吲哚胺2,3-双加氧酶在非霍奇金淋巴瘤免疫耐受中的作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     非霍奇金淋巴瘤(NHL)是一组起源于淋巴结或其他淋巴组织的常见恶性肿瘤,病因及发病机制至今仍不甚清,免疫耐受可能在肿瘤发生、发展和转移中起关键作用。以利妥昔单抗(抗CD20单抗)为代表的针对淋巴瘤的免疫靶向治疗已取得良好疗效。但仍存在一个重要问题就是无法克服肿瘤细胞形成的免疫耐受,机体免疫系统无法对肿瘤细胞进行有效的识别和杀伤。免疫耐受形成过程中涉及到的主要细胞包括:树突状细胞(dendritic cells, DCs)、调节性T细胞(regulatory T cells, Tregs)、肥大细胞、甚至是睹酸性粒细胞,肿瘤细胞亦可直接或间接通过树突状细胞等诱导肿瘤内部免疫耐受微环境。因此,研究NHL肿瘤细胞如何直接或间接通过抗原呈递细胞形成免疫耐受的肿瘤微环境,从而针对性地阻断肿瘤免疫耐受形成的关键通路,将对NHL治疗起到关键性的辅助作用。
     作为近年来的研究热点,色氨酸代谢在诱导免疫耐受形成中的作用不断见诸报道。吲哚胺2,3-双加氧酶(Indoleamine 2,3-dioxygenase, IDO)是色氨酸代谢中肝脏以外唯一可催化色氨酸分子中吲哚环氧化裂解,从而沿犬尿酸途径分解代谢的限速酶;主要表达于一些免疫耐受或免疫特赦组织中,如胸腺、胃肠道粘膜、附睾、胎盘及眼前房等,并且特异性地表达在巨噬细胞和树突状细胞上。通过对小鼠和人DCs的大量研究发现,高表达IDO的DCs亚群与机体的免疫耐受密切相关,如参与诱导T细胞凋亡、T细胞失能及活化调节性T细胞。研究表明,IDO在肿瘤和肿瘤转移淋巴结中高表达,从而被证实参与了肿瘤的免疫耐受机制,并在其中发挥重要作用。以1-甲基色氨酸(1-MT)为代表的IDO抑制剂已在国外用于Ⅰ期临床试验,并取得了良好的疗效。
     研究者发现,凡是IDO高表达的部位,如胎盘、肿瘤及转移淋巴结中,都存在大量调节性T细胞浸润的现象。调节性T细胞于1995年首次报道,其中转录因子FoxP3是Tregs的特异性标志,是发育的关键调节基因。Tregs同样在维持自身免疫耐受中起重要作用,其作用已在多种自身免疫、肿瘤模型中得到证实,而且最新研究显示Tregs的增殖及活化可能与IDO+DC亚群密切相关。已有研究证实:在多种肿瘤、肿瘤细胞系、急性白血病及成人T细胞白血病/淋巴瘤中存在着IDO的过表达,并通过对小鼠淋巴瘤模型的研究证实了IDO的过表达与Tregs增殖存在相关性。然而IDO上调Tregs的具体机制尚待进一步的研究。
     本课题旨在研究IDO在NHL患者组织水平上的表达情况,探讨其与Tregs的相关性及其在NHL发生、发展和预后中的作用。进而通过体外实验和建立NHL动物模型,验证IDO在NHL肿瘤诱导的免疫耐受中的作用,并对其作用机制进行细致的研究和探讨。为临床发掘新的判断NHL预后的指标,并为IDO抑制剂1-MT的临床应用提供有力的理论支持。
     第Ⅰ部分IDO和FoxP3在人非霍奇金淋巴瘤中的表达及意义
     研究目的
     以人NHL标本为研究对象,探讨IDO在NHL中的表达情况,分析其与临床特征以及与Tregs的相关性
     研究方法
     1.收集NHL空白石蜡切片(n=57),以反应性增生(n=18)为对照,通过免疫组织化学技术研究IDO和FoxP3在组织中的表达及部位。
     2.收集NHL新鲜标本(n=20),以实时定量RT-PCR技术比较IDO和FoxP3在mRNA水平的表达情况。
     3.收集NHL新鲜标本(n=20),利用western blot技术比较IDO和FoxP3在蛋白水平的表达情况。
     4.统计学分析IDO在NHL和反应性增生中的表达差异及其与FoxP3的相关性。探讨IDO与非霍奇金淋巴瘤临床病例资料如年龄、性别、临床分期、病理类型、LDH及预后等因素之间的关系。
     研究结果
     1.免疫组化结果显示,对照组IDO阳性细胞率均在30%以下,而57例NHL石蜡切片中,IDO+NHL(阳性细胞率在30%以上者)为18例(31.58%)。18例IDO+NHL石蜡切片的FoxP3阳性率显著高于对照组及39例IDO-NHL切片。IDO-NHL切片的FoxP3阳性率与对照组无显著差异。结合NHL患者临床病例资料,18例IDO+NHL患者的临床分期多为Ⅲ或Ⅳ期,而39例IDO-NHL患者临床分期相对较早,两者差异有统计学意义。IDO+NHL患者LDH值以及肿瘤直径同样显著大于IDO-NHL患者。以上数据均提示IDO与NHL预后密切相关。
     2.20例新鲜NHL标本经实时定量RT-PCR测定,IDOmRNA表达量显著高于对照组(2-dCt:0.00582~0.546 v.0~0.0103,P<0.05)。对于NHL组内进行IDO与FoxP3mRNA表达的相关性分析,两者呈正相关(r=0.447)。
     3.20例新鲜NHL标本经WB测定,IDO蛋白表达量显著高于对照组(0.77±0.25 vs.0.18±0.18,P<0.05)。NHL组内,IDO与FoxP3在蛋白水平上的表达呈正相关(r=0.613)。
     结论
     1.部分NHL组织内存在IDOmRNA和蛋白高表达。
     2.IDO的高表达与NHL临床分期、LDH值等密切相关,提示IDO可能指示了NHL患者预后不良。
     3.IDO的表达与FoxP3呈正相关,推测IDO+NHL肿瘤细胞可能与Tregs存在功能上的密切联系。
     第Ⅱ部分高表达IDO的淋巴瘤细胞株对Tregs调控作用的研究
     研究目的
     以高表达IDO的小鼠B系淋巴瘤细胞株A20及小鼠T细胞为研究对象,体外混合细胞培养,证实高表达IDO的淋巴瘤细胞株可上调Tregs的比例。
     研究方法
     1.免疫磁珠技术(MACS)分离BALB/c小鼠CD4+CD25- T细胞,并通过流式细胞术验证其纯度。
     2.选取高表达IDO的A20细胞系(源于BALB/c小鼠),将IDO+A20细胞系与BALB/c小鼠CD4+CD25-T细胞分为以下三组共同培养:①CD4+CD25- T细胞组;②CD4+CD25- T细胞+A20细胞组;③CD4+CD25- T细胞+A20细胞+1-甲基色氨酸组。
     3.培养24小时后,流式细胞术测定CD4+CD25+T细胞的比例。观察IDO+肿瘤细胞以及IDO抑制剂1-MT对Tregs增殖和功能的影响。
     4.MACS技术收集第②组中培养后的CD4+CD25+T细胞;MACS技术分离BALB/c小鼠脾脏中的DCs; Ficoll分离BALB/c小鼠脾脏中的单个核细胞(MNC)。分为以下4组进行混合淋巴细胞反应:①CD4+CD25+Tc+DCs+MNC;②MNC+DCs;③MNC组;④CD4+CD25+Tc组。培养72h后,MTT法测定其在570nm吸光度值(A值),计算CD4+CD25+T细胞的抑制率(supressive rate, SR)。SR=[1-(A1-A3-A4)/(A2-A3)]×100%
     研究结果
     1.流式细胞术验证MACS技术分离得到的CD4+CD25- T细胞纯度在98%以上。
     2.混合细胞培养24小时后,流式细胞术测定CD4+CD25+ T细胞比例:第①组为0;第②组为7.87±1.65%;第③组为3.32±1.19%,证实高表达IDO的A20细胞系可诱导CD4+CD25-T细胞向CD4+CD25+表型转化,而且1-MT可明显抑制该过程。
     3.MTT法分析测定转化后CD4+CD25+T细胞的抑制功能:阳性对照组A值明显高于阴性对照组(0.8657±0.0353 vs 0.3434±0.0319,P<0.05),说明T细胞在DCs的作用下增殖、活化;而实验组A值明显小于阳性对照组(0.4331±0.0280 vs0.8657±0.0353,P<0.05),证实转化后的Tregs具有抑制T细胞增殖的作用(抑制率为82.54±7.31%)。
     结论
     1.A20细胞系在体外可稳定高表达IDO。
     2.免疫磁珠技术是一种简单有效的细胞分离手段,可被广泛应用于临床和基础研究中。
     3.IDO+肿瘤细胞可在体外将CD4+CD25-T细胞向CD4+CD25+ T细胞转化,转化后的CD4+CD25-T细胞具有免疫抑制功能。
     4.IDO抑制剂1-MT可逆转体外IDO+肿瘤细胞将CD4+CD25-T细胞转化为CD4+CD25+T细胞的过程,说明这一转化具有IDO依赖性。
     第Ⅲ部分动物模型的建立及IDO对Tregs调控作用的探讨
     研究目的
     通过NHL动物模型,研究IDO+NHL小鼠Tregs在肿瘤、引流淋巴结及脾脏中的含量以及使用IDO抑制剂l-MT对Tregs的影响
     研究方法
     1.建立NHL动物模型:选6-8周龄左右BALB/c小鼠,皮下注射A20细胞悬液(5×106/只)。
     2.1周后选取肿瘤大小相近的小鼠入组实验,以同周龄的正常BALB/c小鼠为对照,分为以下三组:正常对照组(n=6),肿瘤组(n=6),1-MT干预组(n=6)。
     3.对于1-MT干预组,每日瘤内注射1-MT溶液,正常组和肿瘤组注射同体积PBS。
     3.2周后处死小鼠,收集肿瘤、脾脏、淋巴结,通过流式细胞术检测各组Tregs在肿瘤组织、淋巴结及脾脏中的含量;通过Western Blot检测IDO和FoxP3在组织中的表达。收集数据进行统计学分析,比较各组差异。
     研究结果
     1.A20 B细胞淋巴瘤模型成瘤率为95%,成瘤时间为7天左右。
     2.流式细胞术检测结果
     就CD+CD25+T细胞在肿瘤组织、脾脏、淋巴结中占淋巴细胞的比例而言,肿瘤组均明显高于1-MT干预组,也明显高于正常对照组。
     CD4+T细胞在肿瘤组织、脾脏内占淋巴细胞的比例,肿瘤组、1-MT组和对照组之间无差异。在肿瘤引流淋巴结和对照淋巴结内,CD4+ T细胞占淋巴细胞的比例肿瘤组明显低于正常对照组,但与1-MT干预组之间无明显差异,1-MT干预组同样明显低于正常对照组。
     肿瘤组织内,CD4+CD25+T细胞/CD4+ T细胞肿瘤组明显高于1-MT干预组。脾脏内,CD4+CD25+T细胞/CD4+T细胞在肿瘤组中的比例为明显高于正常组,也明显高于1-MT组。正常对照组和1-MT组之间差异无统计学意义。肿瘤引流淋巴结和对照淋巴结内,CD4+CD25+T细胞/CD4+T细胞在肿瘤组中的比例明显高于正常组(P<0.001),也明显高于1-MT组。1-MT组仍高于正常对照组。
     3. Western Blot
     结果显示,IDO在肿瘤组和1-MT组肿瘤、脾脏、淋巴结中表达均明显高于对照组。
     FoxP3在肿瘤组肿瘤、脾脏和淋巴结中的表达明显高于常对照组,也明显高于1-MT组。l-MT组与正常对照组之间无明显差异。
     结论
     1.A20 B细胞淋巴瘤是一种良好的NHL动物模型。
     2.IDO在动物模型的肿瘤、脾脏、肿瘤引流淋巴结内高表达,通过上调Tregs诱导免疫耐受。
     3.1-MT通过减弱动物模型中IDO对Tregs的上调作用,从而对淋巴瘤的化学和免疫治疗提供有效的协同作用,在抗肿瘤治疗中极具应用前景。
Background
     Non-Hodgkin's lymphoma is a malignance of the immune system. Immune tolerance participates in tumor transformation and metastasis, and possesses close relationship with tumor therapy and prognosis. In recent years, increasing evidence has been accumulated that tryptophan catabolism takes part in tumor induced immune tolerance. Indoleamine 2,3-dioxygenase(IDO) is the key enzyme in the tryptophan metabolism, which catalyzes the initial rate-limiting step of tryptophan degradation along the kynurenine pathway and can be expressed in many tissues and cells, but mainly upon cytokine stimulation during infection and with less substrate specificity. IDO activation leads to a tryptophan starvation and an accumulation of downstream breakdown products. Tryptophan starvation by IDO consumption inhibits T-cell activation, while products of tryptophan catabolism, such as kynurenine derivatives and 02-free radicals, regulate T-cell proliferation and survival.
     In humans, IDO expression has been observed by immunohistochemistry in placenta, tumor-draining lymph nodes and primary tumors, which in turn, is infiltrated by CD4+CD25+ Treg cells. The close relationship between IDO activity and Treg cells have recently been the focus of intense studies due to a positive correlation between the increased numbers of Treg cells and IDO expression in experimental as well as clinical settings. It has been shown that both IDO-expressing dendritic cells(DCs) and IDO-expressing tumor cell can bias naive CD4+ T cells to differentiate into FoxP3+ Tregs in vitro. This important finding thus linked IDO to the potent Treg system, which is known to be a key mechanism of immunosuppression in tumorbearing hosts. A series of studies provided the first indirect evidence that IDO may play an important role in proliferation and conversion of Tregs in tumors.
     In the present study, we aim to measure the expressions of IDO and FoxP3 in NHL patients and perform in vitro and animal experiments to investigate whether T-cell tolerance in NHL may be induced by directly converting CD4+CD25- T cells into CD4+CD25+Treg cells through an IDO-dependent mechanism.
     Part I Expression and Significance of IDO and FoxP3 in NHL
     Objective
     In this study, we collected samples of NHL and detected the expression of IDO and FoxP3 by IHC staining, western blot and q-PCR. Expression of IDO and FoxP3 were then made analyses with clinical features.
     Methods
     Unstained paraffin sections of NHL(n=57) and normal control(n=18) were obtained from the Pathology Department of Shandong Provincial Hospital. Fresh tumor tissues(n=20) and normal lymph nodes(n=9) were collected during lymph node biopsy or laparotomy. The diagnosis of lymphoma was based on clinical features and pathology. Immunohistochemical (IHC) analyses were performed by the avidin-biotin peroxidase complex method using standard manual methods. Tissue sections were stained with antibodies directed against human IDO and FoxP3.Western blot analyses and Real Time RT-PCR were performed to investigate the protein and mRNA expression of IDO and FoxP3.
     Results
     In the IDO-staining sections, positive-staining was observed in tumor cells. In addition, it was clearly demonstrated that IDO was highly expressed in cytoplasm. In contrast, cells of positive-staining in control group were markedly less than that in NHL. In all eighteen normal control sections, the positive cell rate was less than 30%, while in NHL group, eighteen in fifty-seven sections(31.6%) possessed a positive cell rate of no less than 30%. Patients with IDO strong-stained subtype were more likely to be diagnosed at a late phase(P<0.05), present with large tumor (P<0.05) and have a higher level of LDH in serum(P<0.05), all of which may indicate a worse prognosis.
     We also measured the IDO protein level by western blotting, which was coincidentally higher in NHL(n=20) than controls(n=9). The ratio of IDO toβ-actin were 0.77±0.25 in NHL group, while 0.18±0.18 in couterparts(p<0.05). Corresponding IDO mRNA was evaluated in NHL tumors(n=20) as well as normal control(n=9) with real time RT-PCR. Higher IDO mRNA expression was also observed in NHL group, whereas there was very little IDO mRNA detected in normal control(2-dct:0.00582~0.546 v.0-0.0103, p<0.05).
     The percentage of FoxP3+ cells was significantly increased in IDO strong-stained NHL samples compared with IDO weak-stained NHL or normal control (P<0.05). Statistics indicated that a positive corelationship existed between IDO and FoxP3 expression(WB:r=0.482; real time PCR:r=0.447).
     Conclusions
     1. Both expressions of IDO and FoxP3 are upregulated in NHL,
     2. Over-expression of IDO is corelated with a later clinical phases and higher LDH values, which indicate a worse prognosis.
     3. IDO level possess a close relationship with that of FoxP3.
     PartⅡPurification of Murine CD4+CD25-T-cell Subsets and T-cell Coculture with IDO-expressing A20 Cells in vitro
     Objective
     In this part, we aimed to observe whether IDO+ tumor cells could convert CD4+CD25- T cells into Tregs.
     Methods
     Murine CD4+CD25- T-cell was isolated from splenocyte of normal BALB/c mice by MACS. Purified T cells were used for phenotypic assays using Tregs flow cytometry kit. Purifed murine CD4+CD25- with IDO-expressing A20 cell line in the presence and absence of 1-MT, which specially inhibits IDO activity. After 24 hours, cells were collected and used for flow cytometry assays and MACS.
     The converted CD4+CD25+ T cells were isolated by MACS. To test its suppressive function, the MTT cell proliferation assays were performed. DCs isolated from splenocytes by Dynabeads Mouse DC Enrichment Kit. Splenocytes from naive BALB/c were cultured alone(negtive control group) or cocultured with DCs. The mixed cells were cultured in the presence(experimental group) or absence(positive control group) of converted CD4+CD25+ T cells. Converted CD4+CD25+ T cells was cultured alone as blank control group. The absorbence at 570nm(A value) was recorded by microtiter plate reader. Suppressive rate(SR) was calculated. SR=[1-(Aexperimental group-Ablank control group-Anegtive control group)/(Apositive control group-Anegtive control group)]×100%
     Results
     Conversion of CD4+CD25" T cells to CD4+CD25+ T cells was observed after 24 hours. The mean percentage of CD4+ CD25+T cells was 7.87±1.65% in CD4+CD25-T cells cocultured with A20 cell line, whereas CD4+CD25+ T cells were nearly not detected in CD4+CD25- cells cultured without A20. The addition of 1-MT attenuated conversion of CD4+CD25- T cells into CD4+CD25+ T cells, as we detected the mean percentage of CD4+CD25+ T cells was 3.32±1.19%.
     In the 3-day MTT proliferation assays, compared with the negtive control group, Apositive control goup was significantly increased(0.8657±0.0353 vs 0.3434±0.0319, p<0.05), which indicated that lymphocyte were stimulated to proliferate. Meanwhile, Aexperimental goup was lower than Apositive control goup.The addition of converted CD4+CD25+ T cells lead to the decreasing of A value(0.4331±0.0280 vs 0.8657±0.0353, P<0.05). The suppressive rate(82.54±7.31%) indicated the suppressive function of converted CD4+CD25+ T cells.
     Conclusions
     1. A20 cell line spontaneously high-express IDO.
     2. MACS is a simple but effective technique to isolate cells into different groups.
     3. Cocultured with A20 cell line, CD4+CD25- T cells will be converted to CD4+CD25+ T cells which could suppress immune response. The addition of 1-MT could abrogate this conversion.
     PartⅢStudy on Tumor Model for NHL in Mice
     Objective
     In this part, we set up a tumor model for NHL. The contribution of IDO in tumor induced tolerance and the anti-tumor effect of inhibitor 1-MT would be determined by detecting the Tregs in the tumors, lymph nodes and spleens.
     Methods
     To establish tumors,5×106 live A20 cells were s.c. injected into the right back flank of naive syngeneic BALB/c mice. Tumor growth was monitored three times per week using calipers. For our studies, tumorbearing animals were injected with 1-MT intratumorally every day as soon as the tumors were palpable. PBS was used as a control. Animals bearing tumors were euthanized when tumors reached a size of 20 mm in diameter or earlier if tumors ulcerated or animal showed sign of discomfort. Flow cytometry was performed to measure the percentage of Tregs in tumor, spleen and tumor-draining lymphoma.
     Results
     1. The percentage of CD4+CD25+ T cells in lymphocytes and the ratio of CD4+CD25+T cells and CD4+T cells were significantly higher in tumorbearing animals compared with normal controls. The addition of 1-MT could deduce the increasing ratio.
     2. Data of western blot showed that, IDO expression in tumors, lymph nodes and spleens was upregulated in tumorbearing animals. FoxP3 was over-expressed in tumorbearing animals, but the administration of 1-MT could abrogate this upregulation.
     Conclusions
     1. A20 B lymphoma is a useful tumor model in research on IDO and immune tolerance.
     2. Over-expression of IDO in tumor, lymph nodes and spleens of tumorbearing animals leads to immune tolerance by incresing the percentage of Tregs.
     3. Administration of 1-MT can decreace the percentage of Tregs and may serve as a potential antitumor agent in the future.
引文
1. ENGELS EA. Infectious agents as causes of non-hodgkin lymphoma[J].Cancer Epidemiol Biomarkers Prev,2007,16(3):401-4.
    2. SHIMOYAMA Y, OYAMA T, ASANO N, et al.Senile Epstein-Barr virus-associated B-cell lymphoproliferative disorders:a mini review [J].J Clin Exp Hematop,2006,46(1):1-4.
    3. GRULICH AE, VAJDIC CM, COZEN W. Altered immunity as a risk factor for non-hodgkin lymphoma [J]. Cancer Epidemiol Biomarkers Prev,2007,16(3):405-8.
    4. MELLOR AL, MUNN DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation[J]? Immunol Today,1999,20(10):469-473.
    5. MUNN DH, SHARMA MD, HOU D, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes [J]. J Clin Invest,2004,114(2):280-290.
    6. UYTTENHOVE C, PILOTTE L, THEATE I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase [J]. Nat Med,2003,9(10):1269-1274.
    7. SAKAGUCHI S, SAKAGUCHI N.Regulatory T cells in immunologic self-tolerance and autoimmune disease[J]. Int Rev Immunol,2005,24(3-4):211-226.
    8. FONTENOT JD, GAVIN MA, RUDENSKY AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol, 2003,4(4):330-336.
    9. HORI S, NOMURA T, HIMON, et al. Control of Regulatory T Cell Development by the Transcription Factor Foxp3 [J]. Science,2003,299 (5609): 1057-1061.
    10. SAKAGUCHI S. Regulatory T Cell:key controllers of immunologic self-tolerance [J]. Cell,2000,101(5):455-458.
    11. SMYTH MJ, TENG MW, SWANN J, et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer [J]. J Immunol,2006,176(3): 1582-1587.
    12. ELPEK KG, LACELLE C, SINGH NP, et al. CD4+CD25+ T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model [J]. J Immunol,2007,178(11):6840-6848.
    13. CURTI A, PANDOLFI S, VALZASINA B, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+ T regulatory cells [J]. Blood,2007,109(7):2871-2877.
    14. HOSHI M, ITO H, FUJIGAKI H, et al. Indoleamine 2,3-dioxygenase is highly expressed in human adult T-cell leukemia/lymphoma and chemotherapy changes tryptophan catabolism in serum and reduced activity [J]. Leuk Res,2009,33(1): 39-45.
    15. GROHMANN U, FALLARINO F, BIANCHI R, et al. IL-6 inhibits the tolerogenic function of CD8alpha(+) dendritic cells expressing indoleamine 2,3-dioxygenase [J]. J Immunol,2001,167(2):708-714.
    16. ORABONA C, PUCCETTI P, VACCA C, et al.Toward the identification of a tolerogenic signature in IDO-competent dendritic cells [J]. Blood,2006,107(7): 2846-2854.
    17. MUNN DH, SHARMA MD, LEE JR et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase [J]. Science,2002, 297(5588):1867-1870.
    18. MUNN DH, SHARMA MD, MELLOR AL et al. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells [J]. J Immunol,2004,172(7):4100-4110.
    19. GROHMANN U, BIANCHI R, ORABONA C et al. Functional plasticity of dendritic cell subsets as mediated by CD40 versus B7 activation [J]. J Immunol,2003, 171(5):2581-2587.
    20. BRAUN D, LONGMAN RS, ALBERT ML et al. A two step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic cell maturation [J]. Blood,2005,106(7):2375-2381.
    21. VON BERGWELT-BAILDON MS, POPOV A, SARIC T et al. CD25 and indoleamine 2,3-dioxygenase are up-regulated byprostaglandin E2 and expressed by tumor-associated dendritic cells in vivo:additional mechanisms of T-cell inhibition [J]. Blood,2006,108(1):228-237.
    22. STAVELEY-O'CARROLL K, SOTOMAYOR E, MONTGOMERY J. Induction of antigen-specific T cell anergy:an early event in the course of tumor progression [J]. Proc Natl Acad Sci U S A,1998,95(3):1178-1183.
    23. CUENCA A, CHENG F, WANG H et al. Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy:dominant role of cross-tolerance to tumor antigens [J]. Cancer Res,2003, 63(24):9007-9015.
    24. GAJEWSKI TF, MENG Y, BLANK C et al. Immune resistance orchestrated by the tumor microenvironment [J]. Immunol Rev,2006,213:131-145.
    25. ZOU W. Regulatory T cells, tumour immunity and immunotherapy [J]. Nat Rev Immunol,2006,6(4):295-307.
    26. HUANG AY. Role of bone marrowderived cells in presenting MHC class I-restricted tumor antigens [J]. Science,1994,264(5161):961-965.
    27. YU P, SPIOTTO MT, Lee Y,et al. Complementary role of CD4+ T cells and secondary lymphoid tissues for cross-presentation of tumor antigen to CD8+ T cells [J]. J Exp Med,2003,197(8):985-995.
    28. VAN MIERLO GJ, BOONMAN ZF, DUMORTIER HM et al. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication[J]. J Immunol,2004,173(11):6753-6759.
    29. NOWAK AK, LAKE RA, MARZO AL et al. Induction of tumor cell apoptosis in vivo increases tumor antigen crosspresentation, cross-priming rather than cross-tolerizing host tumor-specific CD8 T cells [J]. J Immunol,2003,170(10): 4905-4913.
    30. HARGADON KM, BRINKMAN CC, SHEASLEY-O'NEILL SL et al. Incomplete differentiation of antigen-specific CD8 T cells in tumordraining lymph nodes [J]. J Immunol,2006,177(9):6081-6090.
    31. ITANO AA, JENKINS MK. Antigen presentation to naive CD4 T cells in the lymph node [J]. Nat Immunol,2003,4(8):733-739.
    32. SAMY ET, PARKER LA, SHARP CP, et al. Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional lymph node [J]. J Exp Med,2005,202(6):771-781.
    33. GREEN EA, CHOI Y, FLAVELL RA et al. Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells:highly potent regulators of diabetes that require TRANCE-RANK signals [J]. Immunity,2002,16(2):183-191.
    34. WOLVERS DA, COENEN-DE ROO CJ, MEBIUS RE et al. Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39 [J]. J Immunol,1999,162(4): 1994-1998.
    35. KRAAL G, SAMSOM JN, MEBIUS RE MUNN DH, et al. The tumordraining lymph node as an immune-privileged site [J]. Immunol Rev,2006,213:146-158.
    36. MUNN DH, MELLOR AL. The importance of regional lymph nodes for mucosal tolerance [J]. Immunol Rev,2006,213:119-130.
    37. MUNN DH, MELLOR AL et al. The tumordraining lymph node as an immune-privileged site [J]. Immunol Rev,2006,213:146-158.
    38. COCHRAN AJ, HUANG RR, LEE J, et al. Tumour-induced immune modulation of sentinel lymph nodes[J]. Nat Rev Immunol,2006,6(9):659-670.
    39. VON BERGWELT-BAILDON MS, Popov A, Saric T, et al. CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo:additional mechanisms of T-cell inhibition[J]. Blood,2006,108(1):228-237.
    40. LEE JR, DALTON RR, MESSINA JL, et al. Pattern of recruitment of immunoregulatory antigen presenting cells in malignant melanoma[J]. Lab Invest, 2003,83(10):1457-1466.
    41. LEE JH, TORISU-LTAKARA H, COCHRAN AJ, et al. Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes [J].Clin Cancer Res,2005,11(1):107-112.
    42. BABAN B. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type 1 interferon-signaling following B7 ligation [J]. Int Immunol,2005,17:909-919.
    43. MELLOR AL,BABAN B,CHANDLER PR, et al. Cutting edge:CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenasedependent T cell regulatory functions via IFN type 1 signaling [J]. J Immunol,2005,175(9):5601-5605.
    44. GROHMANN U,FALLARINO F,BIACHI R, et al. IL-6 inhibits the tolerogenic function of CD8alpha(+) dendritic cells expressing indoleamine 2,3-dioxygenase [J]. J Immunol,2001,167(2):708-714.
    45. OKAMOTO A,NIKAIDO T,OCHIAI K, et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells [J]. Clin Cancer Res,2005,11(16):6030-6039.
    46. INO K,YOSHIDA N,KAJIYAMA H, et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer [J]. Br J Cancer,2006,95(11): 1555-1561.
    47. BRANDACHER G, PERATHONER A, LADUMER R. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer:effect on tumor-infiltrating T cells [J]. Clin Cancer Res,2006,12(4):1144-1151.
    48. MULLER AJ,DUHADAWAY JB, DONOVER PS, et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin 1, potentiates cancer chemotherapy [J]. Nat Med,2005,11(3):312-319.
    49. TAYLOR MW, FENG GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism [J]. FASEB J,1991,5(11):2516-2522.
    50.高艳芳,彭端清,伍小军,等.吲哚胺2,3-双加氧酶在结肠癌及其区域淋巴结中的表达及意义[J].中国肿瘤临床,2007,14(34):811-814.
    51. ASTIGIANO S, MORANDI B, COSTA R, et al. Eosinophil granulocytes account for indoleamine 2,3-dioxygenase-mediated immune escape in human non-small cell lung cancer [J]. Neoplasia,2005,7(4):390-396.
    52. HRYNIEWICZ A. CTLA-4 blockade decreases TGF-{beta}, indoleamine 2,3-dioxygenase, and viral RNA expression in tissues of SIV mac 251-infected macaques [J]. Blood,2006,108(12):3834-3842.
    53. SHARMA M D, BABAN B, CHANDLER P, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase [J]. J Clin Invest,2007,117(9):2570-2582.
    54. FALLARINO F, GROHMANN U, YOU S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells [J]. J Immunol,2006, 176(11):6752-6761.
    1. AUNE TM, POGUE SL. Inhibition of tumor cell growth by interferon-gamma is mediated by two distinct mechanisms dependent upon oxygen tension:induction of tryptophan degradation and depletion of intracellular nicotinamide adenine dinucleotide [J]. J Clin Invest,1989,84(3):863-875.
    2. FALLARINO F, GRHOMANN U, VACCA C, et al. T cell apoptosis by tryptophan catabolism [J]. Cell Death Differ,2002,9(10):1069-1077.
    3. LEE GK, PARK HJ, MACLEOD M, et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division [J]. Immunology,2002,107(4): 452-460.
    4. TERNESS P, BAUER TM, ROSE L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites [J]. J Exp Med,2002,196(4):447-457.
    5. FRUMENTO G, ROTONDO R, TONETTI M, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase [J]. J Exp Med,2002,196(4):459-468.
    6. FALLARINO F, GROHMANN U, YOU S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells [J]. J Immunol 2006; 176(11): 6752-6761.
    7. MUNN DH, SHARMA MD, HOU D, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes [J]. J Clin Invest,2004,114(2):280-290.
    8. HAMADA I, KATOM. Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma [J]. Anticancer Res,2002,22(6C): 4281-4284.
    9. STEINMAN RM, INABA K, TURLEY S, et al. Antigen capture, processing, and presentation by dendritic cells:Recent cell biological studies [J]. Human Immunol,1999,60 (7):562-567.
    10. MARC D, BIANCA O, JAN H, et al. Mature dendritic cells from human mononcyteswithin 48 hours:A novel strategy for dendritic cell differentiation from blood precursors [J]. J Immunol,2003,170(4):4069-4076.
    11.林苹,张洁,陆燕蓉,等.体外诱导成熟树突状细胞的研究[J].中国免疫学杂志,2001,17(3):132-134.
    12.蔡大川,李用国,任红,等.人脐血来源的树突状细胞的体外培养扩增[J].免疫学杂志,2002,18(3):26-291.
    13.WARNCKE M, DODERO A, DIERBACH H, et al. Murine dendritic cells generated under serum-free conditions have a mature phenotype and efficiently induce primary immune responses [J]. J Immunol Methods,2006,310(1-2):1-11.
    14. MENGES M, BAUMEISTER T, ROSSNER S, et al. IL-4 supports the generation of a dendritic cell subset from murine bone marrow with altered endocytosis capacity [J]. J Leukoc Biol,2005,77 (4):535-543.
    15.王云甫,孙圣刚,杨敬宁,等.大鼠树突状细胞的体外扩增与初步鉴定[J].中国现代医学杂志,2005,15(1):8-11.
    16.MUTHANA M, FAIRBURN B, MIRZA S, et al. Systematic evaluation of the conditions required for the generation of immature rat bone marrow derived dendritic cells and their phenotypic and functional characterization [J]. J Immunol Methods, 2004,294(1-2):165-179.
    17. SAKAGUCHI S, SAKAGUCHI. N. Regulatory T cells in immunologic self-tolerance and autoimmune disease [J]. Int Rev Immunol,2005,24(3-4):211-226.
    18. SAKAGUCHI S. Regulatory T Cell:key controllers of immunologic self-tolerance [J]. Cell,2000,101(5):455-458.
    19.NISHIKAWA H, KATO T, TAWARA I, et al. Accelerated chemically induced tumor development mediated by CD4+CD25+ regulatory T cells in wild-type hosts [J]. Proc. Natl. Acad. Sci. U. S. A.,2005,102(26):9253-9257.
    20. SUTMULLER R.P.M., VAN DUIVENVOORDE LM, VAN ELSAS A, et al. Synergism of cytoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoractive cytotoxic T lymphocyte responses [J]. J. Exp. Med,2001, 194(6):823-832.
    21. YANG Y, HUANG CT, HUANG X, et al. Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance [J]. Nat Immunol, 2004,5(5):508-515.
    22. ERCOLINI AM, LADLE BH, MANNING EA, et al. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response [J]. J Exp Med, 2005,201(10):1591-1602.
    23. YU P, LEE Y, LIU W, et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leadin to the rejection of late-stage tumors [J]. J Exp Med,2005, 201(5):779-791.
    24. GROHMANN U, FALLARINO F, BIANCHI R, et al. IL-6 inhibits the tolerogenic function of CD8alpha(+) dendritic cells expressing indoleamine 2,3-dioxygenase [J]. J Immunol,2001,167(2):708-714.
    25. HIURA T, KAGAMU H, MIURA S, et al. Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression [J]. J Immunol,2005,175(8):5058-5066.
    26. MUNN DH, SHARMA MD, BABAN B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase [J]. Immunity,2005,22(5):633-642.
    27. SHARMA MD, BABAN B, CHANDLER P, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase [J]. J Clin Invest,2007,117(9):2570-2582.
    28. CURTI A, PANDOLFI S, VALZASINA B, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+T regulatory cells [J]. Blood,2007,109(7):2871-2877.
    29. ZOU W. Regulatory T cells, tumour immunity and immunotherapy [J]. Nat, Rev, Immunol,2006,6(4):295-307.
    30. SHARMA MD, BABAN B, CHANDLER P, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase [J]. J Clin Invest,2007,117(9):2570-2582.
    1. MOHAMMAD RM, AL-KATIB A, ABOUKAMEEL A, et al. Genistein sensitizes diffuse large cell lymphoma to CHOP(cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy [J]. Mol Cancer Ther,2003,2(12):1361-1368.
    2. DA SILVA FRANCHI CA, BACCHI MM, PADOVANI CR, et al. Thymic lymphomas in Wistar rats exposed to N-methyl-N nitrosourea(MNU) [J]. Cancer Sci, 2003,94 (3):240-243.
    3. BENAVIDES F, GOMEZ G, VENABLES GA, et al. Differential susceptibility to chemically induced thymic lymphomas in SENCARB and SSIN inbred m ice[J]. Mol Carcinog,2006,45 (7):543-548.
    4. ANGEL JM, RICHIE ER. Tlag2, an N-methyl-N-nitrosourea suscep-tibility locus, maps to mouse chromosome 4 [J]. Mol Carcinog,2002,33(2):105-112.
    5. WOO JS, KIM JM, LEE SH, et al. Clinical analysis of extranodal non-Hodgkin's lymphoma in the sinonasal tract [J]. Eur Arch Otorhinolaryngol,2004,261(4): 197-201.
    6. GAN R, YIN Z, LIU T, et al. Cyclosporine A effectively inhibits graft-versus-host disease during development of Epstein-Barr virus-infected human B cell lymphoma in SCID mouse [J]. Cancer Sci,2003,94 (9):796-801.
    7.黄燕萍,郭秀婵,何祖根,等.EB病毒诱导胸腺恶性T细胞淋巴瘤的研究[J].病毒学报,2001,17(4):289-294.
    8. 尹志华,刘腾飞,唐运莲,等.环孢素A对稳定EBV诱发淋巴瘤模型的作用和意义[J].中华免疫学杂志,2002,18(11):760-763.
    9. POGRIBNY I, KOTURBASH I, TRYNDYAK V, et al. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murinethymus [J]. Mol Cancer Res,2005,3 (10): 553-561.
    10. KOMINAMI R, NIWA O. Radiation carcinogenesis in mouse thymic lymphomas [J]. Cancer Sci,2006,97(7):575-581.
    11. EMMA B, HELEN C, MARK P. Myeloid, B and T lymphoid and mixed lineage thymic lymphomas in the irradiated mouse[J]. Carcinogenesis,2002,23(6): 1079-1085.
    12. UTSUYAMA M, HIROKAWA K. Radiation-induced thymic lymphoma occurs in young, but not in old mice [J]. Exp Mol Pathol,2003,74 (3):319-325.
    13. DREXLER HG, MATSUO AY, MAC LEOD RA. Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research [J]. Leuk Res,2000,24 (11): 881-911.
    14.邵晓枫,杨纯正,熊冬生,等.人B淋巴瘤裸鼠腹腔内移植模型[J].中国肿瘤临床,2001,28(3):2172-219.
    15. MERZ H, LANGE K, GAISER T, et al. Characterization of a novel human anaplastic large cell lymphoma cell line tumorigenic in SCID mice [J]. Leuk Lymphoma,2002,43(1):165-172.
    16.张宁,脱帅,刘秋珍,等.人肝恶性淋巴瘤裸小鼠原位和皮下移植的建立及生物学特性的研究[J].消化外科,2006,5(1):57-61.
    17.张宁,脱朝伟,刘秋珍,等.人脾原发性恶性淋巴瘤裸小鼠皮下及原位移植模型的建立[J].消化外科,2002,1(3):166-169.
    18. GORDON JW, SCANGOS GA, PBTKIN DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA [J]. Proc Natl Acad Sci U SA, 1980,77 (12):7380-7384.
    19.冯作化.医学分子生物学[M].北京:人民卫生出版社,2005:160-170.
    20. ADAMS JM, CORY S. Transgenic models of tumor development[J]. Science, 1991,254(5035):1161-1167.
    21. ADAMS JM, CORY S. Transgenic models for haemopoietic malignancies [J]. Biochim Biophys Acta,1991,1072(1):9231.
    22. CHIARLE R, GONG Z, GUASPARRI I, et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumor cells[J]. Blood,2003, 101(5):1919-1927.
    23. CURTI A, PANDOLFI S, VALZASINA B, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25+ T regulatory cells [J]. Blood,2007,109(7):2871-2877.
    24. SCOTT GN, DUHADAWAY J, PIGOTT E, et al. The immunoregulatory enzyme IDO paradoxically drives B cell-mediated autoimmunity [J]. J Immunol,2009,182: 7509-7517.
    25. KUTLU G. ELPEK, CHANTALE LACELLE, et al. CD4+CD25+ T Regulatory Cells Dominate Multiple Immune Evasion Mechanisms in Early but Not Late Phases of Tumor Development in a B Cell Lymphoma Model. J Immunol,2007,178(11): 6840-6848.
    26. WOLF AM, WOLF D, STEURER M, et al. Increase of regulatory T cells in the peripheral blood of cancer patients [J]. Clin Cancer Res,2003,9(2):606-612.
    27. SCHABOWSKY RH, MADIREDDIS, SHARMA R, et al. Targeting CD4+ CD25+ FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy [J]. Curr Op in Investig Drugs,2007,8(12):1002-1008.
    28. SHIMIZU J, YAMAZAKI S, SAKAGUCHI S. Induction of tumor immunity by removing CD25+ CD4+ T cells:a common basis between tumor immunity and autoimmunity [J]. J Immunol,1999,163(10):5211-5218.
    29. YU P, LEE Y, LIU W, et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors[J]. J Exp Med,2005, 201(5):779-791.
    30. PRASAD SJ, FARRAND KJ, MATTHEWS SA, et al. Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+ CD25+ regulatory T cells [J]. J Immunol,2005,174(1):90-98.
    31. GREGOR PD,WOLCHOK JD, FERRONE CR, et al. CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems [J]. Vaccine,2004,22(13214):1700-1708.
    32. FRIBERG M, JENNINGS R, ALSARRAJ M, et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell mediated rejection [J]. Int J Cancer,2002, 101(2):151-155.
    33. UYTTENHOVE C, PILOTTE L, THEATE I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase [J]. Nat Med,2003,9(10):1269-1274.
    34. MULLER AJ, DUHADAWAY JB, DONOVER PS, et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Binl, potentiates cancer chemotherapy [J]. Nat Med,2005,11(3):312-319
    35. NOWAK AK, ROBINSON BW, LAKE RA. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors [J]. Cancer Res, 2003,63(15):4490-4496.
    36. BROOMFIELD S, CURRIE A, VAN MOST RG, et al. Partial, but not complete, tumor-debulking surgery promotes protective antitumor memory when combined with chemotherapy and adjuvant immunotherapy [J]. Cancer Res,2005,65(17): 7580-7584.
    37. DUMMER W, NIETHAMMER AG, VACCALA R, et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity [J]. J Clin Inves,2002, 110(2):185-192.
    38. KING C, ILIC A, KOELSCH K, et al. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity [J]. Cell,2004,117(2):265-277.
    39. WANG LX, LI R, YANG G, et al. Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing [J]. Cancer Res,2005,65(22):10569-10577.
    40. BROWN IE, BLANK C, KLINE J, et al. Homeostatic proliferation as an isolated variable reverses CD8+ T Cell anergy and promotes tumor rejection. J Immunol,2006, 177(7):4521-4529.
    41. AWWAD M, NORTH RJ. Cyclophosphamide(Cy)-facilitated adoptive immunotherapy of a Cy-resistant tumour:Evidence that Cy permits the expression of adoptive T-cell mediated immunity by removing suppressor T cells rather than by reducing tumour burden [J]. Immunology,1988,65(1):87-92.
    42. GHIRINGHELLI F, LARMONIER N, SCHMITT E, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol, 2004,34(2):336-344.
    43. LUTSIAK ME, SEMNANI RT, DE PASCSLIS R, et al. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide [J]. Blood,2005,105(7):2862-2868.
    44. BEYER M, KOCHANEK M, DARABI K, et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine [J]. Blood,2005,106(6): 2018-2025.
    45. MACHIELS JP, REILLY RT, EMENS LA, et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophagecolony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice [J]. Cancer Res,2001,61(9):3689-3697.
    46. WEIGEL BJ, RODEBERG DA, KRIEG AM, et al. CpG oligodeoxynucleotides potentiate the antitumor effects of chemotherapy or tumor resection in an orthotopic murine model of rhabdomyosarcoma [J]. Clin Cancer Res,2003,9(8):3105-3114.
    47. Gattinoni L, finkelstein se, klebanoff ca, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells [J]. J Exp Med,2005,202(7):907-912.
    48. TAIEB J, CHAPUT N, SCHARTZ N, et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines [J]. J Immunol,2006, 176(6):2722-2729.
    49. DUDLEY ME, WUNDERLICH JR, ROBBINS PF, et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes [J]. Science,2002,298(5594):850-854.
    50. MORGAN RA, DUDLEY ME, WUNDERLICH JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes [J]. Science,2006, 314(5796):126-129.
    51. MUNN DH, SHARMA MD, HOU D, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes [J]. J Clin Invest,2004,114(2):280-290.
    52. HOU DY, MULLER AJ, SHARMA MD, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with anti-tumor responses [J]. Cancer Res,2007,67(2):792-801.
    1. Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today 1999; 20:469-473.
    2. Yoshida R, Hayaishi O. Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc Natl Acad Sci USA 1978; 75:3998-4000.
    3. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 2002; 196:459-468.
    4. Grohmann U, Fallarino F, Puccetti P. Tolerance, DCs and tryptophan:much ado about IDO. Trends Immunol 2003; 24:242-248.
    5. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003; 9:1269-1274.
    6. Lee JR, Dalton RR, Messina JL, Sharma MD, Smith DM, Burgess RE, et al. Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest 2003; 83:1457-1466.
    7. Kudo Y, Boyd CA, Spyropoulou I, Redman CW, Takikawa O, Katsuki T, et al. Indoleamine 2,3-dioxygenase:distribution and function in the developing human placenta. J Reprod Immunol 2004; 61:87-98.
    8. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281:1191-1193.
    9. Heikkinen J, Mottonen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 2004; 136:373-378.
    10. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 2004; 114:280-290.
    11. Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med 2004; 10: 15-18.
    12. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006; 176:6752-6761.
    13. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6:295-307.
    14. Mellor AL, Sivakumar J, Chandler P, Smith K, Molina H, Mao D, et al. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2001; 2:64-68.
    15. Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Binl, potentiates cancer chemotherapy. Nat Med 2005; 11:312-319.
    16. Yoshida R, Urade Y, Nakata K, Watanabe Y, Hayaishi O. Specific induction of indoleamine 2,3-dioxygenase by bacterial lipopolysaccharide in the mouse lung. Arch Biochem Biophys 1981; 212:629-637.
    17. Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 2007; 67: 792-801.
    18. Ball HJ, Sanchez-Perez A, Weiser S, Austin CJ, Astelbauer F, Miu J, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 2007; 396:203-213.
    19. Metz R, Duhadaway JB, Kamasani U, Laury-Kleintop L, Muller AJ, Prendergast GC. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res 2007; 67:7082-7087.
    20. Lob S, Konigsrainer A, Zieker D, Brucher BL, Rammensee HG, Opelz G, et al. IDO1 and IDO2 are expressed in human tumors:levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 2008; 262:513-516.
    21. Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol 2009; 41:467-71.
    22. Lob S, Konigsrainer A, Schafer R, Rammensee HG, Opelz G, Terness P. Levo-but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 2008; 111:2152-2154.
    23. Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 2005; 11:6030-6039.
    24. Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer 2006; 95:1555-1561.
    25. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer:effect on tumor-infiltrating T cells. Clin Cancer Res 2006; 12:1144-1151.
    26. Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+ T regulatory cells. Blood 2007; 109:2871-2877.
    27. Hoshi M, Ito H, Fujigaki H, Takemura M, Takahashi T, Tomita E, et al. Indoleamine 2,3-dioxygenase is highly expressed in human adult T-cell leukemia/lymphoma and chemotherapy changes tryptophan catabolism in serum and reduced activity. Leuk Res 2009; 33:39-45.
    28. Taylor MW, Feng GS. Relationship between interferon-y, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 1991; 5:2516-2522.
    29. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006; 6:836-848.
    30. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297:1867-1870.
    31. von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS, et al. CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo:additional mechanisms of T-cell inhibition. Blood 2006; 108:228-237.
    32. Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y, Morton DL, et al. Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res.2005; 11: 107-112.
    33. Baban B, Hansen AM, Chandler PR, Manlapat A, Bingaman A, Kahler DJ, et al. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type Ⅰ IFN-signaling following B7 ligation. Int Immunol 2005; 17:909-919.
    34. Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH. Cutting edge:CpG oligonucleotides induce splenic CD 19+dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN type 1 signaling. J Immunol 2005; 175:5601-5605.
    35. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 2003; 9:4404-4408.
    36. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 2005; 65:2457-2464.
    37. TerabeM, Berzofsky JA. Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 2004; 16:157-162.
    38. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003; 9:606-612.
    39. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003; 4: 1206-1212.
    40. Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood.2006; 107:2846-2854.
    41. Munn DH, Sharma, MD, Mellor AL. Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 2004; 172:4100-4110.
    42. Finger EB, Bluestone JA. When ligand becomes receptor-tolerance via B7 signaling on DCs. Nat Immunol 2002; 3:1056-1057.
    43.Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117: 2570-2582.
    44. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005; 22:633-642.
    45. Wang J, Ioan-Facsinay A, van der Voort El, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 2007; 37:129-138.
    46. Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A, et al. Single-cell analysis of normal and FOXP3-mutant human T cells:FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A 2006; 103:6659-6664.
    47. Zhu L, Ji F, Wang Y, Zhang Y, Liu Q, Zhang JZ,et al. Synovial Autoreactive T Cells in Rheumatoid Arthritis Resist IDO-Mediated Inhibition. J Immunol 2006; 177:8226-8233.
    48. Boasso A, Herbeuval JP, Hardy AW, Winkler C, Shearer GM. Regulation of indoleamine 2,3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood 2005; 105:1574-1581.
    49. Murray MF. Tryptophan depletion and HIV infection:a metabolic link to pathogenesis. Lancet Infect Dis 2003; 3:644-652.
    Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Gobel G, Margreiter R, Konigsrainer A, Fuchs D, Amberger A (2006) Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer:effect on tumor-infiltrating T cells. Clin Cancer Res 12:1144-1151
    Curti A, Pandolfi S, Valzasina B, Aluigi M, Isidori A, Ferri E, Salvestrini V, Bonanno G, Rutella S, Durelli I, Horenstein AL, Fiore F, Massaia M, Colombo MP, Baccarani M, Lemoli RM (2007) Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+ T regulatory cells. Blood 109:2871-2877
    Dunn GP, Koebel CM, Schreiber RD (2006) Interferons Immunity and cancer immunoediting. Nat Rev Immunol 6:836-848
    Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206-1212
    Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459-468
    Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan:much ado about IDO. Trends Immunol 24:242-248
    Hoshi M, Ito H, Fujigaki H, Takemura M, Takahashi T, Tomita E, Ohyama M, Tanaka R, Saito K, Seishima M (2009) Indoleamine 2,3-dioxygenase is highly expressed in human adult T-cell leukemia/lymphoma and chemotherapy changes tryptophan catabolism in serum and reduced activity. Leuk Res 33:39-45
    Ino K, Yoshida N, Kajiyama H, Shibata K, Yamamoto E, Kidokoro K, Takahashi N, Terauchi M, Nawa A, Nomura S, Nagasaka T, Takikawa O, Kikkawa F (2006) Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer 95:1555-1561
    Kudo Y, Boyd CA, Spyropoulou I, Redman CW, Takikawa O, Katsuki T, Hara T, Ohama K, Sargent IL. (2004) Indoleamine 2,3-dioxygenase:distribution and function in the developing human placenta. J Reprod Immunol 61:87-98
    Lee JR, Dalton RR, Messina JL, Sharma MD, Smith DM, Burgess RE, Mazzella F, Antonia SJ, Mellor AL, Munn DH (2003) Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest 83:1457-1466
    Mahnke K, Qian Y, Knop J, Enk AH (2003) Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101:4862-4869
    Mellor AL, Munn DH (1999) Tryptophan catabolism and T-cell tolerance:immunosuppression by starvation? Immunol Today 20:469-473
    Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Binl, potentiates cancer chemotherapy. Nat Med 11:312-319
    Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191-1193
    Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280-290
    Okamoto A, Nikaido T, Ochiai K, Takakura S, Saito M, Aoki Y, Ishii N, Yanaihara N, Yamada K, Takikawa O, Kawaguchi R, Isonishi S, Tanaka T, Urashima M (2005) Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin Cancer Res 11:6030-6039
    Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570-2582
    Thorstenson KM, Khoruts A(2001) Generation of anergic and potentially immunoregulatory CD25+CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol 167:188-195
    Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269-1274
    Yoshida R, Hayaishi O (1978) Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc Natl Acad Sci USA 75:3998-4000
    Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6: 295-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700