J]. Journal of Materials Science,1990,25(8):3765-3772.
    [148]RIBES H, SUERY M, L'ESPERANCE G, LEGOUX J G. Microscopic examination of the interface region in 6061-Al/SiC composites reinforced with as-received and oxidized SiC particles [J]. Metallurgical and Materials Transactions A,1990,21(9): 2489-2496.
    [149]Narciso J, Garcia-Cordovilla C, Louis E. Reactivity of thermally oxidized and unoxidized SiC particulates with aluminium-silicon alloys [J]. Materials Science and Engineering:B,1992,15(2):148-155.
    [150]VIALA J C, BOSSELET F, LAURENT V, LEPETITCORPS Y. Mechanism and kinetics of the chemical interaction between liquid aluminium and silicon-carbide single crystals [J]. Journal of Materials Science,1993,28(19):5301-5312.
    [151]CAROTENUTO G, GALLO A, NICOLAIS L. Degradation of SiC particles in aluminium-based composites [J]. Journal of Materials Science,1994,29(19): 4967-4974.
    [152]SALVO L, L'ESPERANCE G, SUERY M, LEGOUX J G. Interfacial reactions and age hardening in Al-Mg-Si metal matrix composites reinforced with SiC particles [J]. Materials Science and Engineering:A,1994,177(1):173-183.
    [153]LEE J C, BYUN J Y, PARK S B, LEE H I. Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite [J]. Acta Materialia,1998,46(5): 1771-1780.
    [154]SHOROWORDI K M, LAOUI T, HASEEB A S M A, CELIS J P, FRO YEN L. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites:a comparative study [J]. Journal of Materials Processing Technology,2003,142(3):738-743.
    [155]KOBASHI M, CHOH T. The wettability and the reaction for SiC particle/Al alloy system [J]. Journal of Materials Science,1993,28(3):684-690.
    [156]HAN D S, JONES H, ATKINSON H V. The wettability of silicon carbide by liquid aluminium:the effect of free silicon in the carbide and of magnesium, silicon and copper alloy additions to the aluminium [J]. Journal of Materials Science,1993, 28(10):2654-2658.
    [157]PECH-CANUL M I, KATZ R N, MAKHLOUF M M. Optimum conditions for pressureless infiltration of SiCp preforms by aluminum alloys [J]. Journal of Materials Processing Technology Volume,2000,108(1):68-77.
    [158]ZULFIA A, HAND R J. The production of Al-Mg alloy/SiC metal matrix composites by pressureless infiltration [J]. Journal of Materials Science,2002,37(5):955-961.
    [159]CANDAN E. Effect of alloying elements to aluminium on the wettability of Al/SiC system [J]. Turkish Journal of Engineering and Environmental Sciences,2002,26(1): 1-5.
    [160]ZHANG D, SHEN P, SHI L X, LIN Q L, JIANG Q C. Wetting and evaporation behaviors of molten Mg on partially oxidized SiC substrates [J]. Applied Surface Science,2010,256(23):7043-7047.
    [161]MARUMO C, PASK J A. Reactions and wetting behaviour in the aluminium-fused silica system [J]. Journal of Materials Science,1977,12(2):223-233.
    [162]LAURENT V, CHATAIN D, EUSTATHOPOULOS N. Wettability of SiO2 and oxidized SiC by aluminium [J]. Materials Science and Engineering:A,1991,135: 89-94.
    [163]ZHOU X B, DE HOSSON J T M. Reactive wetting of liquid metals on ceramic substrates [J]. Acta materialia,1996,44(2):421-426.
    [164]SHEN P, FUJII H, MATSUMOTO T, NOGI K. Reactive wetting of SiO2 substrates by molten Al [J]. Metallurgical and Materials Transactions A,2004,35(2):583-588.
    [165]SHI Z, GU M, LIU J, LIU G, LEE J C, ZHANG D, WU R. Interfacial reaction between the oxidized SiC particles and Al-Mg alloys [J]. Chinese Science Bulletin, 2001,46(23):1948-1952.
    [166]SHI Z, OCHIAI S, GU M, HOJO M, LEE J C. The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites [J]. Applied Physics A:Materials Science & Processing,2002,74(1): 97-104.
    [167]ZHONG W M, L'ESPERANCE G, SUERY M. Interfacial reactions in Al-Mg (5083)/SiCp composites during fabrication and remelting [J]. Metallurgical and Materials Transactions A,1995,26(10):2637-2649.
    [168]HANABE M, ASWATH P B. Synthesis of in-situ reinforced Al composites from Al-Si-Mg-O precursors [J]. Acta Materialia,1997,45(10):4067-4076.
    [169]LI G B, SUN J B, GUO Q M, WU Y H. Interfacial reactions in glass/Al-Mg composite fabricated by powder metallurgy process [J]. Journal of Materials Processing Technology,2005,161(3):445-448.
    [170]LEE J C, AHN J P, SHI Z L, SHIM J H, LEE H I. Methodology to design the interfaces in SiC/Al composites [J]. Metallurgical and Materials Transactions A,2001, 32(6):1541-1550.
    [171]LUO Z P, SONG Y G, ZHANG S Q. A TEM study of the microstructure of SiCp/Al composite prepared by pressureless infiltration method [J]. Scripta Materialia,2001, 45(10):1183-1189.
    [172]LUO Z P. Crystallography of SiC/MgAl2O4/Al interfaces in a pre-oxidized SiC reinforced SiC/Al composite [J]. Acta Materialia,2006,54(1):47-58.
    [173]SREEKUMAR V M, PILLAI R M, PAI B C, CHAKRABORTY M. Evolution of MgAl2O4 crystals in Al-Mg-SiO2 composites [J]. Applied Physics A:Materials Science & Processing,2008,90(4):745-752.
    [174]SREEKUMAR V M, PILLAI R M, PAI B C, CHAKRABORTY M. A study on the formation of MgAl2O4 and MgO crystals in Al-Mg/quartz composite by differential thermal analysis [J]. Journal of Alloys and Compounds,2008,461(1):501-508.
    [175]SREEKUMAR V M, RAVI K R, PILLAI R M, PAI B C, CHAKRABORTY M. Thermodynamics and kinetics of the formation of Al2O3/MgAl2O4/MgO in Al-silica metal matrix composite [J]. Metallurgical and Materials Transactions A,2008,39(4): 919-933.
    [176]IIDA T, RODERICH I L G The physical properties of liquid metals [M]. Clarendon Press,1988.
    [177]BARIN I. Thermochemical data of pure substances[M].3rd ed., Wiley-VCH Verlag GmbH, Weinheim,1995.
    [178]FERRO A C, DERBY B. Development of a micro-droplet technique for wettability studies:application to the Al-Si/SiC system [J]. Scripta Metallurgica et Materialia, 1995,33(5):837-842.
    [179]RIVOLLET I, CHATAIN D, EUSTATHOPOULOS N. Simultaneous measurement of contact angles and work of adhesion in metal-ceramic systems by the immersion-emersion technique [J]. Journal of Materials Science,1990,25(7): 3179-3185.
    [180]MORTENSEN A, MASUR L J, CORNIE J A, FLEMINGS M C. Infiltration of fibrous preforms by a pure metal:Part I. Theory [J]. Metallurgical and Materials Transactions A,1989,20(11):2535-2547.
    [181]MASUR L J, MORTENSEN A, CORNIE J A, FLEMINGS M C. Infiltration of fibrous preforms by a pure metal:Part II. Experiment [J]. Metallurgical and Materials Transactions A,1989,20(11):2549-2557.
    [182]GALE W F, TOTEMEIER T C (Eds.). Smithells metals reference book,8th ed.[M]. Elsevier, Oxford, UK,2004.
    [183]SHEN P, FUJII H, MATSUMOTO T, NOGI K. The influence of surface structure on wetting of α-Al2O3 by aluminum in a reduced atmosphere [J]. Acta Materialia,2003, 51(16):4897-4906.
    [184]MANASSIDIS I, GILLAN M J. Structure and energetics of alumina surfaces calculated from first principles [J]. Journal of the American Ceramic Society,1994, 77(2):335-338.
    [185]MASSALSKI T B. Binary alloys phase diagrams [M]. ASM International, (CD-ROM), (1996).
    [186]HALLSTEDT B. The Magnesium-Oxygen system [J]. Calphad,1993,17(3): 281-286.
    [187]HULTGREN R, DESAI P D, HAWKINS D T, GLEISER M, KELLEY K K. Selected values of the thermodynamic properties of binary alloys [M]. ASM, Metals Park, OH, 1973.
    [188]HALLSTEDT B, LIU Z K, AGREN J. Fibre-matrix interactions during fabrication of Al2O3-Mg metal matrix composites [J]. Materials Science and Engineering:A,1990, 129(1):135-145.
    [189]SHEN P, ZHANG D, LIN Q L, SHI L X, JIANG Q C. Wetting of polycrystalline MgO by molten Mg under evaporation [J]. Materials Chemistry and Physics,2010,122(1): 290-294.
    [190]CASSIE A B D. Contact angles [J]. Discussions of the Faraday Society,1948,3: 11-16.
    [191]张丹.熔融Mg在陶瓷基板上的润湿和蒸发的影响[D].长春:吉林大学材料科学与工程学院,2012.
    [192]SHEN P, FUJII H, MATSUMOTO T, NOGI K. Wetting and reaction of MgO single crystals by molten Al at 1073-1473 K [J]. Acta Materialia,2004,52(4):887-898.
    [193]MULLINS W W. The effect of thermal grooving on grain boundary motion [J]. Acta Metallurgica,1958,6(6):414-427.
    [194]NOWAK N. The role of wettability and reactivity at Al/MgO and Al/MgAl2O4 systems during in-situ Al-Al2O3 type composite structure formation[D]. PhD thesis, Foundry Research Institute, Krakow, Poland,2010.
    [195]LEA C, MOLINARI C. Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys [J]. Journal of materials science,1984,19(7):2336-2352.
    [196]KEENE B J. Review of data for the surface tension of pure metals [J]. International Materials Reviews,1993,38(4):157-192.
    [197]FRENCH T M, SOMORJAI G A. Composition and surface structure of the (0001) face of a-alumina by low-energy electron diffraction [J]. The Journal of Physical Chemistry,1970,74(12):2489-2495.
    [198]PAULING L. The nature of the chemical bond and the structure of molecules and crystals:an introduction to modern structural chemistry [M]. Ithaca, NY, Cornell University Press,1960.
    [199]KONDOH K, KAWAKAMI M, IMAI H, UMEDA J, FUJII H. Wettability of pure Ti by molten pure Mg droplets [J]. Acta Materialia,2010,58(2):606-614.
    [200]EPICIER T, BOSSELET F, VIALA J C. Microstructure of interfaces between a magnesium matrix and preoxidized silicon carbide particles [J]. Interface Science, 1994,1(3):213-221.
    [201]FROUMIN N, FRAGE N, POLAK M, DARIEL M P. Wetting phenomena in the TiC/(Cu-Al) system [J]. Acta materialia,2000,48(7):1435-1441.
    [202]YANG W, WEATHERLY G C, MCCOMB D W, LLOYD D J. The structure of SiC-reinforced Mg casting alloys [J]. Journal of Microscopy,1997,185(2):292-302.
    [203]YUAN H, WILLIAMS R S. Solid-phase equilibria for metal-silicon-oxygen ternary systems.1. Magnesium, calcium, strontium and barium [J]. Chemistry of Materials, 1990,2(6):695-700.
    [204]OSINSKI K, VRIEND A W, BASTIN F, LOO F. Periodic Formation of FeSi bands in diffusion couples Fe (15 wt.% Si)-Zn [J]. Zeitschrift fur Metallkunde,1982,73(4): 258-261.
    [205]HE M, SU X, YIN F, WANG J, LI Z. Periodic layered structure in Ni3Si/Zn diffusion couples [J]. Scripta Materialia,2008,59(4):411-413.
    [206]GUTMAN I, KLINGER L, GOTMAN I, SHAPIRO M. Experimental observation of periodic structure formation in SiO2-Mg system [J]. Scripta Materialia,2001,45(3): 363-367.
    [207]GUTMAN I, GOTMAN I, SHAPIRO M. Kinetics and mechanism of periodic structure formation at SiO2/Mg interface [J]. Acta Materialia,2006,54(18): 4677-4684.
    [208]GUTMAN I, KLINGER L, GOTMAN I, SHAPIRO M. Model for evolution of periodic layered structure in the SiO2/Mg system [J]. Solid State Ionics,2009,180(26): 1350-1355.
    [209]CHEN Y C, XU J, FAN X H, ZHANG X F, HAN L, LIN D Y, LI Q H, UHER C. The mechanism of periodic layer formation during solid-state reaction between Mg and SiO2 [J]. Intermetallics,2009,17(11):920-926.
    [210]FUJII H, YAMAMOTO M, HARA S, NOGI K. Effect of gas evolution at solid-liquid interface on contact angle between liquid Si and SiO2 [J]. Journal of Materials Science, 1999,34(13):3165-3168.
    [211]SHARPS P R, TOMSIA A P, PASK J A. Wetting and spreading in the Cu-Ag system [J]. Acta Metallurgica,1981,29(5):855-865.
    [212]WARREN J A, BOETTINGER W J, ROOSEN A R. Modeling reactive wetting [J]. Acta Materialia,1998,46(9):3247-3264.
    [213]PROTSENKO P, GARANDET J P, VOYTOVYCH R, EUSTATHOPOULOS N. Thermodynamics and kinetics of dissolutive wetting of Si by liquid Cu [J]. Acta Materialia,2010,58(20):6565-6574.
    [214]YIN L, MESCHTER S J, SINGLER T J. Wetting in the Au-Sn system [J]. Acta Materialia,2004,52(10):2873-2888.
    [215]BAKER H (Ed.), ASM Handbook, vol.3:Alloy phase diagrams [M], ASM International, Metals Park, OH, USA,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700