烷烃催化裂解制低碳烯烃反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相比于以热反应为基础的传统的蒸汽裂解工艺,石脑油催化裂解以其低能耗、低二氧化碳排放量和良好的高附加值产物选择性等方面的优势,成为低碳烯烃生产的重要“后备军”。烷烃作为直馏石脑油的主要组分,是蒸汽裂解工艺生产低碳烯烃的理想原料。然而,在催化裂解反应条件(较温和)下,它的反应活性很低,是石脑油催化裂解所面临的问题之一。本论文主要针对烷烃催化裂解存在的难题,以正庚烷为模型化合物,开展了一系列的研究工作。
     正庚烷在以HZSM-5为活性组分的催化剂上反应,以五配位正碳离子的形成为前提的质子化裂解路径发挥了重要作用,导致了产物中C_3/C_4摩尔比值大于1,且大于相近转化率下1-庚烯裂解的该比值;在新鲜催化剂上,高转化率的获得伴随着大量氢转移反应的发生,液化气中烯烃度低;HZSM-5催化剂经过水热处理后,其表面酸量减少,尤其是强B酸,正庚烷的转化率迅速下降,氢转移反应的减少,液化气中的烯烃度提高。
     本文将含有晶格氧的金属氧化物催化剂引入到HZSM-5平衡剂中,以提高正庚烷的裂解反应活性,这种通过晶格氧氧化活化来提高烷烃反应活性的办法,可以克服通过增加催化剂的酸性而提高烷烃反应活性时所带来的增加氢转移反应和降低液化气中烯烃度的弊端。选用V_2O_5/Al_2O_3为晶格氧催化剂,它的引入能够提高正庚烷的转化率、丙烯和丁烯相对于乙烯的选择性和丁烯混合物中异丁烯的含量;在固定床反应器中,正庚烷转化率能够提高30%,丙烯收率可以增加约4个百分点;在循环流化床反应器中,转化率可以提高90%左右,丙烯收率可增加约8个百分点。
     利用脉冲式固定床微反-色谱联用装置对V_2O_5/Al_2O_3的引入对于正庚烷初始反应的影响进行了研究。结果表明,引入V_2O_5/Al_2O_3可提高正庚烷在HZSM-5平衡剂上的转化速率,并改变了初始产物选择性,推测V_2O_5/Al_2O_3的存在为正庚烷催化裂解的初始反应提供了另一条路径。
     在固定床反应装置上,通过设计不同的反应方式和催化剂性质的表征,对V_2O_5/Al_2O_3发挥影响的活性位和可能的反应机理进行了探讨。反应过程中,V_2O_5/Al_2O_3表面部分V~(5+)被还原,晶格氧参与了反应,产物中出现CO和H_2O等氧化物。连续反应中,V_2O_5/Al_2O_3表面晶格氧逐渐被消耗,它对于反应的促进作用逐渐消失,表面晶格氧的参与行为对于V_2O_5/Al_2O_3对反应体系的影响有着直接的关系,经过再氧化后,V_2O_5/Al_2O_3的促进作用得以恢复,晶格氧的作用被再次确认。在HZSM-5平衡剂和V_2O_5/Al_2O_3组成的混合催化剂体系中,前者提供了正庚烷裂解反应的酸性活性位,仍然是反应的主要活性来源,V_2O_5/Al_2O_3的存在,提供了晶格氧活性中心,促进了正庚烷的初始反应速率,提高了烷烃的反应活性。在二者的共同作用下,正庚烷分子倾向于先与V_2O_5/Al_2O_3相互作用,活化产生的某中间物种在HZSM-5催化剂的酸性中心上发生裂解,并通过链传递促进其他正庚烷分子的裂解反应。
Compared with the conventional steam cracking process, which was dominated by thermal cracking reactions, catalytic cracking of naphtha is advantangeous in lower energy consumption and carbon dioxide emission, higher selectivity to high-valued-compound products. Consequently, it is a competitive alternative for light olefin production. Paraffin, as main constituent of straight-run naphtha, is a perfect feedstock for steam cracking process of light olefin production. However, it is difficult to crack under mild conditions, posing a difficulty for the catalytic cracking process. This thesis focuses on difficulty confronted by catalytic cracking of paraffin; n-heptane was selected as model compound and series of related research work were performed.
     Protolytic cracking route, based on formation of penta-coordinated carbonium, played an important role in the initiation step during catalytic cracking of n-heptane over HZSM-5 catalyst. It caused that C3/C4 molar ratio was higher than 1 and the ratio of 1-heptene cracking with similar conversion. Over fresh catalyst, high conversion was achieved, accompanied by low light olefin selectivity, due to occurrences of hydrogen transfer reactions. After hydrothermal treatment, surface acidity decreased, especially the strong Bronsted acid sites, thus conversion of n-heptane declined significantly, light olefin selectivity was improved.
     The paper proposed to introduce reducible metal oxide containing lattice oxygen into HZSM-5 equlibrium catalyst, to improve reactivity of paraffin. This method can overcome the contradiction between conversion and light olefin selectivity brought by adjusting catalyst acidity. V_2O_5/Al_2O_3 was selected as catalyst for providing lattice oxygen; conversion of n-heptane, relative selectivity of propylene plus butylene to ethylene, and content of i-butylene in butylenes could be improved by V_2O_5/Al_2O_3; in fixed bed reactor, conversion of n-heptane could be improved by 30%, and propylene yield was about 4 percentages higher; in circulating fluidized bed unit, conversion could be improved by about 90%, and propylene yield was about 8 percentages higher.
     Influences of V_2O_5/Al_2O_3 on initiation reaction of n-heptane were investigated in a micro fixed bed reactor chromatography unit by pulse injection. The results demonstrated that V_2O_5/Al_2O_3 introduction improved reaction rate of n-heptane over equilibrium HZSM-5 catalyst and changed initial product selectivities, its presence provided another route for initiation reaction of n-heptane cracking.
     In fixed bed reactor, active sites of V_2O_5/Al_2O_3 and possible reaction mechanism were studied by designing different reacton modes and catalyst characterization. During the reaction, part of the V~(5+) on the surface of V_2O_5/Al_2O_3 was reduced, and lattice oxygen participated into the reaction, leading to formation of CO and H2O product. In continuous reaction, surface lattice oxygen was consumed and the promotion effects disappeared progressively, its participation behaviors were directly responsible for the influences brought by V_2O_5/Al_2O_3; role of lattice oxygen was further confirmed by recovery of V_2O_5/Al_2O_3 activity after oxidation. In the catalyst system composed of HZSM-5 catalyst and V_2O_5/Al_2O_3, the former remained primary active sites for n-heptane cracking; V_2O_5/Al_2O_3 functioned as lattice oxygen supplier, it promoted initial reaction rate and improved reactivity of paraffin. Under coactions of the two catalysts, it was favorable for n-heptane to interact with V_2O_5/Al_2O_3 and generate some active intermediate species before cracking over acidic sites in HZSM-5 catalyst; the cracked products could further promote cracking of other n-heptane molecules by chain transfer reactions.
引文
[1]陈乐怡.世界丙烯工业进展与展望[J].中外能源, 2009,14(3):66-70
    [2]薛祖源.加快国内丙烯生产和发展的探讨(一)[J].乙烯工业, 2007,19(4):1-7
    [3] Ren T., Patel M., Blok K. Olefins from Conventional and Heavy Feedstocks: Energy Use in Steam Cracking and Alternative Processes[J]. Energy, 2006,31(4):425-451
    [4]李蕴玲.石脑油催化裂解生产低碳烯烃[J].国外石油化工快报, 2001,32(1):13-19
    [5]杨丽静,田松柏,田辉平.催化裂化多产丙烯催化剂研究进展[J].石化技术与应用, 2006,24(4):319-322
    [6]王巍,谢朝钢.催化裂解(DCC)新技术的开发与应用[J].石油化工技术经济, 2005,21(1):8-13
    [7]李春义,袁起民,陈小博,等.两段提升管催化裂解多产丙烯研究[J].中国石油大学学报(自然科学版), 2007,31(1):118~121
    [8] Picciotti M. Novel Ethylene Technology Developing, but Steam Cracking Remains King [J].Oil & Gas Journal, 1997,95(25):53-58
    [9]罗承先.日本成功开发石脑油催化裂解工艺[J].石油化工动态.2000, 8(3):17
    [10] Naphtha Cracking Process: More Propylene with Less Energy[J]. Chemical Engineering, 2000,107(4):17
    [11] New Technology. LG Develops Catalytic Naphtha Cracking Process[J]. Focus on Catalysts, 2002,2002(7):5
    [12] Catalytic Olefins Process Widens Feedstock Slate[J]. European Chemical News, 1996,65(1710):24
    [13] Jeong S. M., Chae J. H., Lee W. H. Study on the Catalytic Pyrolysis of Naphtha over a KVO3/ -Al2O3 Catalyst for Production of Light Olefins[J]. Industrial Engineering&Chemical Research, 2001,40(26):6081-6086
    [14] Jeong S. M., Chae J. H., Kang J. H., Lee S. H., et al. Catalytic Pyrolysis of Naphtha on the KVO3-based Catalyst[J]. Catalysis Today, 2002,74(3-4):257-264
    [15] Lee W.H., Jeong S. M., Chae J. H., et al. Coke Formation on KVO3-B2O3/SA5203 Catalysts in the Catalytic Pyrolysis of Naphtha[J]. Industrial Engineering&Chemical Research, 2004,43(8):1820-1826
    [16] Pant K. K., Kunzru D. Catalytic Pyrolysis of n-Heptane: Kinetics and Modeling[J]. Industrial Engineering&Chemical Research, 1997,36(6):2059-2065
    [17] Lemonidou A. A., Vasalos I. A. Preparation and Evaluation of Catalysts for the Production of Ethylene via Steam Cracking: Effect of Operating Conditions on the Performance of 12CaO-7Al2O3 Catalysts[J]. Applied Catalysis, 1989,54(1):119-138
    [18] Pollesel P., Rizzo C., Perego C., et al. Catalyst for Steam Cracking reactions and Related Preparation Process[P].US patent: 6696614B2,2004-02-24
    [19] Hayim A., Suheil F.A., Patton R. L. Catalytic Naphtha Cracking and Process[P].US patent:6867341B1,2005-05-15
    [20] Han S. Y., Lee C. W., Kim J. R., et al. Selective Formation of Light Olefins by the Cracking of Heavy Naphtha over Acid Catalysts[J]. Studies in Surface Science and Catalysis, 2004,153:157-160
    [21] Rahimi N., Karimzadeh R. Catalytic Cracking of Hydrocarbons over Modified ZSM-5 Zeolites to Produce Light Olefins: a Review[J]. Applied Catalysis A, 2010,398(1-2):1-17
    [22] Buchanan J. S. The Chemistry of Olefins Production by ZSM-5 Addition to Catalytic Cracking Units[J]. Catalysis Today, 2000,55(3):207-212
    [23] Yoshimura Y., Kijima N., Hayakawa T., et al. Catalytic Cracking of Naphtha to Light Olefins[J]. Catalysis Survey from Japan, 2000,4(2):157-167
    [24] Wei Y., Liu Z., Wang G., et al. Production of Light Olefins and Aromatic Hydrocarbons through Catalytic Cracking of Naphtha at Lowered Temperature[J]. Studies in Surface Science and Catalysis, 2005,158:1223-1230
    [25] Xue N., Liu N., Nie L., et al. 1-Butene Cracking to Propene over P/HZSM-5: Effect of Lanthanum[J]. Journal of Molecular Catalysis A, 2010,327(1-2):12-19
    [26] Shi Z. Cracking Catalyst for the Production of Light Olefins[P]. US Patent:5380690,1995-01-10
    [27] Li Z. Process for producing light Olefins by Catalytic Conversion of Hydrocarbons[P]. US Patent:5670037,1997-09-23
    [28] Wang Y. N., Guo X. W., Zhang C., et al. Influence of Calcination Temperature on the Stability of Fluorinated Nanosized HZSM-5 in the Methylation of Biphenyl[J]. Catalysis Letters, 2006,107(3-4):209–214
    [29] Feng X., Jiang G., Zhao Z.,et al. Highly Effective F-Modified HZSM-5 Catalysts for the Cracking of Naphtha to Produce Light Olefins[J]. Energy&Fuel, 2010,24(8):4111–4115
    [30] Mao R. L. V., T. S. Le, Fairbairn M., et al. ZSM-5 Zeolite with Enhanced Acidic Properties[J]. Applied Catalysis A, 1999,185(1):41–52
    [31] Wang X., Zhao Z., Xu C., et al. Effects of Light Rare Earth on Acidity and Catalytic Performance of HZSM-5 Zeolite for Catalytic Cracking of Butane to Light Olefins[J]. Journal of Rare Earths, 2007,25(3):321-328
    [32] Hartford R. W., Kojima M., O'Connor C. T. Lanthanum Ion Exchange on HZSM-5[J]. Industrial Engineering&Chemstry Research, 1989,28(12):1748-1752
    [33] Lu J., Zhao Z., Xu C., et al. FeHZSM-5 Molecular Sieves-Highly Active Catalysts for Catalytic Cracking of Isobutane to Produce Ethylene and Propylene[J]. Catalysis Communication, 2006,7(4):199-203
    [34] Wakui K., Satoh K., Sawada G., et al. Dehydrogenative Cracking of n-Butane using Double-Stage Reaction[J]. Applied Catalysis A, 2002,230(1-2):195-202
    [35] Jung J. S., Park J. W., Seo G. Catalytic Cracking of n-Octane over Alkali-Treated MFI Zeolites[J]. Applied Catalysis A, 2005,288(1-2):149-157
    [36] Li Y., Liu D., Liu S., et al. Thermal and Hydrothermal Stabilities of the Alkali-Treated HZSM-5 Zeolites[J]. Journal of Natural Gas Chemistry, 2008,17(1):69-74
    [37] [37]Wakui K., Satoh K., Sawada G., et al. Dehydrogenative Cracking of n-Butane over Modified HZSM-5 Catalysts[J]. Catalysis Letters, 2002, 81(1-2):83-88
    [38] Mao R. L. V., Al-Yassir N., Nguyen D. T. T. Experimental Evidence for the Pore Continuum in Hybrid Catalysts Used in the Selective Deep Catalytic Cracking of n-Hexane and Petroleum Naphthas[J]. Microporous and Mesoporous Materials, 2005,85(1-2):176-182
    [39]李丽,高金森,徐春明,等.催化裂解过程及其裂解产物分布的影响因素分析[J].石油与天然气化工, 2003,32(6):351-354
    [40]陈俊武,曹汉昌.催化裂化工艺与工程[M].1995:155
    [41] Corma A., Planelles J., Sánchez-Marín J., et al. The role of different types of acid site in the cracking of alkanes on zeolite catalysts [J].Journal of catalysis, 1985,93(1):30-37
    [42]滕加伟,赵国良,谢在库,等. ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响[J].催化学报, 2004,25(8):602-606
    [43]吉媛媛,王焕茹,满毅,等. ZSM-5分子筛晶粒尺寸对石脑油催化裂解性能的影响[J].石油化工, 2010,39(8):844-848
    [44]张领辉,李再婷,许友好.不同晶粒大小的ZSM-5分子筛催化剂的裂化反应差异[J].石油炼制与化工, 1995,25(10):38-43
    [45] Herrmann C., Haas J., Fetting F. Effect of the Crystal Size on the Activity of ZSM-5 Catalysts in Various Reactions[J]. Applied Catalysis, 1987,35(2):299-310
    [46] Buchanan J. S. Reactions of Model Compounds over Steamed ZSM-5 at Simulated FCC Reaction Conditions[J]. Applied Catalysis, 1991,74(1):83-94
    [47] Thomas C. L. Chemistry of Cracking Catalysts[J]. Industrial&Engingeering Chemistry, 1949,41(11):2564-2573
    [48] Greensfelder B. S., Voge H. H., Good G. M. Catalytic and Thermal Cracking of Pure Hydrocarbons[J]. Industrial&Engingeering Chemistry, 1949,41(11):2573-2584
    [49]何奕工,舒兴田,龙军.正碳离子和相关的反应机理[J].石油学报(石油加工), 2007,23(4):1-7
    [50] Hiraoka K., Kebarle P. Stabilities and Energetics of Pentacoordinated Carbonium Ions[J]. Journal of the American Chemical Society, 1976,98 (20):6119-6125
    [51] Wielers A. F. H., Vaarkamp M., Post M. F. M. Relation between Properties and Performance of Zeolite in Paraffin Cracking[J].Journal of Catalysis, 1991,127(1):51-66
    [52] Pansing W. F. The Catalytic Cracking of Hexadecane-Effects of Impurities, Olefins, and Steam[J]. The Journal of Physical Chemistry, 1965,69(2):392-399
    [53] Brait A., Koopmans A., Weinstabl H., etal. Hexadecane Conversion in the Evaluation of Commercial Fluid Catalytic Cracking Catalysts[J]. Industrial Engineering&Chemistry Research, 1998,37(3):873-881
    [54] Tung S. E., McIninch E. Zeolitic Aluminosilicate: I. Surface Ionic Ddiffusion, Dynamic Field, and Catalytic Activity with Hexane on CaY[J]. Journal of Catalysis, 1968,10(2):166-174
    [55] Olah G. A., Lukas J. Stable Carbonium Ions. XXXIX.1 Formation of Alkylcarbonium Ions via Hydride Ion Abstraction from Alkanes in Fluorosulfonic Acid-Antimony Pentafluoride Solution. Isolation of Some Crystalline Alkylcarbonium Ion Salts[J].Journal of the American Chemical Society, 1967,89(9):2227-2235
    [56] Olah G. A., Comisarow M. B., Namanworth E., et al. Stable Carbonium Ions. XXXI. p-Anisonium and Methylphenonium Ion-Formation via Aryl Participation in Strong Acid Solution[J]. Journal of the American Chemical Society, 1967,89(20):5259–5265
    [57] Olah G. A., Klopman G., Super acids. III. Protonation of Alkanes and Intermediacy of Alkanonium Ions, Pentacoordinated Carbon cations of CH5+ type. Hydrogen Exchange, Protolytic Cleavage, Hydrogen Abstraction; Polycondensation of Methane, Ethane, 2,2-Dimethylpropane and 2,2,3,3-Tetramethylbutane in FSO3H-SbF5[J]. Journal of the American Chemical Society, 1969,91(12):3261-3267
    [58] Brenner A., Emmett P. H. Dehydrogenation—the First Step in the Cracking of Isopentane over Silica-Alumina Cracking Catalysts[J]. Journal of Catalysis, 1982,75(2):410-415
    [59] McVicker G. B., Kramer G. M., Ziemiak. J. J. Conversion of Isobutane over Solid Acids- A Sensitive Mechanistic Probe Reaction[J]. Journal of Catalysis, 1983,83(2):286-300
    [60] Bizreh Y. W., Gates B. C. Butane Cracking Catalyzed by the Zeolite H-ZSM-5[J]. Journal of Catalysis, 1984,88(1):240-243
    [61] Datka J., Boczar M., Rymarowicz P. Heterogeneity of OH groups in NaH-ZSM-5 Zeolite Studied by Infrared Spectroscopy[J]. Journal of Catalysis, 1988,114(2):368-376
    [62] Narbeshuber T. F., Vinek H., Lercher J. A. Monomolecular Conversion of Light Alkanes over H-ZSM-5[J]. Journal of Catalysis, 1995,157(2):388-395
    [63] Lercher J. A., Santen R. A. van, Vinek H. Carbonium Ion Formation in Zeolite Catalysis[J]. Catalysis Letters, 1994,27(1-2):91-96
    [64] Krannila H., Haag W. O., Gates B. C. Monomolecular and Bimolecular Mechanisms of Paraffin Cracking: n-butane Cracking Catalyzed by HZSM-5[J]. Journal of Catalysis, 1992,135(1):115-124
    [65] Bandiera J., Taarit Y. B. Catalytic Investigation of the Dehydrogenation Properties of Pentasil Type Zeolites as compared with their Cracking Properties[J]. Applied Catalysis, 1990,62(1):309-316
    [66] Kwak B. S., Sachtler W. M. H. Effect of Ga/Proton Balance in Ga/HZSM-5 Catalysts on C3 Conversion to Aromatics[J]. Journal of Catalysis, 1994,145(2):456-463
    [67] Cheung T. K., Lange F. C., Gates. B. C. Propane Conversion Catalyzed by SulfatedZirconia, Iron- andManganese-Promoted Sulfated Zirconia, and USY Zeolite[J]. Journal of Catalysis, 1996,159(1):99-106
    [68] Stefanadis C., Gates B. C., Haag W. O. Rates of Isobutane Cracking Catalysed by HZSM-5: The Carbonium Ion Route[J]. Journal of Molecular Catalysis, 1991,67(3):363-367
    [69] Blaszkowski S. R., Nascimento M. A. C., Santen R. A. van. Activation of C-H and C-C Bonds by an Acidic Zeolite: A Density Functional Study [J]. The Journal of Physical Chemistry, 1996,100(9):3463-3472
    [70] Lombardoa E. A., Plerantozzi R., Hall W. K. The Mechanism of Neopentane Cracking over Solid Acids [J]. Journal of Catalysis, 1988,110(1):171-183
    [71] Corma A., Miguel P. J., Orchilles A. V. The Role of Reaction Temperature and Cracking Catalyst Characteristics in Determining the Relative Rates of Protolytic Cracking, Chain Propagation, and Hydrogen Transfer[J]. Journal of Catalysis, 1994,145(1):171-180
    [72] Shertukde P. V., Marcelin G., Sill G. A., Hall W. K. Study of the Mechanism of the Cracking of Small Alkane Molecules on HY Zeolites[J]. Journal of Catalysis, 1992,136(2):446-462
    [73] Engelhardt J., Hall W. K. Contribution to the Understanding of the Reaction Chemistry of Isobutane and Neopentane over Acid Catalysts I.[J]. Journal of Catalysis, 1990,125(2):472-487
    [74] Riekert L., Zhou J. Q. Kinetics of Cracking of n-Decane and n-Hexane on Zeoiites H-ZSM-5 and HY in the Temperature Range 500 to 780 K[J]. Journal of Catalysis, 1992,137(2):437-452
    [75] Lukyanov D. B., Shtral V. I., Khadzhiev S. N. A Kinetic Model for the Hexane Cracking Reaction over H-ZSM-5[J]. Journal of Catalysis, 1994, 146(1):87-92
    [76] Mirodatos C., Barthomeuf D. Cracking of n-Decane on Zeolite Catalysts: Enhancement of Light Hydrocarbon Formation by the Zeolite Field Gradient[J]. Journal of Catalysis, 1988,114 (1):121-135
    [77]阎立军,傅军,何鸣元.正己烷在分子筛上的裂化反应机理研究.Ι.正己烷的裂化反应链长[J].石油学报(石油加工), 2000,16(3):15-25
    [78]陈建九,史海英,汪泳.丙烷脱氢制丙烯工艺技术[J].精细石油化工进展,2000,1(12):23-28
    [79]张一卫,周钰明,许艺,等.丙烷临氢脱氢催化剂的研究进展[J].化工进展, 2005,24(7):729-732
    [80] Grabowski R. Kinetics of Oxidative Dehydrogenation of C2-C3 Alkanes on Oxide Catalysts[J]. Catalysis Review, 2006,48(2):199-268
    [81] Swaan H. M., Toebes A., Seshan K., et al. The Kinetic and Mechanistic Aspects of the Oxidative Dehydrogenation of Ethane over Li/Na/MgO Catalysts[J]. Catalysis Today, 1992,13(2-3):201-208
    [82] Trionfetti C., Babich I. V., Seshan K., et al. Formation of High Surface Area Li/MgO- Efficient Catalyst for the Oxidative Dehydrogenation/Cracking of Propane[J]. Applied Catalysis A, 2006,310(1):105-113
    [83] Yamamoto H., Chu H. Y., Xu M. T., et al. Oxidative Coupling of Methane over a Li+/MgO Catalyst Using N2O as an Oxidant[J]. Journal of Catalysis, 1993,142(1):325-336
    [84] Lunsford J. H., Hinson P. G., Rosynek M. P., et al. The Effect of Chloride Ions on a Li+-MgO Catalyst for the Oxidative Coupling of Methane[J]. Journal of Catalysis, 1994,147(1):301-310
    [85] Smirniotis P. G., Zhang W. Study of the Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4 over Li/MgO Catalysts[J]. Applied Catalysis A, 1999,176(1):63-73
    [86] Bothe-Almquist C. L., Ettireddy R. P., Bobst A., et al. An XRD, XPS and EPR Study of Li/MgO Catalysts: Case of the Oxidative Methylation of Acetonitrile to Acrylonitrile with CH4[J]. Journal of Catalysis, 2000,192(1):174-184
    [87] Balint I., Aika K. Interaction of water with 1% Li/MgO: dc Conductivity of Li/MgO Catalyst for Methane Selective Activation[J]. Journal of the Chemical Society, Faraday Transactions, 1995,91(12):1805-1811
    [88] Ito T., Wang J. X., Lin C. H., et al. Oxidative Dimerization of Methane over a Lithium-Promoted Magnesium Oxide Catalyst[J]. Journal of the American Chemical Society, 1985,107(18):5062-5068
    [89] Shi C., Hatano M., Lunsford J. H. A Kinetic Model for the Oxidative Coupling ofMethane over Li+/MgO Catalysts[J]. Catalysis Today, 1992,13(2-3):191-199
    [90] Landau M. V., Kaliya M. L., Gutman A., et al. Oxidative Conversion of LPG to Olefins with Mixed Oxide Catalysts: Surface Chemistry and Reactions Network[J]. Studies in Surface Science and Catalysis, 1997,110:315-326
    [91] Wang D. J., Rosynek M. P., Lunsford J. H. The Effect of Chloride Ions on a Li+-MgO Catalyst for the Oxidative Dehydrogenation of Ethane[J]. Journal of Catalysis, 1995,151(1):155-167
    [92] Fuchs S., Leveles L., Seshan K., Lefferts L., et al. Oxidative dehydrogenation and cracking of ethane and propane over LiDyMg mixed oxides[J]. Topics in Catalysis, 2001,15(2-4):169-174
    [93] Leveles L., Fuchs S., Seshan K., et al. Oxidative Conversion of Light Alkanes to Olefins over Alkali Promoted Oxide Catalysts[J]. Applied Catalysis A, 2002,227(1-2):287-297
    [94] Conway S. J., Wang D. J., Lunsford J. H. Selective Oxidation of Methane and Ethane over Li+-MgO-Cl? Catalysts Promoted with Metal Oxides[J]. Applied Catalysis, 1991,79(1):L1~L5
    [95] Gaab S., Machli M., Find J., et al. Oxidative Dehydrogenation of Ethane Over Novel Li/Dy/Mg Mixed Oxides: Structure-Activity Study[J]. Topics in Catalysis, 2003,23(1-4):151-158
    [96] Argyle M. D., Chen K., Bell A. T., et al. Effect of Catalyst Structure on Oxidative Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia[J]. Journal of Catalysis, 2002,208(1):139-149
    [97] Kung H. H. Oxidative Dehydrogenation of Light (C2 to C4) Alkanes[J]. Advances in Catalysis, 1994,40(1):1-38
    [98] Contractor R. M. Improved Vapor Phase Catalytic Oxidation of Butane to Maleic Anhydride[P]. US Patent: 4668802,1987-05-26
    [99] Abon M., Volta J.-C. Vanadium Phosphorus Oxides for n-butane Oxidation to Maleic Anhydride[J]. Applied Catalysis A, 1997,157(1-2):173-193
    [100] Centi G., Perathoner S., Trifirb F. V-Sb-Oxide Catalysts for the Ammoxidation of Propane[J]. Applied Catalysis A, 1997, 157(1-2):143-172
    [101] Shishido T., Konishi T., Matsuura I., et al. Oxidation and Ammoxidation of Propaneover Mo–V–Sb Mixed Oxide Catalysts[J]. Catalysis Today, 2001,71(1-2):77-82
    [102] Isaguliants G.V., Belomestnykh I. P. Selective Oxidation of Methanol to Formaldehyde over V–Mg–O Catalysts[J]. Catalysis Today, 2005,100(3-4):441-445
    [103] Haber J. Fifty Years of my Romance with Vanadium Oxide Catalysts[J]. Catalysis Today, 2009,142(3-4):100-113
    [104] Chaar1 M. A., Patel D., Kung M. C., Kung H. H. Selective Oxidative Dehydrogenation of Butane over V-Mg-O Catalysts[J]. Journal of Catalysis, 1987,105(2):483-498
    [105] Hanuza J., B. Je?owska-Trzebiatowska, Oganowski W. Structure of the Active Layer and Catalytic Mechanism of the V2O5/MgO Catalysts in the Oxidative Dehydrogenation of Ethylbenzene to Styrene[J]. Journal of Molecular Catalysis, 1985,29(1):109-143
    [106] Holgado M. J., Román S. S., Malet P., et al. Effect of the Preparation Method on the Physicochemical Properties of Mixed Magnesium-Vanadium Oxides[J]. Materials Chemistry and Physics, 2005, 89(1):49-55
    [107] Sam D. S. H., Soenen V., Volta J. C. Oxidative Dehydrogenation of Propane over V-Mg-O Catalysts[J]. Journal of Catalysis, 1990,123(2):417-435
    [108] Corma A., Nieto J. M. L., Paredes N. Influence of the Preparation Methods of V-Mg-O Catalysts on Their Catalytic Properties for the Oxidative Dehydrogenation of Propane[J]. Journal of Catalysis, 1993,144 (2):425-438
    [109] Michalakos P. M., Kung M. C., Jahan I., et al. Selectivity Patterns in Alkane Oxidation over Mg3(VO4)2-MgO, Mg2V2O7, and (VO)2P2O7[J]. Journal of Catalysis, 1993,140(1):226-242
    [110] Kung M. C., Kung H. H. Oxidative Dehydrogenation of Cyclohexane over Vanadate Catalysts[J]. Journal of Catalysis, 1991,128(1):287-291
    [111] Gao X. T., Ruiz P., Xin Q., et al. Effect of Coexistence of Magnesium Vanadate Phases in the Selective Oxidation of Propane to Propene[J]. Journal of Catalysis, 1994,148(1):56-57
    [112] Kung H. H., Kung M. C. Oxidative Dehydrogenation of Alkanes over Vanadium -Magnesium-Oxides[J]. Applied Catalysis A, 1997,157(1):105-116
    [113] Kung M. C., Kung H. H. The Effect of Potassium in the Preparation of MagnesiumOrthovanadate and Pyrovanadate on the Oxidative Dehydrogenation of Propane and Butane[J]. Journal of Catalysis, 1992,134(2):668-677
    [114] Harding W. D., Kung H. H., Kozhevnikov V. L., et al. Phase Equilibria and Butane Oxidation Studies of the MgO-V2O5-MoO3 System[J]. Journal of Catalysis, 1993,144(2):597-610
    [115] Dejoz A., Nieto J. M. L., Márquez F., et al. The Role of Molybdenum in Mo-doped V–Mg–O Catalysts during the Oxidative Dehydrogenation of n-butane[J]. Applied Catalysis A, 1999,180(1):83-94
    [116] Stern D. L., Michaels J. N., Decaul L. et al. Oxydehydrogenation of n-Butane over Promoted Mg-V-Oxide Based Catalysts[J]. Applied Catalysis A, 1997,153(1):21-30
    [117] Klisińska A., Samson K., Gressel I., et al. Effect of Additives on Properties of V2O5/SiO2 and V2O5/MgO Catalysts: I. Oxidative Dehydrogenation of Propane and Ethane[J]. Applied Catalysis A, 2006,309(1):10-16
    [118] Blasco T., Nieto J. M. L.Oxidative Dehydrogenation of Short Chain Alkanes on Supported Vanadium Oxide Catalysts[J]. Applied Catalysis A, 1997,157(1):117-142
    [119] Wachs I. E., Weckhuysen B. M. Structure and Reactivity of sSurface Vanadium Oxide Species on Oxide Supports[J]. Applied Catalysis A, 1997,157(1):67-90
    [120] Machli M., Heracleous E., Lemonidou A. A. Effect of Mg Addition on the Catalytic Performance of V-based Catalysts in Oxidative Dehydrogenation of Propane[J]. Applied Catalysis A, 2002,236(1-2):23-24
    [121] Concepcion P., Galli A., Nieto J. M. L., et al. On the Influence of the Acid-Base Character of Catalysts on the Oxidative Dehydrogenation of Alkanes[J]. Topics in Catalysis, 1996,3(3-4):451-460
    [122] Lemonidou A. A., Nalbandian L., Vasalos I. A. Oxidative Dehydrogenation of Propane over Vanadium Oxide Based Catalysts: Effect of Support and Alkali Promoter[J]. Catalysis Today, 2000,61(1-4):333-341
    [123] Arena F., Frusteri F., Parmaliana A. How Oxide Carriers Aaffect the Reactivity of V2O5 Catalysts in the Oxidative Dehydrogenation of Propane[J]. Catalysis Letters, 1999,60(1-2):59-63
    [124] Wachs I. E. Raman and IR Studies of Surface Mmetal Oxide Species on OxideSupports: Supported Metal Oxide Catalysts[J]. Catalysis Today, 1996,27(3-4):437-455
    [125] N. Das, H. Eckert, H. Hu, et al. Bonding States of Surface Vanadium(V) Oxide Phases on Silica: Structural Characterization by Vanadium-51 NMR and Raman Spectroscopy[J]. The Journal of Physical Chemistry, 1993,97(31):8240-8243
    [126] Went G. T., Oyama S. T., Bell A.T. Laser Raman Spectroscopy of Supported Vanadium Oxide Catalysts[J]. The Journal of Physical Chemistry, 1990,94(10):4240-4246
    [127] Costumer L.R. L., Taouk B., Meur M. L., et al. Characterization by Vanadium-51 Solid-State NMR, Laser Raman, and X-Ray Photoelectron Spectroscopy of Vanadium Species Deposited on Gamma-Al2O3[J]. The Journal of Physical Chemistry, 1988,92(5):1230-1235
    [128] Hazenkamp M. E., Blasse G. A Luminescence Spectroscopy Study on Supported Vanadium and Chromium Oxide Catalysts[J]. The Journal of Physical Chemistry, 1992,96(8):3442-3446
    [129] Concepci?n P., Nieto J. M. L., P?rez-Pariente J. Oxidative Dehydrogenation of Ethane on a Magnesium-Vanadium Aluminophosphate(MgVAPO-5) Catalyst[J]. Catalysis Letters, 1994,28(1-2):9-15
    [130] Blasco T., Concepci?n E., Nieto J. M. L., et al. Preparation, Characterization, and Catalytic Properties of VAPO-5 for the Oxydehydrogenation of Propane[J]. Journal of Catalysis, 1995,152(1):1-17
    [131] Arco M. del, Holgado M. J., Martinez C., et al. Reactivity of Vanadia with Silica, Alumina, and Titania Surfaces[J]. Langmuir, 1990,6(4):801-806
    [132] Schwarz O., Frank B., Hess C., et al. Characterisation and Catalytic Testing of VOx/Al2O3 Catalysts for Microstructured Reactors[J]. Catalysis Communications, 2008,9(2):229-233
    [133] Grabowski R., Soczy?skia J., Grzesik N. M. Kinetics of Oxidative Dehydrogenation of Propane over V2O5/TiO2 Catalyst[J]. Applied Catalysis A, 2003,242(2):297-309
    [134] Routray K., Reddy K. R. S. K., et al. Oxidative Dehydrogenation of Propane on V2O5/Al2O3 and V2O5/TiO2 Catalysts: Understanding the Effect of Support by Parameter Estimation [J]. Applied Catalysis A, 2004,265(1):103-113
    [135]陈明树,翁维正,万惠霖,等.负载型钒基催化剂上丙烷的氧化脱氢—酸碱性及氧化还原性质对催化性能的影响[J].催化学报, 1998,11(6):542-546
    [136] Khodakov A., Olthof B., Bell A. T., et al. Structure and Catalytic Properties of Supported Vanadium Oxides: Support Effects on Oxidative Dehydrogenation Reactions[J]. Journal of Catalysis, 1999,181(1):205-216
    [137] Murgia V., Torres E. M. F., Gottifredi J. C., et al. Sol–Gel Synthesis of V2O5–SiO2 Catalyst in the Oxidative Dehydrogenation of n-Butane[J]. Applied Catalysis A, 2006,312(1):134-143
    [138] Pujol A. P., Valenzuela R. X., Fuerte A., et al. High Performance of V–Ga–O Catalysts for Oxydehydrogenation of Propane[J]. Catalysis Today, 2003,78(1-4):247-256
    [139] Cherian M., Rao M. S., Deo G. Niobium Oxide as Support Material for the Oxidative Dehydrogenation of Propane[J]. Catalysis Today, 2003,78(1-4):397-409
    [140] Concepción P., Nieto J. M. L., Pérez-Pariente J. The Oxidative Activation of Short Chain Alkanes on Microporous Metal Aluminophosphates[J]. Studies in Surface Science and Catalysis, 1995,94:681-688
    [141] Heracleous E., Machli M., Lemonidou A. A., et al. Oxidative Dehydrogenation of Ethane and Propane over Vanadia and Molybdena Supported Catalysts[J]. Journal of Molecular Catalysis A, 2005,232(1-2):29-39
    [142] Chen K., Bell A. T., Iglesia E. The Relationship between the Electronic and Redox Properties of Dispersed Metal Oxides and Their Turnover Rates in Oxidative Dehydrogenation Reactions[J]. Journal of Catalysis, 2002,209(1):35-42
    [143] Mazzocchia C., Tempesti E., Aboumrad C. Catalyst for Oxidative Dehydrogenation of Propane[P]. US Patent: 5086032, 1992-02-04
    [144] Mazzocchia C., Aboumrad C., Diagne C., et al. On the NiMoO4 Oxidative Dehydrogenation of Propane to Propene: some Physical Correlations with the Catalytic Activity[J]. Catalysis Letters, 1991,10(1-2):181-192
    [145] O. Lezla, E. Bordes, P. Courtine, Synergetic Effects in the Ni-Mo-O System: Influence of Preparation on Catalytic Performance in the Oxidative Dehydrogenation of Propane[J]. Journal of Catalysis, 1997,170(2):346-356
    [146] Pillay B., Mathebula M. R., Friedrich H. B. The Oxidative Dehydrogenation ofn-hexane over Ni–Mo–O Catalysts[J]. Applied Catalysis A, 2009,361(1):57-64
    [147] Kaddouri A., Anouchinsky R., Mazzocchia C., et al. Oxidative Dehydrogenation of Ethane on the nadβPhases of NiMoO4[J]. Catalysis Today, 1998,40(2-3):201-206
    [148] Zhang Y. J., Rodríguez-Ramos I., Guerrero-Ruiz A. Oxidative Dehydrogenation of Isobutane over Magnesium Molybdate Catalysts[J]. Catalysis Today, 2000,61(1-4):377-382
    [149] Cadus L. E., Abello M. C., Gomez M. F., et al. Oxidative Dehydrogenation of Propane over Mg-Mo-O Catalysts[J]. Industrial Engineering&Chemistry Research, 1996,35(1):14-18
    [150] Abello M. C., Gomez M. F., Cadus L. E. Oxidative Dehydrogenation of Propane over Molybdenum Supported on MgO-γ-A12O3[J]. Industrial Engineering&Chemistry Research, 1996,35(7):2137-2143
    [151]刘尧飞,新平,田福平,等.正丁烷在金属钼酸盐催化剂上的氧化脱氢[J].催化学报, 2004,25(9):721-726
    [152] Tsilomelekis G., Christodoulakis A., Boghosian S. Support Effects on Structure and Activity of Molybdenum Oxide Catalysts for the Oxidative Dehydrogenation of Ethane[J]. Catalysis Today, 2007,127(1-4):139-147
    [153] Christodoulakis A., Boghosian S. Molecular Structure and Activity of Molybdena Catalysts Supported on Zirconia for Ethane Oxidative Dehydrogenation Studied by Operando Raman spectroscopy[J]. Journal of Catalysis, 2008,260(1):178–187
    [154] Xie S., Chen K., Bell A. T., et al. Structural Characterization of Molybdenum Oxide Supported on Zirconia[J]. The Journal of Physical Chemistry B, 2000,104(43):10059-10068
    [155] Weckhuysen B. M., Jehng J. M., Wachs I. E. In Situ Raman Spectroscopy of Supported Transition Metal Oxide Catalysts: 18O2?16O2 Isotopic Labeling Studies[J].The Journal of Physical Chemistry B, 2000,104(31):7382-7387
    [156] Hu H., Wachs I. E., Bare S. R. Surface Structures of Supported Molybdenum Oxide Catalysts: Characterization by Raman and Mo L3-Edge XANES[J]. The Journal of Physical Chemistry, 1995,99(27):10897-10910
    [157] Abello M. C., Gomez M. F., Ferretti O. Mo/γ-Al2O3 Catalysts for the OxidativeDehydrogenation of Propane. Effect of Mo Loading[J]. Applied Catalysis A, 2001,207(1-2):421-431
    [158] Abello M. C., Gomez M. F., Casella M., et al. Characterization and Performance for Propane Oxidative Dehydrogenation of Li-modified MoO3/Al2O3 Catalysts[J]. Applied Catalysis A, 2003,251(2):435-447
    [159] Wan H. L., Zhou X. P., Weng W. Z., etal. Catalytic Performance, Structure, Surface Properties and Active Oxygen Species of the Fluoride-containing Rare Earth (Alkaline Earth)-based Catalysts for the Oxidative Coupling of Methane and Oxidative Dehydrogenation of Light Alkanes[J]. Catalysis Today, 1999,51(1):161-175
    [160] Corberan V. C., Valenzuela, R. X., Sulikowski B., etal. Gallium Oxide Promoted Zeolite Catalysts for Oxidehydrogenation of Propane[J]. Catalysis Today, 1996,32(1-4):193-204
    [161] Kubacka A., Wloch E., Sulikowsk B., et al. Oxidative Dehydrogenation of Propane on Zeolite Catalysts [J].Catalysis Today, 2000,61(1-4):343-352
    [162] Zanthoff H. W., Buchholz S. A., Pantazidis A., et al. Selective and Non-Selective Oxygen Species Determining the Product Selectivity in Oxidative Conversion of Propane over Vanadium Mixed Oxide Catalyst[J]. Chemical Engineering Science, 1999,54(20):4397-4405
    [163]沈师孔,闵恩泽.烃类晶格氧选择氧化[J].化学进展, 1998,10(2):137-146
    [164]朱海欧,刘雪斌,李文钊,等.碳六烃气相氧化裂解制低碳烯烃[J].石油化工, 2005,34(9):813-817
    [165]刘雪斌,徐恒泳,李文钊,等.正己烷气相氧化裂解制取低碳烯烃[J].石油学报(石油加工), 2004,20(1):88-92
    [166]朱海欧,刘雪斌,李文钊,等.十氢萘和环己烷气相氧化裂解过程的研究[J].石油学报(石油加工), 2006, 22(2): 7-13
    [167]刘雪斌,徐恒泳,李文钊,等.环己烷气相氧化裂解制低碳烯烃[J].石油化工, 2003,32(8):646-649
    [168] Liu X., Li W., Xu H., et al. A Comparative Study of Non-Oxidative Pyrolysis and Oxidative Cracking of Cyclohexane to Light Alkenes[J]. Fuel Processing Technology, 2004,86(2):151-167
    [169] Boyadjian C., Lefferts L., Seshan K. Catalytic Oxidative Cracking of Hexane as a Route to Olefins[J]. Applied Catalysis A, 2010,372(1):167–174
    [170] Boyadjian C., Veer B. van der, Babich I. V., et al. Catalytic Oxidative Cracking as a Route to Olefins: Oxidative Conversion of Hexane over MoO3-Li/MgO[J]. Catalysis Today, 2010,157(1-4):354-350
    [171] Fuchs S., Leveles L., Seshan K., et al. Oxidative Dehydrogenation and Cracking of Ethane and Propane over LiDyMg Mixed Oxides[J]. Topics in Catalysis, 2001,15(2–4):169-174
    [172] Bhumkar S. C., Lobban L. L. Diffuse Reflectance Infrared and Transient Studies of Oxidative Coupling of Methane over Li/MgO Catalyst[J]. Industrial Engineering&Chemistry Research, 1992, 31(8):1856-1864
    [173] Xu M., Shi C., Yang X., et al. Effect of Carbon Dioxide on the Activation Energy for Methyl Radical Generation over Li/MgO Catalysts[J]. The Journal of Physical Chemistry, 1992, 96(15):6395-6398
    [174] Liu X., Li W., Zhu H., et al. Light Alkenes Preparation by the Gas Phase Oxidative Cracking or Catalytic Oxidative Cracking of High Hydrocarbons[J]. Catalysis Letters, 2004, 94(1-2):31-36
    [175] Huff M., Schmidt L. D. Ethylene Formation by Ooxidative Ddehydrogenation of Ethane over Monoliths at very Short Contact Times[J]. The Journal of Physical Chemistry, 1993,97(45):11815-11822
    [176] O’Connor R. P., Klein E. J., Henning D., et al. Tuning Millisecond Chemical Reactors for the Catalytic Partial Oxidation of Cyclohexane[J]. Applied Catalysis A, 2003,238(1):29-40
    [177] Isaguliants G. V., Belomestnykh I. P. Selective Oxidation of Methanol to Formaldehyde over V–Mg–O Catalysts[J]. Catalysis Today, 2005,100(1-2):441-445
    [178] Busca G., Finocchio E., Lorenzelli V., et al. IR studies on the Activation of C-H Hydrocarbon Bonds on Oxidation Catalysts[J]. Catalysis Today, 1999, 49(4):453-465
    [179]刘学龙,张凤秋,周春艳.催化裂解与蒸汽热裂解制烯烃技术经济分析[J].石油化工技术经济, 2005,21(4):30-33
    [180]马利勇,汪洋,陈丰秋,等.烃类催化裂解制低碳烯烃催化剂[J].化学进展.2010,22(2/3):265-269
    [181] Shilov A. E., Shul’pin G. B. Activation of C-H Bonds by Metal Complexes[J]. Chemical Reviews, 1997,97(8):2879-2932
    [182] Li C. Y., Yang C. H., Shan. H. H. Maximizing Propylene Yield by Two-Stage Riser Catalytic Cracking of Heavy Oil[J]. Industrial Engineering&Chemistry Research, 2007,46(14):4914-4920
    [183]段秀华,山红红,陈小博,等. FCC轻汽油组合回炼增产丙烯的研究[J].石油学报(石油加工), 2008,24(1):28-33
    [184] Corma A., Montón J. B., Orchillés A. V. Influence of the Process Variables on the Product Distribution and Catalyst Decay during Cracking of Paraffins[J]. Applied Catalysis, 1986, 23(2):255-269
    [185] Corma A., Miguel P. J., Orchillés A. V. Influence of Hydrocarbon Chain Length and Zeolite Structure on the Catalyst Activity and Deactivation for n-Alkanes Cracking[J]. Applied Catalysis A, 1994,117(1):29-40
    [186]阎立军,傅军,何鸣元.正己烷在分子筛上的裂化反应机理研究.Ⅱ.双分子氢转移反应遵循Rideal机理[J].石油学报(石油加工), 2000,16(4):6-12
    [187] Jolly S., Saussey, J., Bettahar M. M., et al. Reaction Mechanisms and Kinetics in the n-Hexane Cracking over Zeolites[J]. Applied Catalysis A, 1997,156(1):71-96
    [188] Watson B. A., Klein M. T., Harding R. H. Mechanistic Modeling of n-Heptane Cracking on HZSM-5[J]. Industrial Engineering&Chemistry Research, 1996,35(5):1506-1516
    [189] Kissin Y. V. Chemical Mechanisms of Catalytic Cracking over Solid Acidic Catalysts: Alkanes and Alkenes[J]. Catalysis Reviews, 2001,43(1&2):85-146
    [190] Corma A., Orchillés A. V. Current Views on the Mechanism of Catalytic Cracking[J]. Microporous and Mesoporus Materials, 2000,35-36(1):21-30
    [191]龙军,魏晓丽.催化裂化生成干气的反应机理研究[J].石油学报(石油加工), 2007,23(1):1-7
    [192] Planelles J., Sanchez-Marin J., Tomás F., et al. On the Formation of Methane and Hydrogen during Cracking of Alkanes[J]. Journal of Molecular Catalysis, 1985,32(3):365-375
    [193] Abbot J., Dunstan P. R. Catalytic Cracking of Linear Paraffins: Effects of Chain Length[J]. Industrial Engineering&Chemistry Research, 1997, 36(1):76-82
    [194] Pinto R. R., Borges P., Lemos M. A. N. D. A., et al. Kinetic modelling of the catalytic cracking of n-hexane and n-heptane over a zeolite catalyst[J]. Applied Catalysis A, 2004,272(1-2):23-28
    [195] Abbot J., Wojciechowski B. W. Kinetics of catalytic cracking of n-paraffins on HY zeolite[J]. Journal of Catalysis, 1987,104(1):80-85
    [196] Tran M. T., Gnep N. S., Szabo G., et al. Comparative study of the transformation of n-butane, n-hexane and n-heptane over H-MOR zeolites with various Si/Al ratios[J]. Applied Catalysis A, 1998,170(1):49-58
    [197]柯明,汪燮卿,张凤美.高温水热处理后磷改性HZSM-5分子筛的结构变化[J].石油化工, 2005,34(3):226-232
    [198] Luo L., Lv R. Impact of Steam Treatment on Acidity and Pore Texture of HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2004,32(15):606-610
    [199] Degnan T. F., Chitnis G. K., Schipper P. H. History of ZSM25FCC Additive Development at Mobil[J]. Microporous and Mesoporus Materials, 1996,41(2):365-366
    [200]魏飞,汤效平,周华群,等.增产丙烯技术研究进展[J].石油化工, 2008,37(10):979- 986.
    [201]杨小明,罗京娥.磷氧化物改性对ZSM-5沸石物化性质及择形催化性能的影响[J].石油炼制与化工, 2001,32(11):48-51
    [202]王海彦,白英芝,魏民.催化裂解增产丙烯磷改性催化剂的研究[J].武汉工程大学学报, 2010,32(7):19-23
    [203]龙立华,万焱波,伏再辉,等.磷改性ZSM-5沸石的催化裂化性能[J].工业催化, 2004,12(5):11-15
    [204]张晓华,施岩.磷改性ZSM-5分子筛催化裂解石脑油制丙烯的性能研究[J].化学与黏合, 2010,32(4):33-36
    [205] Guiyuan Jiang, Li Zhang, Zhen Zhao, et al. Highly Effective P-modified HZSM-5 Catalyst for the Cracking of C4 Alkanes to Produce Light Olefins[J]. Applied Catalysis A, 2008,340(2):176-182
    [206] Corma A., Martínez C., Sauvanaud L. New Materials as FCC Active MatrixComponents for Maximizing Diesel (Light Cycle Oil, LCO) and Minimizing its Aromatic Content[J]. Catalysis Today, 2007,127(1-4):3-16
    [207] Corma A., Bermúdez O., Martínez C., et al. Dilution Effect of the Feed on Yield of Olefins during Catalytic Cracking of Vacuum Gas Oil[J]. Applied Catalysis A, 2002,230(1-2):111-125
    [208] Zhao Y. X., Wojciechowski B. W. The Consequences of Steam Dilution in Catalytic Cracking: I. Effect of Steam Dilution on Reaction Rates and Activation Energy in 2-Methylpentane Cracking over USHY[J]. Journal of Catalysis, 1996,163(2):365-373
    [209] Concepción P., Nieto J. M. L., Pérez-Pariente J. Oxidative Dehydrogenation of Propane on VAPO-5, V2O5/ALPO4-5 and V2O5/MgO Catalysts. Nature of Selective Sites[J]. Journal of Molecular Catalysis A, 1995,97(3):173-182
    [210] Kondratenko E. V., Brückner A. On the Nature and Reactivity of Active Oxygen Species Formed from O2 and N2O on VOx/MCM-41 Used for Oxidative Dehydrogenation of Propane[J]. Journal of Catalysis, 2010,274(1):111-116
    [211] Ge S., Liu C., Zhang S., et al. Effect of Carbon Dioxide on the Reaction Performance of Oxidative Dehydrogenation of n-Bbutane over V-Mg-O Catalyst[J]. Chemical Engineering Journal, 2003,94(2):121-126
    [212] Urlan F., Marcu I.-C., Sandulescu I. Oxidative Dehydrogenation of n-Butane over Titanium Pyrophosphate Catalysts in the Presence of Ccarbon Dioxide[J]. Catalysis Communications, 2008,9(14):2403-2406
    [213] Dury F., Centeno M. A., Gaigneaux E. M., et al. An Attempt to Explain the Role of CO2 and N2O as Gas Dopes in the Feed in the Oxidative Dehydrogenation of Propane[J]. Catalysis Today, 2003,81(2):95-105
    [214] Pérez-Ramírez J., Gallardo-Llamas A., Daniel C., et al. N2O-mediated Propane Oxidative Dehydrogenation over Fe-zeolites. TEOM Studies for Continuous Propylene Production in a Cyclically-Operated Reactor[J]. Chemical Engineering Science, 2004,59(22-23): 5532-5543
    [215] Machli M., Boudouris C., Gaab S., et al. Kinetic Modelling of the Gas Phase Ethane and Propane Oxidative Dehydrogenation[J]. Catalysis Today, 2006,112(1-4):53-59
    [216] K. D. Chen, A. Khodakov, J. Yang, et al. Isotopic Tracer and Kinetic Studies ofOxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts[J]. Journal of Catalysis, 1999,186 (2):325-333
    [217] Busca G. Infrared Studies of the Reactive Adsorption of Organic Molecules over Metal Oxides and of the Mechanisms of their Heterogeneously-Catalyzed Oxidation[J]. Catalysis Today, 1996,27(3-4):457-496
    [218] Kim T., Wachs I. E. CH3OH Oxidation over Well-Defined Supported V2O5/Al2O3 Catalysts: Influence of Vanadium Oxide Loading and Surface Vanadium–Oxygen Functionalities[J]. Journal of Catalysis, 2008,255(2):197-205
    [219] Steinfeldt N., Müller D., Berndt H. VOx Species on Alumina at High Vanadia Loadings and Calcination Temperature and Their Role in the ODP Reaction[J]. Applied Catalysis A, 2004,272(1-2):201-213
    [220] Kondratenko E.V., Baerns M. Catalytic Oxidative Dehydrogenation of Propane in the Presence of O2 and N2O—the Role of Vanadia Distribution and Oxidant Activation[J]. Applied Catalysis A, 2001,222(1-2):133-143
    [221] Nieto J. M. L., Soler J., Concepción P., et al. Oxidative Dehydrogenation of Alkanes over V-based Catalysts: Influence of Redox Properties on Catalytic Performance[J]. Journal of Catalysis, 1999,185(2):324-332
    [222] Martínez-Huerta M. V., Gao X., Tian H., et al. Oxidative Dehydrogenation of Ethane to Ethylene over Alumina-Supported Vanadium Oxide Catalysts: Relationship between Molecular Structures and Chemical Reactivity[J]. Catalysis Today, 2006,118(3-4):279-287
    [223] Wu Z., Kim H., Stair P. C., et al. On the Structure of Vanadium Oxide Supported on Aluminas: UV and Visible Raman Spectroscopy, UV?Visible Diffuse Reflectance Spectroscopy, and Temperature-Programmed Reduction Studies[J]. The Journal of Physical Chemistry B, 2005,109(7):2793-2800
    [224] Cavani F., Ballarini N., Cericola A. Oxidative Dehydrogenation of Ethane and Propane: How Far from Commercial Implementation?[J]. Catalysis Today, 2007, 127(1-4): 113-131
    [225] Sinev M. Y., Fattakhova Z. T., Tulenin Y. P. Hydrogen Formation during Dehydrogenation of C2–C4 Alkanes in the Presence of Oxygen: Oxidative orNon-Oxidative?[J]. Catalysis Today, 2003,81(2):107-116
    [226] Ballarini N., Battisti A., Cavani F., et al. The Oxygen-Assisted Transformation of Propane to COx/H2 through Combined Oxidation and WGS Reactions Catalyzed by Vanadium Oxide-based Catalysts[J]. Catalysis Today, 2006,116(3):313-323
    [227] N. Ballarini, A. Battisti, F. Cavani, et al. The Combination of Propane Partial Oxidation and of WGS Reaction in a Single Catalytic Bed, and the Self-Adapting Catalytic Properties of Vanadium Oxide Catalyst[J]. Applied Catalysis A, 2006,307(1):148-155
    [228] Saito K., Okuda K., Ikenaga N., et al. Role of Lattice Oxygen of Metal Oxides in the Dehydrogenation of Ethylbenzene under a Carbon Dioxide Atmosphere[J]. The Journal of Physical Chemistry A, 2010,114(11):3845-3854
    [229] Briand L. E., Tkachenko O. P., Guraya M., et al. Surface-Analytical Studies of Supported Vanadium Oxide Monolayer Catalysts[J]. The Journal of Physical Chemistry B, 2004,108(15):4823-4830
    [230] Suchorski Y., Rihko-Struckmann L., Klose F., et al. Evolution of Oxidation States in Vanadium-Based Catalysts under Conventional XPS Conditions[J]. Applied Surface Science, 2005,249(2):231-237
    [231] Corma A., Marie O., Ortega F. J. Interaction of Water with the Surface of a Zeolite Catalyst during Catalytic Cracking: a Spectroscopy and Kinetic Study[J]. Journal of Catalysis, 2004,222(2):338-347
    [232] Blasco T., Corma A., Martínez-Triguero J. Hydrothermal Stabilization of ZSM-5 Catalytic Cracking Additives by Phosphorus Addition[J]. Journal of Catalysis, 2006,237(2):267-277.
    [233] Zhuang J., Ma D., Yang G., et al. Solid-State MAS NMR Studies on the Hydrothermal Stability of the Zeolite Catalysts for Residual Oil Selective Catalytic Cracking[J]. Journal of Catalysis, 2004,228(1):234-242
    [234] Caeiro G., Magnoux P., Lopes J. M., et al. Stabilization Effect of Phosphorus on Steamed H-MFI Zeolites[J]. Applied Catalysis A, 2006,314(2):160-171
    [235] Klinowski J. Nuclear Magnetic Resonance Studies of Zeolites[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 1984,16(1):237-309
    [236] Deng F., Du Y., Ye C., et al. Acid Sites and Hydration Behavior of Dealuminated Zeolite HZSM-5: A High-Resolution Solid State NMR Study[J]. The Journal of Physical Chemistry, 1995,99(41):15208-15214
    [237] Kwak J. H., Hu J. Z., Kim D. H., et al. Penta-coordinated Al3+ Ions as Preferential Nucleation Sites for BaO onγ-Al2O3: An Ultra-high-magnetic Field 27Al MAS NMR Study[J]. Journal of Catalysis, 2007,251(1):189-194
    [238] Hagaman E. W., Jiao J., Chen B., et al. Surface Alumina Species on Modified Titanium Dioxide: A Solid-state 27Al MAS and 3QMAS NMR Investigation of Catalyst Supports[J]. Solid State Nuclear Magnetic Resonance, 2010,37(3-4):82-90
    [239] Lee M. H., Cheng C., Heine V., et al. Distribution of Tetrahedral and Octahedral Al Sites in Gamma Alumina[J]. Chemical Physics Letters, 1997,265(6):673-676
    [240] Lewandowska A. E., Ba?ares M. A., Ziolek M., et al. Structural and Reactive Relevance of V+Nb Coverage on Alumina of VNbO/Al2O3 Catalytic Systems[J]. Journal of Catalysis, 2008,255(1):94-103
    [241] Ekambaram S., Patil K. C. Rapid Synthesis and Properties of FeVO4, AlVO4, YVO4 and Eu3+ Doped YVO4[J]. Journal of Alloys and Compounds, 1995,217(1):104-107
    [242] Kwak J. H., Hu J., Lukaski A., et al. Role of Pentacoordinated Al3+ Ions in the High Temperature Phase Transformation ofγ-Al2O3[J]. The Journal of Physical Chemistry C 2008,112(25):9486-9492
    [243] O’Dell L. A., Savin S. L. P., Chadwick A. V., et al. A 27Al MAS NMR Study of a Sol–gel Produced Alumina: Identification of the NMR Parameters of theθ-Al2O3 Transition Alumina Phase[J]. Solid State Nuclear Magnetic Resonance, 2007,31(4):169-173
    [244] Coulston G. W., Thompson E. A., Herron N. Characterization of VPO Catalysts by X-Ray Photoelectron Spectroscopy[J]. Journal of Catalysis, 1996,163(1):122-129
    [245] Casaletto M. P., Kaciulis S., Lisi L., et al. XPS Characterisation of Iron-Modified Vanadyl Phosphate Catalysts[J]. Applied Catalysis A, 2001,218(1-2):129-137
    [246] Hoang T. Q., Zhu X., Sooknoi T., et al. A Comparison of the Reactivities of Propanal and Propylene on HZSM-5[J]. Journal of Catalysis, 2010,271(2):201-208
    [247] Gayubo A. G., Aguayo A. T., Atutxa A., et al. Transformation of OxygenateComponents of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids[J]. Industrial&Engineering Chemistry Research, 2004,43(11):2619-2626
    [248] Adjaye J. D., Bakhshi N. N. Catalytic Conversion of a Biomass-Derived Oil to Fuels and Chemicals I: Model Compound Studies and Reaction Pathways[J]. Biomass and Bioenergy, 1995,8(3):131-149
    [249] Tian H., Li C. Y., Yang C. H., et al. Alternative Processing Technology for Converting Vegetable Oils and Animal Fats to Clean Fuels and Light Olefins[J]. Chinese Journal of Chemical Engineering, 2008,16(3):394-400
    [250] Cerqueira H. S., Mihindou-Koumba P. C., Magnoux P., et al. Methylcyclohexane Transformation over HFAU, HBEA, and HMFI Zeolites: I. Reaction Scheme and Mechanisms[J]. Industrial&Engineering Chemistry Research, 2001, 40(4):1032-1041
    [251] Corma A., Monton J. B., Orchilles A.V. Cracking of n-Heptane on a HZSM-5 Zeolite. The Influence of Acidity and Pore Structure. Applied catalysis, 1985,16(1):59-74
    [252] Ko A. N., Wojciechowski B. W. On Determining the Mechanism and Kinetic of Reactions on Decaying Catalysts[J]. Progress in Reaction Kinetics and Mechanism, 1983,12(2):201-262
    [253] Grzybowska-Swierkosz B. Active Centres on Vanadia-based Catalysts for Selective Oxidation of Hydrocarbons[J]. Applied Catalysis A, 1997,157(1-2):409-420
    [254] Pak C., Bell A. T., Tilley T. D. Oxidative Dehydrogenation of Propane over Vanadia -Magnesia Catalysts Prepared by Thermolysis of OV(OtBu)3 in the Presence of Nanocrystalline MgO[J]. Journal of Catalysis, 2002,206(1):49-59
    [255] Balderas-Tapia L., Hernández-Pérez I., Schacht P., et al. Influence of Reducibility of Vanadium–Magnesium Mixed Oxides on the Oxidative Dehydrogenation of Propane[J]. Catalysis Today, 2005,107–108(1):371–376
    [256] Christodoulakis A., Machli M., Lemonidou A. A., et al. Molecular Structure and Reactivity of Vanadia-based Catalysts for Propane Oxidative Dehydrogenation Studied by in Situ Raman Spectroscopy and Catalytic Activity Measurements[J]. Journal of Catalysis, 2004,222 (2):293-306
    [257] Christodoulakis A., Heracleous E., Lemonidou A. A., et al. An operando Raman Study of Structure and Reactivity of Alumina-Supported Molybdenum Oxide Catalystsfor the Oxidative Dehydrogenation of Ethane[J]. Journal of Catalysis, 2002,242(1):16-25
    [258] Ueda W., Lee K. H., Yoona Y. S., et al. Selective Oxidative Dehydrogenation of Propane over sSurface Molybdenum-Enriched MgMoO4 Catalyst[J]. Catalysis Today, 1998,44(1-4):199-203
    [259] Luo J. Z., Wan H. L. Oxidative Dehydrogenation of Ethane over LaF3-CeO2 Catalysts[J]. Applied Catalysis A, 1997,158(1-2):137-144
    [260] Nair H., Baertsch C. D. Method for Quantifying Redox Site Densities in Metal Oxide Catalysts: Application to the Comparison of Turnover Frequencies for Ethanol Oxidative Dehydrogenation over Alumina-Supported VOx, MoOx, and WOx catalysts[J]. Journal of Catalysis, 2004,258 (1):1-4
    [261] Crapanzano S., Babich I. V., Lefferts L. The effect of V in La2Ni1?xVxO4+1.5x+ on Selective Oxidative Dehydrogenation of Propane: Stabilization of Lattice Oxygen[J]. Applied Catalysis A, 2010,385(1):14-21
    [262] Jia Y., Li G., Ning G. Efficient Oxidative Desulfurization (ODS) of Model Fuel with H2O2 Catalyzed by MoO3/γ-Al2O3 under Mild and Solvent Free Conditions[J]. Fuel Processing Technology, 2011,92(1):106-111
    [263] Ferreira M. L., Volpe M. A. Combined Theoretical and Experimental Study of VOX-Al2O3 Catalyst[J]. Journal of Molecular Catalysis A, 1999,149(1-2):33-42
    [264] Ferreira M. L., Volpe M. A. A Combined Theoretical and Experimental Study of Supported Vanadium Oxide Catalysts[J]. Journal of Molecular Catalysis A, 2002,184(1-2):349-360
    [265] Courcota D., Ponchel A., Grzybowska B., et al. Effect of the Sequence of Potassium Introduction to V2O5/TiO2 Catalysts on their Physicochemical Properties and Catalytic Performance in Oxidative Dehydrogenation of Propane[J]. Catalysis Today, 1997,33(1-3):109-118
    [266] Nieto J. M. L., Concepción P., Dejoz A., et al. Oxidative Dehydrogenation of n-butane and 1-butene on undoped and K-doped VOx/Al2O3 Catalysts[J]. Catalysis Today, 2000, 61(1-4):361–367
    [267] Cortez G. G., Fierro J. L. G., Ba?ares M. A. Role of Potassium on the Structure and Activity of Alumina-Supported Vanadium Oxide Catalysts for Propane OxidativeDehydrogenation[J]. Catalysis Today, 2003,78(1-4):219-228
    [268] Bulushev D. A., Rainone F., Kiwi-Minsker L., et al. Influence of Potassium Doping on the Formation of Vanadia Species in V/Ti Oxide Catalysts[J]. Langmuir, 2001,17(17):5276-5282
    [269] Lapina O. B., Khabibulin D. F., Shubin A. A., et al. 51V and 31P NMR Studies of VOx/TiO2 Catalysts Modified by Phosphorous[J]. Journal of Molecular Catalysis A, 2000,162(1-2):381–390
    [270] Singh R. P., Ba?ares M. A., Deo G. Effect of Phosphorous Modifier on V2O5/TiO2 Catalyst: ODH of Propane[J]. Journal of Catalysis, 2005,233(2):388-398
    [271] Oyama S. T., Middlebrook A. M., Somorjai G. A. Kinetics of Ethane Oxidation on Vanadium Oxide[J]. The Journal of Physical Chemistry, 1990,94 (12):5029-5033
    [272] Busca G, Centi G. Surface Dynamics of Adsorbed Species on Heterogeneous Oxidation Catalysts. Evidence from the Oxidation of C4 and C5 Alkanes on Vanadyl Pyrophosphate[J]. Journal of the American Chemical Society, 1989,111(1):46-54
    [273] Eon J. G., Olier R., Volta J. C. Oxidative Dehydrogenation of Propane onγ-Al2O3 Supported Vanadium Oxides[J]. Journal of Catalysis, 1994,145(2):318-326
    [274] Deo G, Wachs I E. Surface oxide-support interaction (SOSI) for surface redox sites[J]. Journal of Catalysis, 1991,129(1):307-312
    [275] Baldychev I., Vohs J. M., Gorte R. J. The Effect of Support on Redox Properties and Methanol-Oxidation Activity of Vanadia Catalysts[J]. Applied Catalysis A, 2011,391(1-2):86-91
    [276] Dinse A., Frank B., Hess C., et al. Oxidative Dehydrogenation of Propane over Low-Loaded Vanadia Catalysts: Impact of the Support Material on Kinetics and Selectivity[J]. Journal of Molecular Catalysis A, 2008,289(1-2):28-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700