Al-Sn轴承合金的双相双尺度结构与摩擦学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着滑动轴承向着高承载能力、耐磨减摩和环保(无铅)的方向发展,开发兼具优异力学和摩擦学性能的新型Al-Sn基轴承合金成为研究热点。纳米相复合Al-Sn轴承合金因其细化的组织和较高的硬度,通常表现出较好的摩擦学性能。但是,纳米晶合金强度与塑性的倒置关系制约了其在高摩擦学性能轴承材料领域的发展和工程应用。研究发现,双相双尺结构合金可同时获得高强度和良好塑性。本文利用双相双尺度结构强韧化Al-Sn合金,为发展具有优异摩擦学性能的新一代轴承合金提供了一条全新的思路。
     首先,本文将机械合金化与粉末烧结相结合制备出具有纳米晶/超细晶与微米粗晶的混合组织的双相双尺度结构Al-12wt%Sn合金,并研究了其双尺度晶粒分布的微观结构和力学性能的关系。将高能球磨制备的纳米晶Al-12wt%Sn合金粉末与未经球磨的粗晶Al-12wt%Sn粉末按照一定比例均匀混合,压制和烧结可获得双相双尺度结构Al-Sn合金,它由超细晶区域(硬)、粗晶区域(软)及其这两区域各自结构中所包含的Al相(硬)、Sn相(软),组成了两对交互耦合的“硬-软”相,是轴瓦材料理想的微观组织。针对双相双尺度合金的非均质特性,同时采用了纳米压痕、显微硬度和压缩强度对其力学性能进行表征。结果表明,双相双尺度结构Al-12wt%Sn合金的硬度和压缩强度,随着粗晶含量的增加而逐步降低,但是,其塑性却随超细晶含量的增加而逐步降低。双相双尺度结构实现了Al-Sn合金在硬度、强度和塑性等方面的可调控,并在粗晶含量为Xwt%CG(20≤X≤60)的合金能兼具优良强度和塑性的力学性能。在此基础上,本文进一步发展并研究了双相双尺度结构Al-Sn、Al-Sn-Mg和Al-Sn-Si合金的摩擦学性能。
     其次,我们首次对双相双尺度结构Al-12wt%Sn合金的滑动磨损性能和磨损机理进行研究,并将其与纯超细晶结构、粗晶结构Al-12wt%Sn合金的摩擦行为进行对比。研究表明,双相双尺度Al-Sn合金在其硬度值约为HV56时具有最优摩擦学性能,其耐磨性比纯超细晶结构提高了约1.5倍,比纯粗晶结构提高约2倍,而摩擦系数也比纯粗晶结构降低13%。在研究其磨损机理时发现,一层主要由纳米晶结构氧化物组成的动态稳定的氧化摩擦层是提高纯超细晶结构和双相双尺度结构Al-Sn合金磨损性能的关键因素。而纯粗晶结构Al-Sn合金,由于其基体强度较低而难以支撑持续稳定的摩擦层的形成,导致摩擦层容易剥落,从而使合金表现出高的磨损量。但是,影响动态稳定摩擦层的磨损破坏的根本原因是合金基体的“强度-塑性”的同时配合。对于纯超细晶Al-Sn合金而言,其基体表现出的较低塑性使其磨损面难以承受应变累积,摩擦层容易出现裂纹失效,进一步阻碍了其耐磨性能的提高;对于双相双尺度Al-Sn合金而言,适当的“超细晶+粗晶”比例使其基体具有最佳的“强度-塑性”配合,有利于在磨损表面形成持续稳定的氧化摩擦层,从而获得最优的耐磨性能。这种独特的双相双尺度结构也使得Al-Sn合金的摩擦学性能可调控。
     再次,为了克服烧结后强度不高和粗晶引入对超细晶Al-Sn合金减摩性能造成的降低。我们通过添加Mg和Sn-Si包覆结构组元来进一步改善双相双尺度Al-12wt%Sn合金的组织结构、力学和摩擦学性能。利用Mg与和Al颗粒表面氧化膜反应形成MgAl2O4等相,改善润湿性,有效抑制了Sn相的离异共晶和Al晶粒的长大,同时提高了烧结致密度和强度。在添加Mg的滑动磨损和纳米划痕表面观察到大量Sn纳米相的传输和生长,包括纳米颗粒和纳米线,由于其较低的剪切强度,有效降低了合金的摩擦系数;同时,较高的强度和Mg元素受摩擦热的反应,对摩擦层的形成和特性均有明显改善,从而进一步提高合金的耐磨性能。此外,利用球磨细化Sn-12wt%Si组元替代双相双尺度Al-Sn合金中的粗晶Sn相,明显改善了Al-Sn合金的组织和硬度。特别是,由于球磨导致细小的硬质Si颗粒具有较高的残余应力,在磨损过程中,这些应力作用到Si颗粒表面的Sn相上,导致磨损面也出现了大量的Sn纳米相,对合金的摩擦学性能有了显著改善。为此,文中对比研究了添加Mg和Sn-Si包覆结构组元对Al-Sn合金中形成Sn纳米线的作用机制。
     最后,为了实现双相双尺度Al-Sn合金在滑动轴承上的工程应用,我们还研究了双相双尺度结构Al-12wt%-(Mg)粉末与喷涂有纯Al层的钢背的复合轧制。通过研究轧制变形量、退火和烧结工艺对轧制组织及性能的影响,得出较优的复合轧制工艺。最终获得了均匀分布的双相双尺度结构的Al-Sn-Mg合金层,并在合金层-纯Al过渡层-钢背各层之间达到了紧密的界面结合,成功将该轧制复合带材弯制成轴瓦。为双相双尺度结构Al-Sn合金的应用奠定了基础。
Along with the development of plain bearing to higher load-carrying capacity, bettertribological properties and environmentally friendly (Pb-free), there are continuousdemands for developing new Al-Sn based bearing alloys combining with excellentmechanical and wear performances. Refining microstructure and high strength of nanophasecomposite Al-Sn bearing alloys are beneficial for their tribological properties. However, astrength-ductility trade-off presenting in nanocrystallined alloy restricts its good wearperformance and engineering applicationin Al-Sn bearing alloy. It was demonstrated thatdual-phase and dual-scale structured alloys obtain a simultaneously enhanced strength andductility. In this dissertation, toughened high-strength nanostructured Al-Sn by creatingdual-scale structure provides a bran-new idea for developing new bearing alloys withexcellent wear performance.
     Firstly, a dual-phase and dual-scale Al-12wt%Sn alloy consisting of mixtures ofnanocrystalline/ultra-fine grain (NC/UFG) and coarse grain (CG) was produced by acombination of mechanical alloying and conventional powder sintering, and the correlationbetween dual-scale microstructure and mechanical properties was studied. The results showthat the milled NC Al-12wt%Snpowders were mixed with ummilled CG Al-12wt%Snpowders at a certain ratio, and then the powder mixtures were consolidated and sintered. Thefinal bulk alloys comprise of UFG (hard) and discrete CG (soft) regions, and simultaneouslyinclude Al (hard) and Sn (soft) phases in the two above regions, which forme two pairs ofcross-coupling“hard-soft” phases and develop an ideal microstructure of new bearingmaterials. Nano-indentation, micro-hardness and compressive strength are used tocharacterize mechanical properties in accordance to the heterogeneous feature of dual-scalealloys. It was found that the hardness and compressive strength of Al-12wt%Sn decreasegradually with the increasing CG content, but the ductility in opposite. The hardness, strengthand ductility of the dual-scale structured Al-Sn alloys can be adjusted by controlling theUFG/CG ratios. A simultaneously enhanced strength and ductility is achieved at a ratio of Xwt%CG(20≤X≤60).On this basis, we further to study wear properties of dual-phase anddual-scale structured Al-Sn, Al-Sn-Mg and Al-Sn-Si alloys.
     Secondly, for the first time, sliding wear properties and wear mechanism of dual-phaseand dual-scale Al-12wt%Sn alloy have been explored, and monolithic UFG and CGAl-12wt%Sn alloys were also investigated for comparison. The results show that the bestwear performance is achieved at a value of HV56hardness for the dual-phase and dual-scaleAl–Sn alloy, which has a wear resistance about1.5times greater than that of the monolithicUFG alloy, about twice that of the monolithic CG alloy. The friction coefficient decreases bynearly13%of the monolithic CG alloy. It also has been found that a dynamic steadytribolayer consisting of fine crystalline oxides plays a dominant role in improving the wearproperties of both the UFG and dual-scale alloys. For the CG alloys, poor wear properties,caused by delamination wear ofthe tribolayer, could not be maintained on the worn surface.However, the damage of the dynamic steady tribolayer is governed by the matching betweenductilityand strength of the matrix.The low ductility of the UFG alloy substrate causes thetribolayer to suffer crack damage rather easily, which limits any further improvement of itswear resistance. In contrast, the dual-scale structured alloy has excellent ductility-strengthmatching in accordance to UFG/CG ratios, and therefore a dynamic stable tribolayer caneasily be maintained on the worn surface, leading to excellent wear performance.Thediscrepant structure of dual-phase and dual-scale also provides a novel approach to controlthe wear properties of Al-Sn alloys.
     Furthermore, in order to overcome the low strength of sintering and the reducinganti-friction by introducing of CG part, we attempted to further promote microstructure,mechanical and wear properties of the dual-phase and dual-scale structured Al–12wt%Snalloys by Mg and Sn-Si composite structure addition. Mg addition can disrupt the oxide filmof Al through the formation of MgAl2O4, which increases of wet-ability and reduces divorcedeutectics between Al and Sn, and simultaneously improves sintering density and strength. Mgaddition also enhances the transportation and growth of Sn nanophases, includingnaoparticles and nanowires, towards sliding worn and nanoscratch surfaces, which effectivelyreduces the friction coefficient due to their lower shear strength. Simultaneously, both theenhanced strength and heating reaction of Mg addition have an obvious improvement in theformation and features of tribolayer, and cause further promotion of wear resistance. Inaddition, employing milled Sn-12wt%Si to replace CG Sn in dual-phase and dual-scale Al-Sn alloy achieves a simultaneously enhanced microstructure and hardness. In particular, A largeresidual stresses in hard Si particles induced by ball milling act as the drive forces, which areimposed on the Sn phase. It leads to large amounts of Sn nanophases in the worn surface andobtains a significant improvement of wear properties. Therefore, the theories of the presenceof Sn nanowires or whiskers in the worn surface for both Mg and Sn-Si composite structurecontaining alloys were also investigated for comparison.
     Finally, in order to achieve the engineering application of dual-phase and dual-scaleAl-Sn alloy in sliding bearing. The rolling bonding between the dual-phase and dual-scalestructured Al-12wt%Sn-(Mg) powders and steel with spraying Al coating also has beeninvestigated. After researching the effect of rolling deformation, annealing and sinteringtechnology on microstructure and properties, we obtain an optimum rolling technology.Finally, a homogeneous dual-phase and dual-scale structure in Al-Sn-Mg alloy layer wasprepared. The interfaces of Al-Sn-Mg layer/spraying Al layer/steel can achieve a closebonding. And the rolling strip was also successfully bended to be bearing. It establishes afoundation for the application of dual-phase and dual-scale Al-Sn alloy.
引文
[1]Jost P. Lubrication (Tribology)–A report on the present position and industry’s needs[R].London: Dept.of Education and Science (H. M. Stationary Office),1966.
    [2] JostP. Tribology–Origin and future[J]. Wear,1990,136:1-17
    [3] KrimJ. Friction at the atomic scale[J]. Scientific American.1996,275:74-80
    [4] J.A. Williams. Engineering Tribology [M], Oxford: Oxford University Press,1994
    [5]蒋玉琴.国内外汽车滑动轴承材料发展现状及趋势[J].汽车工艺与材料,2009(3):10~13.
    [6] Patrick J.F., Fevre L. Environmental issues in power electronics (lead free)[A].AppliedPower Electronics Conference and Exposition[C]. USA,2002:121-125
    [7] Forrester P.G. Bearing materials[J]. Metallurgical Reviews,1960,5(20):507-512
    [8] Pramanick A., Chatterjee S., Bhattacharya V., et al. Synthesis and microstructure of lasersurface alloyed Al-Sn-Si layer on commercial aluminum substrate[J]. Journal of MaterialsResearch,2005,20(6):1580-1589
    [9] Kover L., Nemethy A., Barna P.B., et al. Surface structure of Al-Sn layered systemscodeposited in the presence of oxygen[J]. Surface and Interface Analysis,1994,22:314-317
    [10] Platis F.S., Capuano G.A. Electrodeposition of aluminum-tin alloys from organicelectrolytes[J]. Journal of the Electrochemical Society,1987,134(10):2425-2429
    [11] Noskova N.I., Vil'danova N.F., Filippov Y.I., et al. Preparation, deformation, and failureof functional Al-Sn and Al-Sn-Pb nanocrystalline alloys[J]. Physics of Metals andMetallography,2006,102(6):646-651
    [12] X. Liu, M.Q. Zeng, M. Zhu., et al.Wear behavior of Al–Sn alloys with differentdistribution of Sn dispersoids manipulated by mechanical alloying and sintering[J].Wear,2008,265(11-12):1857–1863
    [13]张宝义.内燃机滑动轴承材料[M].北京:机械工业出版社,1989:54
    [14]李鹏.国外内燃机滑动轴承材料无铅化及其应用[J].汽车工艺与材料,2009,(7):1-3
    [15]陈玉明,揭晓华,李黎明,等.铝基滑动轴承合金材料的研究进展[J].材料研究与应用,2007,1(2):95-98
    [16]蒋玉琴,候福建,孙亚军.铝锡合金轴瓦在CA6102发动机上的应用[J].汽车工艺与材料,1999,(3):16-20
    [17]张文毓.轴瓦材料工业化生产技术综合分析[J].新材料产业,2008,(4):47-50
    [18]马伟.中锡铝合金轴瓦材料的开发应用[J].内燃机配件,2004,(2):17-19
    [19]张国兴.现代滑动轴承的复合材料[J].机械工程师,2005,(9):114-115
    [20] Pleschiutschnigg F, Hagen I, El Gammal T, et al. Inversion casting of steel strip[J]. Steeltimes,1995,223(6):228-9
    [21] Pleschiutschnigg F P, Hagen I. Inversion casting-a new method for producingnear-net-shape cast strips [J]. Stahl and Eisen,1994,114(2):47-53
    [22]熊柏青,张永安,石力开.喷射成形技术制备高性能铝合金材料[J].材料导报,2000,14(12):50-55
    [23] Singer A R E, Jenkins W N. Spray deposition of metal[P]. EP19850300138,1985.
    [24]田冲,杨林,赵九洲,等.喷射成形制备钢/Al-Pb合金轴瓦材料的研究[J].机械工程学报,2002,38(8):139-142
    [25]田冲,杨林,赵九洲,等.喷射轧制钢/Al-Pb复合轴瓦带材的组织与性能[J].材料研究学报,2004,18(1):102-107
    [26] Tripathy M R, Dube R K, Koria S C. Rolling behaviour of steel backed spray depositedAl–Sn strip [J]. Journal of materials processing technology[J],2007,190(1):342-9
    [27]李兴刚,李宝绵,许光明,等.液-固相轧制复合法生产含硅中锡铝合金/钢复合轴瓦带的组织和界面[J].东北大学学报(自然科学版),2002,(12):1177-1180
    [28]李松瑞.铅及铅合金[M].中南工业大学出版社,1996.
    [29]郭诗玫,荀艳坤,孙勇. Al-Pb系合金的制备方法与应用[J].云南冶金,2006,35(5):48-52
    [30] Yasukuni Hasegawa. Aluminum-base composite bearing material and method ofproducing the same[P]. USA: US6696168B2,2003
    [31]吴治南.粉末冶金钢—铜合金双金属翻边轴瓦材料的研制[D].长沙:中南大学,2006
    [32]曾美琴,戴乐阳,王涛,等.与钢背轧制复合的纳米复合Al-Pb-Cu合金的组织及摩擦性能[J].中国有色金属学报,2005,15(1):55-60
    [33] G. S. Huang, L. Y. Wang, Z. W. Zhang, et al. Manufacturing Technique of MagnesiumAlloy Sheets by Powder Rolling[J]. Materials Science Forum,488-489:445-448
    [34] E. Ma. Alloys created between immiscible elements[J]. Progress in Materials Science,2005,50:413-509
    [35] Sheng H.W., Lu K., Ma E. Melting and freezing behavior of embedded nanoparticles inball-milled Al–10wt%M (M=In, Sn, Bi, Cd, Pb) mixtures[J]. Acta Materialia,1998,46(14):5195-5205
    [36] Massalski T.B. Binary alloy phase diagrams[M]. Second Edition. ASM International,1996
    [37]刘辛.互不溶Al-Sn合金的纳米相结构及其性能[D].广州:华南理工大学,2008
    [38] Gleiter H. Nanocrystalline materials. Progress in Materials Science.1989,(33):223-315
    [39] Siegel RW. Nanostructured materials-mind over matter[J]. NanostructuredMaterials.1994,4(1):121-138
    [40] Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystallinematerials[J].Progress in Materials Science.2006,51(4):427-556
    [41] Bhattacharya V., Chattopadhyay K. Microstructure and tribological behaviour ofnano-embedded Al-alloys[J]. Scripta Materialia,2001,44(8):1677-1682
    [42] Bhattacharya V., Chattopadhyay K. Microstructure and wear behaviour of aluminiumalloys containing embedded nanoscaled lead dispersoids[J]. Acta Materialia,2004,52(8):2293-2304
    [43] Eisenmenger-Sittner C., Bangert H., Bergauer A. Kinetic phase separation insputter-deposited aluminium-tin films[J]. Journal of Crystal Growth,1998,186(1-2):151-165
    [44] Zhu M, Gao Y, Chung C.Y., et al. Improvement of the wear behaviour of Al-Pb alloys bymechanical alloying[J]. Wear,2000,242(1):47-53
    [45] Guang Ran, Jing-En Zhou, Shengqi Xi. Microstructure and morphology of Al–Pbbearing alloy synthesized by mechanical alloying and hot extrusion[J]. Journal of Alloys andCompounds,2006,419(1-2):66-70
    [46] Zhu M., Zeng M.Q., Gao Y., et al. Microstructure and wear properties of Al-Pb-Cu alloysprepared by mechanical alloying[J]. Wear,2002,253(8):832-838
    [47] C.J. Kong, S.J. Harris, D.G. McCartney, et al.The microstructures of a thermally sprayedand heat treated Al–20wt.%Sn–3wt.%Si alloy[J]. Materials Science and Engineering A,2005,403(1-2):205–214
    [48] S.J. Harris, D.G. McCartney, C. Perrin, et al. Production of ultrafine microstructure inAl–Sn, Al–Sn–Cu and Al–Sn–Cu–Si alloys for use in tribological applications[J]. MaterialsScience Forum,2000,331-337:519-526
    [49] D.K. Dwivedi. Adhesive wear behaviour of cast aluminium–silicon alloys: Overview[J].Materials and Design2010,31(5):2517-2531
    [50] Yuan G.C., Zhang X.M., Lou Y.X., et al.Tribological characteristics of new series ofAl-Sn-Si alloys[J]. Transactions of Nonferrous Metals Society of China,2003,13(4):774-780
    [51] R. N. Lumley, T. B. Sercombe and G. M. Schaffer, Surface oxide and the role ofmagnesium during the sintering of aluminum[J]. Metallurgical and Materials Transactions A,1999,30(2):457-463
    [52] T.B. Sercombe, Non-Conventional Sintered Aluminium Powder Alloys[D]. Queensland:The University of Queensland,1998
    [53] A.R. Riahi, A. Edrisy, A.T. Alpas,et al. Effect of magnesium content on the hightemperature adhesion of Al–Mg alloys to steel surfaces[J]. Surface and Coatings Technology,2009,203(14):2030-2035
    [54] S. Das, A.R. Riahi, A.T. Alpas. High temperature deformation and fracture of tribo-layerson the surface of AA5083sheet aluminum–magnesium alloy[J]. Materials Science andEngineering A,2012,531:76–83
    [55] J. An, X.X. Shen, Y. Lu, et al. Microstructure and tribological properties of Al–Pb alloymodified by high current pulsed electron beam[J]. Wear,2006261(2):208-216
    [56]姜晓华,陈伯贤.轴瓦镀层电镀技术的研究与应用[J].机电工程技术,2002,(31):27-28.
    [57]易智强.内燃机轴瓦涂层技术综述[J].内燃机配件,2008,(4):41-45
    [58] T. Miyajima, Y. Tanaka, H. Katsuki,et al. Friction and wear properties of lead-freealuminum alloy bearing material with molybdenum disulfide layer by a reciprocating test[J],Tribology International,2013,59:17–22
    [59] Yuan G.C., Li Z.J., Lou Y.X., et al. Study on crystallization and microstructure fornewseries of Al-Sn-Si alloys[J]. Materials Science and EngineeringA,2000,280(1):108-115
    [60] Schouwenaars R., Jacobo V., Cerrud S., et al. The obtention of homogeneousmicrostructures in Al-Sn-based tribological alloys[J]. Materials Science Forum,2003,426-432:387-392
    [61]高岩,曾建民,司家勇,等.锡含量对铝锡轴承合金摩擦磨损性能研究[J].铸造技术,2005,26(5):409-412
    [62] Abis S., Barucca G., Mengucci P. Electron microscopy characterization of Al-Snmetal-metal matrix composites[J]. Journal of Alloys and Compounds,1994,215(1-2):309-313
    [63]章萍芝,卢晓军,李彦利,等.水平连铸Al-Sn板坯制造铝钢轴瓦[J].特种铸造及有色合金,2000,4:50-52
    [64] Lepper K., James M., Chashechkina J., et al. Sliding behavior of selected aluminumalloys[J]. Wear,1997,203-204:46-56
    [65] Pathak J.P., Mohan S. Tribological behaviour of conventional Al-Sn and equivalent Al-Pballoys under lubrication [J]. Bulletin of Materials Science.2003,26(3):315-320
    [66]张鹏,杜云慧,曾大本,等. Al-20%Sn轴承合金凝固偏析的研究[J].特种铸造及有色合金,2001,(2):79-80
    [67] Kim W.T., Zhang D.L., Cantor B. Microstructure of rapidly solidified aluminium-basedimmiscible alloys[J]. Materials Science and EngineeringA,1991,134:1133-1138
    [68] Harris S.J., McCartney D.G., Horlock A.J., et al. Production of ultrafine microstructurein Al-Sn, Al-Sn-Cu and Al-Sn-Cu-Si alloys for use in tribological applications[J]. MaterialsScience Forum,2000,331:519-526
    [69] Kong C.J., Brown P.D., Harris S.J., et al. The microstructures of a thermally sprayed andheat treated Al-20wt.%Sn-3wt.%Si alloy[J]. Materials Science and EngineeringA,2005,403(1-2):205-214
    [70] Kong C.J., Brown P.D., Horlock A., et al. Influence of high velocity spraying conditionson the microstructure and properties of an Al-12wt%Sn-1wt%Cu alloys[J]. Materials ScienceForum,2002,396(4):1133-1138
    [71] Tripathy M.R., Kumar B.V.M., Basu B., et al. Tribological behaviour of steel backedAl-Sn strip prepared via spray atomisation-deposition-rolling route[J]. Materials Science andTechnology,2007,23:15-22
    [72]尹树桐,李庆芬,郭亚军,等.滑动轴承磁控溅射镀层技术的应用研究[J].中国表面工程,2002,(2):39-41
    [73] Rosa H., Cardus G. Structural properties of AlSn thin films deposited by magnetronsputtering[J]. Journal of Materials Science Letters,2001,20(14):1365-1367
    [74] Eisenmenger-Sittner C., Bangert H., Bergauer A. Kinetic phase separation insputter-deposited aluminium-tin films[J]. Journal of Crystal Growth,1998,186(1-2):151-165
    [75] B. Barna, G. Barcza, L. Toth, et al. Structural evolution in codeposited Al–Sn thinfilms[J]. Surface and Coatings Technology,1993,57(1):7–11
    [76] Perrone A., Zocco A., Rosa H., et al. Al–Sn thin films deposited by pulsed laserablation[J]. Materials Science and Engineering,2002,22(2):465-468
    [77] Noskova N.I., Vil'danova N.F., Pereturina I.A., et al. Mechanical properties ofsubmicrocrystalline and nanocrystalline aluminum-based alloys[J]. Physics of Metals andMetallography,2005,100(3):270-276
    [78] Suryanarayana C. Mechanical alloying and milling[J]. Progress in Materials Science,2001,46(1-2):1-184
    [79] X. Liu, M.Q. Zeng, Y. Ma, M. Zhu. Melting behavior and the correlation of Sndistribution on hardness in a nanostructured Al–Sn alloy[J]. Materials Science andEngineering: A,2009,506(1-2):1-7
    [80] Kaneko J., Sugamata M., Blaz L., et al. Aluminum-low melting metal alloys prepared bymechanical alloying with addition oxide[J]. Key Engineering Materials,2000,188:73-82
    [81]胡劲,孙勇,姜东慧,等. Al-Pb体系研究进展[J].昆明理工大学学报(理工版),2003,28(1):23-27
    [82] Suryanarayana C., Koch C.C. Nanocrystalline materials–Current research and futuredirections[J]. Hyperfine Interactions,2000,130(1-4):5-44
    [83] Dixon C.F., Skelly H.M. Properties of aliminium-tin alloys produced by powdermetallurgy[J]. Powder Metallurgy,1973,16(32):366-373
    [84] Liu Z., Sun J.L., Steen W.M., et al. Laser cladding of Al-Sn alloy on a mild steel[J].Journal of Laser Applications,1997,9(1):35-41
    [85] X. Liu, M.Q. Zeng, M. Zhu, et al. Promoting the high load-carrying capability ofAl-20wt%Sn bearing alloys through creating nanocomposite structure by mechanicalalloying[J]. Wear,2012,294–295:387-394
    [86] M.A. Meyers, A. Mishra, D.J. Benson. Mechanical properties of nanocrystallinematerials[J]. Progress in Materials Science,2006,51(4):427-556
    [87] Meyers MA, Chawla KK. Mechanical Properties of Materials[J]. New Jersey:PrenticeHall,1999
    [88] E.O. Hall. The deformation and ageing of mild steel: III. Discussion ofresults[J].Proceedings of the Physical Society of London,1951, B64:747-753
    [89] Petch N J. The Cleavage Strength of Polycrystals[J].Journal of the Iron Steel Institute,1953,174:25-28
    [90] J.F. Archard, Contact and rubbing of flat surfaces[J]. Journal of Applied Physics,1953,24(8):981-988
    [91] Z.N. Farhat, Y. Ding, A.T. Alpas,et al. Effect of grain size on friction and wear ofnanocrystalline aluminum[J]. Materials Science and Engineering A,1996206(2):302-313
    [92] P.Q. La, J.Q. Ma, Y.T. Zhu, et al. Dry-sliding tribological properties of ultrafine-grainedTi prepared by severe plastic deformation[J]. Acta Materialia,2005,53(19):5167-5173
    [93] D.H. Jeong, F. Gonzalez, G. Palumbo,et al. The effect of grain size on the wearproperties of electrodeposited nanocrystalline nickel coatings[J]. Scripta Materialia,2001,44(3):493-499
    [94] L. Wang, Y. Gao, T. Xu, Q. Xue. A comparative study on the tribological behavior ofnanocrystalline nickel and cobalt coatings correlated with grain size and phasestructure[J].Materials Chemistry and Physics,2006,99(1):96-103.
    [95] Y.S. Zhang, Z. Han, K. Lu, et al. Friction and wear behaviors of nanocrystalline surfacelayer of pure copper[J]. Wear,2006,260(9-10):942-948
    [96] Y.S. Zhang, Z. Han, K. Lu. Fretting wear behavior of nanocrystalline surface layer ofcopper under dry condition[J].Wear,2008,265(3-4):396-401
    [97] V.V. Stolyarov, L.Sh. Shuster, Y.T. Zhu,et al.Reduction of friction coefficient ofultrafine-grained CP titanium[J]. Materials Science and Engineering A,2004,371(1-2):313-317
    [98] Jia K, Fischer T E. Sliding wear of conventional and nanostructured cementedcarbides[J]. Wear,1997,203-204:310-318
    [99] Z. Han, Y.S. Zhang, K. Lu. Friction and wear behaviors of nanostructuredmetals[J].Journal of Materials Science and Technology,2008,24(4):483-494
    [100] L. Zhou, G. Liu, Z. Han, K. Lu. Grain size effect on wear resistance of a nanostructuredAISI52100steel[J]. Scripta Materialia,2008,58(6):445-448
    [101] C.T. Wang, N. Gao, T.G. Langdon,et al. Wear behavior of an aluminum alloy processedby equal-channel angular pressing[J].Journal of Materials Science,2011,46(1):123-130
    [102] Y. S. Kim, J.S. Ha, W. J. Kim. Dry Sliding Wear Characteristics of Severely Deformed6061Aluminum and AZ61Magnesium Alloys[J]. Materials Science Forum,2004,449-452:597-600
    [103] Yong-Suk Kim, Hyun Seok Yu, Dong Hyuk Shin. Low sliding-wear resistance ofultrafine-grained Al alloys and steel having undergone severe plastic deformation[J]. ArchiveInternational Journal of Materials Research,2009,6:871-874
    [104] A. Kazemi Talachi, M. Eizadjou, H. Danesh Manesh,et al. Wear characteristics ofseverely deformed aluminum sheets by accumulative roll bonding (ARB) process[J].Materials Characterization,2011,62(1):12-21
    [105] G. Purcek, O. Saray, H.J. Maierc,et al. Mechanical and wear properties ofultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion[J].Materials Science and Engineering A,2009,517(1-2):97-104
    [106] T. Kucukomeroglu. Effect of equal-channel angular extrusion on mechanical and wearproperties of eutectic Al–12Si alloy[J]. Materials and Design,2010,31(2):782-789
    [107] Segal V. M. Materials processing by simple shear[J]. Materials Science and EngineeringA,1995,197(2):157-164
    [108] Y.M. Wang, K. Lu, E. Ma,et al. Microsample tensile testing of nanocrystallinecopper[J].Scripta Materialia,2003,48(12):1581-1586
    [109] Zhu YT, Liao X. Nanostructured metals: Retaining ductility[J]. Nature Materials,2004,3:351-352
    [110] Wang Y., Chen M., Ma E.,et al. High tensile ductility in a nanostructuredmetal[J].Nature,2002,419:912-915
    [111] C.C Koch. Optimization of strength and ductility in nanocrystalline and ultrafinegrained metals[J].Scripta Materialia,2003,49(7):657-662
    [112] Sevillano JG, Aldazabal J. Ductilization of nanocrystalline materials forstructuralapplications[J]. Scripta Materialia,2004,51(8):795-800
    [113] Witkin D, Lee Z, Lavernia E,et al.Al-Mg alloy engineered withbimodal grain size forhigh strength and increased ductility[J]. Scripta Materialia,2003,49(4):297-302
    [114] G.J. Fan, H. Choo, E.J. Lavernia,et al. Plastic deformation and fracture ofultrafine-grained Al–Mg alloys with a bimodal grain size distribution[J]. Acta Materialia,2006,54(7):1759-1766
    [115] Zimmerman AF, Palumbo G, Aust KT, et al. Mechanical properties of nickelsiliconcarbide nanocomposites[J]. Materials Science and Engineering A,2002,328(1-2):137-146
    [116] Zhao YH, Liao XZ, Cheng S, et al. Simultaneously increasing theductility and strengthof nanostructured alloys[J]. Advanced Materials,2006,18:2280-2283
    [117] Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electricalconductivity incopper[J].Science,2004,304:422-426
    [118] Zhang X, Anderoglu O, Hoagland RG, et al. Nanoscale growth twins in sputtered metalfilms[J]. JOM,2008,60(9):75-78
    [119] He G, Eckert J, Loser W, et al. Novel Ti-base nanostructure-dendritecomposite withenhanced plasticity[J]. Nature Materials,2003,2:33-37
    [120] DC Hofmann, J. Suh, A. Wiest et al. Designing metallic glass matrix composites withhigh toughness and tensile ductility[J].Nature,2008,451:1085-1089
    [121] Y.M. Wang, E. Ma. Temperature and strain rate effects on the strength and ductilityofnanostructured copper[J].Applied Physics Letters,2003,83(15):3165-3167
    [122] Y.M. Wang, E. Ma, R.Z. Valiev, et al. Tough Nanostructured Metals at CryogenicTemperature[J].2004,16(4):328-331
    [123] KLu. The Future of Metals[J].Science,2010,328:319-320
    [124]黄伯云.粉末冶金标准手册[M].长沙:中南大学出版社,2000:134-136
    [125] J.I. Langford, A rapid method for analysing the breadths of diffraction and spectral linesusing the Vogit function[J].Journal of Applied Crystallography,1978,11:10-14
    [126] F. Li, K. Hu, J. Li,et al.The friction and wear characteristics of nanometer ZnO filledpolytetrafluoroethylene[J]. Wear,2002,249(10-11):877-882
    [127] M. Shafiei, A. Alpas. Effect of sliding speed on friction and wear behaviour ofnanocrystalline nickel tested in an argon atmosphere[J]. Wear,2008,265(3-4):429-438
    [128] E. Mohammad Sharifi, F. Karimzadeh. Wear behavior of aluminum matrix hybridnanocomposites fabricated by powder metallurgy[J]. Wear,2011,271(7-8):1072-1079
    [129] N. Dalili, A. Edrisy, K. Farokhzadeh,et al. Improving the wear resistance ofTi-6Al-4V/TiC composites through thermal oxidation (TO)[J]. Wear,2010,269(7-8):590-601
    [130] P.J. Blau. Test of a rule of mixtures for dry sliding friction of52100steel on anAl-Si-Cu alloy[J]. Wear,1982,81(1):187-192
    [131] X.Y. Li, K.N. Tandon. Microstructural characterization of mechanically mixed layer andwear debris in sliding wear of an Al alloy and Al based composite[J]. Wear,2000,245(1-2):148-161
    [132] D.A. Rigney. Transfer, mixing and associated chemical and mechanical processesduring the sliding of ductile materials[J]. Wear,2000,245(1-2):1-9
    [133] A.K. Prasada Rao, K. Das, B.S. Murty, et al. Microstructure and the wear mechanism ofgrain-refined aluminum during dry sliding against steel disc[J]. Wear,2008,264(7-8):638-647
    [134] Z. Han, L. Lu, H.W. Zhang, et al. Comparison of the oxidation behavior ofnanocrystalline and coarse-grain copper[J]. Oxidation of Metals,2005,63:261-275
    [135] D. Roy, S.S. Singh, B. Basu, et al. Studies on wear behavior of nano-intermetallicreinforced Al-base amorphous/nanocrystalline matrix in situ composite[J]. Wear,2009,266(11-12):1113-1118
    [136] B. Yao, Z. Han, Y.S. Li,et al. Dry sliding tribological properties of nanostructuredcopper subjected to dynamic plastic deformation[J]. Wear,2011,271(9-10):1609-1616
    [137] R. Schouwenaars, V.H. Jacobo, A. Ortiz. Microstructural aspects of wear in softtribological alloys[J]. Wear,2007,263(1-6):727-735
    [138] J.R. Jiang, F.H. Stott, M.M. Stack. The role of triboparticulates in dry slidingwear[J].Tribology International,1998,31(5):245-256
    [139] H. Kato, K. Komai. Tribofilm formation and mild wear by tribo-sintering ofnanometer-sized oxide particles on rubbing steel surfaces[J]. Wear,2007,262(1-2):36-41
    [140] M. Baki Karam. Tribology at high-velocity impact[J].Tribology International,2007,40(1):98-104
    [141] J. Zhang, A.T. Alpas. Transition between mild and severe wear in aluminiumalloys[J].Acta Materialia,1997,45(2):513-528
    [142] J. Wang, J.D. Xing, L. Cao, et al.Dry sliding wear behavior of Fe3Al alloys prepared bymechanical alloying and plasma activated sintering[J]. Wear,2010,268(3-4):473-480
    [143] A.M. Brown, M.F. Ashby. Correlations for diffusion constants[J].Acta Metallurgica,1980,28(8):1085-1101.
    [144] V.L. Popov. Contact Mechanics and Friction: Physical Principles and Applications[M].first ed., Springer-Verlag, Berlin/Heidelberg,2010
    [145] C. Boher, O. Barrau, R. Gras, et al. A wear model based on cumulative cyclic plasticstraining[J]. Wear,2009,267(5-8):1087-1094
    [146] Z. Lee, R. Rodriguez, R.W. Hayes, et al.Microstructural evolution and deformation ofcryomilled nanocrystalline Al-Ti-Cu Alloy[J]. Metallurgical and Materials Transactions A,2003,34(7):1473-1481
    [147] L. Chamberlin, J.R. Beckett, E. Stolper. Palladium oxide equilibration andthethermodynamic properties of MgAl2O4spinel[J]. American Mineralogist,1995,80:285-296
    [148] H. Zhang, S.L. Shang, J.E. Saal, et al.Enthalpies of formation of magnesiumcompounds from first-principles calculations[J].Intermetallics,2009,17(11):878-885
    [149] H. Zhang, S.L. Shang, Y. Wang, et al.First-principles calculations of the elastic, phononand thermodynamic properties ofAl12Mg17[J]. Acta Materialia,2010,58(11):4012-4018
    [150] B. Straumal, S. Risser, V. Sursaeva,et al. Grain Growth and GrainBoundary WettingPhase Transitions in the Al-Ga and Al-Sn-Ga Alloys of HighPurity[J].Journal de Physique IV,1995,5:233-241.
    [151] C. García-Cordovilla, J. Narciso, R. Arpón,et al. Interfacial tensions andthresholdpressure for infiltration of packed ceramic particulate by Al-Sn and Al-Pballoys[J].Journalofmaterials science letters,2001,20(5):405-407
    [152] T. W. Gustafson, P. C. Panda, G. Song, et al. Influence of micro-structuralscale onplastic flow behavior of metal matrix composites[J].Acta Materialia,1997,45(4):1633-1643
    [153] B. H. Kim, J. J. Jeon, K. C. Park, et al. Archives ofMaterials Science and Engineering,2008,30:93-96
    [153] M.M. Avedesian, H. Baker. Magnesium and Magnesium Alloys (ASMSpecialtyHandbook) ASM international, New York (1999).
    [154] K. N. Tu. Irreversible processes of spontaneous whisker growth in bimetallic Cu-Snthin-film reactions[J].Physical Review B,1994,49(3):2030-2034
    [155] R.M Fisher, L.S Darken, K.G Carroll. Accelerated growth of tin whiskers[J].ActaMetallurgica,1954,2(3):368-369,371-373
    [156] Hu Ren-zong, Liu Xin, Zhu Min, et al.Sn nanowires self-grown on the immiscibleSn-Al alloys and their electrochemical properties as Li-ion battery anode[J].Journal ofChinese Electron Microscopy Society,2011,30(6):494-504
    [157] F. Czerwinski. The oxidation behaviour of an AZ91D magnesium alloy at hightemperatures[J].Acta Materialia,2002,50(10):2639-2654
    [158] F. Kazemi, F. Arianpour, S. Malek-Ahmadi,et al. A novel method for synthesis ofmetastable tetragonal zirconia nano powder at low temperatures, Materials Research Bulletin,doi:10.1016/j.materresbull.2011.06.010, June,2011.
    [159] D.A.Porter, Easterling K.E., Phase Transformations in Metals and Alloys,2nd ed.,Chapman and Hall, London (1992)134-156.
    [160] FISHER R M, DARKEN L S, CARROLL K G. Accelerated growth of tin whiskers[J].Acta Metallurgica,1954,2(3):368-369,371-373.
    [161]赵子寿,冼爱平.锡晶须生长机理研究的现状与问题,中国有色金属学报,2012,22(8):2267-2275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700