生物质基乙酰丙酸的氧化反应及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石化资源不可再生且储量有限。石化资源不断开采和转化利用以实现人类社会与经济的发展,其储量日益减少,同时也造成了严重的环境污染和极端气候,目前能源危机近在咫尺,环境保护迫在眉睫。而生物质是地球上含量最丰富的可再生资源,包括如纤维素、半纤维素、淀粉等等;它又是一种最方便,污染最小的能源,可以在很多领域取代其他能源。因此,探索从生物质转化为清洁燃料如乙醇、丁醇以及化学品以补充或替代石油化学品具有非常重要的意义。
     乙酰丙酸是生物质酸性水解的主要产物,其特殊的化学组成和空间结构使之成为一种重要的平台化合物。目前已经通过乙酰丙酸的酯化、氧化还原、卤化、缩合反应制取了多种有用的化合物和新型高分子材料,广泛应用于各个领域。但是将乙酰丙酸脱羧或氧化裂解的研究还很少。事实上,乙酰丙酸脱羧到丁酮是生物质基碳水化合物转化成各类燃料和化学品的关键步骤;乙酰丙酸还能氧化裂解形成其他高附加值的化学品如丁烯酮等。因此探索乙酰丙酸的氧化反应途径及其机理,可为生物质在能源和化工领域的应用提供理论基础。
     本文以生物质基乙酰丙酸为基础,探索了乙酰丙酸在不同反应体系不同反应条件下的脱羧途径及影响乙酰丙酸脱羧的因素,研究了反应前后催化剂的结构变化,并提出了反应机理;此外,还发现了乙酰丙酸氧化裂解形成丁烯酮、丁二酮的途径并探讨了反应的影响因素。
     作为γ酮酸的乙酰丙酸,γ位吸电子基团羰基的吸电子效应因为碳链的延长而减弱,不能像α羰基酸或α碳原子上带有吸电子基团的脂肪酸遵循羧酸负离子机理脱羧,也不能如β,γ不饱和烯酸或β酮酸脱羧经六元环过渡态脱羧。乙酰丙酸的热脱羧,即其碳链上的羧基在高温下发生断裂而脱去,但是研究发现,热脱羧的副反应较多,产物复杂,丁酮得率仅为15%左右。而氧化脱羧,即氧化铜和Ag(I)/S_2O_8~(2-)氧化乙酰丙酸脱羧的研究发现,氧化铜使乙酰丙酸脱羧得到的丁酮得率达到67.5%,乙酰丙酸基本被转化。氧化铜作为氧化剂参与反应,反应结束后氧化铜被还原成单质铜。而且研究发现,氧化铜的颗粒度越小,催化脱羧效果越好。而Ag(I)/S_2O_8~(2-)氧化乙酰丙酸脱羧的丁酮得率仅为44.2%,因为Ag(I)/S_2O_8~(2-)也能氧化产物丁酮,同时抑制了底物的氧化。两种氧化脱羧方法相比较,前者的脱羧效果较好,但是反应温度较高,时间较长。而后者的效率较差,但是条件温和,反应速度快。
     氧化铜负载于载体氧化铈和氧化铝上形成混合氧化物CuO/CeO_2和CuO/Al_2O_3,因为在混合物中氧化铜的还原温度降低了。在温度175℃、pH为3.2的KH_2PO_4 NaOH反应体系中反应2小时,CuO/CeO_2和CuO/Al_2O_3的氧化乙酰丙酸的HS GC–MS分析表明,丁烯酮的得率分别约为20%和6.5%。可以推测载体CeO_2和Al_2O_3也参与了反应或者促进了反应的进行,或者说,混合物中氧化铜与载体并不是独立存在,它们的结构发生了变化,从而导致反应结果的不同。载体CeO_2和Al_2O_3对乙酰丙酸氧化反应的研究表明,在氧化铜的量相同的情况下,CeO_2的量减小,而丁烯酮得率和乙酰丙酸转化率也逐渐减小。实验证明纯CeO_2可以直接催化氧化乙酰丙酸产生丁烯酮,但是得率很低;研究还发现,CuO/CeO_2的颗粒度越小,其对乙酰丙酸脱羧的效果更好。
     H_2O_2/O_2对乙酰丙酸的氧化反应表明, 2,3丁二酮是主产物。反应温度(180℃–260℃)、反应时间(0.25h–9h)、H_2O_2的量(H_2O_2和LA比率=1:2–2:1)和氧压(10bar–50bar)对乙酰丙酸氧化反应影响的研究表明,在水溶液中,反应温度220℃、氧气压为20bar,H_2O_2与摩尔LA比例为1.2:1的条件下反应1h,丁二酮的得率最高,达到32%。与其他丁二酮的生产方法相比,原料乙酰丙酸是来自生物质的水解,而非异丁醛、乙偶姻等石油化工产品。而且,H_2O_2/O_2氧化反应乙酰丙酸的制备工艺简单,丁二酮的得率较高,反应后H_2O_2/O_2转化为水,无污染。因此,这是一种环保又经济的丁二酮生产方法。
Fossil resources are non renewable energy source and limited. As petroleum reserves decrease gradually, the exploitation increases rapidly for the development of economy. And the conversion and application of fossil resources are the principal cause for the serious environmental pollution and ecosystem damage. While, biomass is the most abundant and renewable organic substance in nature, which includes cellulose, semi cellulose and starch et al, and it’s the most convenient and the least polluted energy, which can replace other energy sources in many other areas. Therefore, replacing fossil resource with biomass is a trend of economic development and also a developing trend in chemical industry, and exploration for a feasible pathway to transform biomass into clean fuels (such as bio ethanol, butanol) and other chemicals to supplement or gradually replace the oil based chemicals or energy becomes increasingly significant.
     Levulinic acid is the main product from a series of hydrolysis of biomass. It is an important platform material due to its chemical constitution and spatial conformation. Currently, some chemicals and new functional polymer materials have been synthesized by means of esterification, halogenation, redox and condensation reactions of levulinic acid, which are widely applied in many fields. However, there are few studies relating to decarboxylation and oxidative degradation of levulinic acid. The decarboxylation of levulinic acid to form butanone is one of the key conversion steps from biomass derived carbohydrates to versatile fuels and chemicals; and levulinic acid can be oxidatively degraded into high valued chemicals such as methyl vinyl ketone et al. Consequently, the research with respect to pathways of LA oxidation and the mechanisms will provide the theoretical foundation for the application of biomass in the energy and chemical industries.
     The decarboxylation pathways of levulinic acid to butanone, the influence of react system and react conditions to the decarboxylation of levulinic acid and the structural change of catalysts during the reaction were explored; oxidative degradation pathways of levulinic acid to methyl vinyl ketone and 2,3 butandione were found out and the influence of react conditions were dealt with in detail in this paper.
     Levulinic acid is a kind ofγketone acids. Electron withdrawing effect of carbonyl group (electron withdraw group) decreases because of chain elongation. Thus, it cannot be decarboxylated by essentially anionic mechanisms likeαcarbonyl acids or fatty acids with a withdraw group carbonyl group connected inαcarbon atom; and it cannot experience the six member ring transition state to be decarboxylatd, likeβ,γunsaturated acids orβketone acids. The thermal decarboxylation of levulinic acid causes the cleavage of carbon chain with many side products for the yield of butanone was just about 15%. As to oxidative decarboxylation, it appeared from the research that CuO and Ag(I)/S_2O_8~(2-) could oxidize levulinic acid to be decarboxylated and form butanone as main product. The yield of butanone from the oxidative decarboxylation by CuO reaches 67.5% and levulinic acid is almost converted. The catalyst CuO involved in the reaction as a redox, that is, CuO is completely reduced to elemental form (Cu) after the reaction. Moreover, the smaller the CuO particles are, the better the effect of decarboxylation is. The LA decarboxylation oxidized by Ag(I)/S_2O_8~(2-) leads to butanone with a yield of about 44.2%. But Ag(I)/S_2O_8~(2-) also can oxidize the product butanone which results in a decrease in the yield of butanone and meantime inhibits the conversion of levulinic acid. The separation of butanone to avoid being oxidized is a main obstacle to increase the yield and conversion. Compared with these two kinds of oxidative decarboxylation, we find that the former has higher yield and higher conversion with relatively extreme react conditions; while, the latter is less effective but under milder conditions.
     The search of mild reactive conditions together with high catalytic efficiency is imperative for the future potential industrial applications and meaningful in organic synthesis. CuO/CeO_2 and CuO/Al_2O_3 were prepared because CuO in CuO modified compounds could be reduced at lower temperature for CeO_2 and Al_2O_3 could promote the hydrogen reduction activity of copper. The oxidation products of levulinic acid by CuO/CeO_2 and CuO/Al_2O_3 at 175°C for 2 h have been analyzed by HS GC–MS and the main product is MVK with the yields of about 20% and 6.5%, respectively. It was inferred that the support CeO_2 and Al_2O_3 involved in the reaction, or rather, structural change of modified compounds with respect to pure CuO resulted in the different catalytic behavior. The effect of CuO/CeO_2 and CuO/Al_2O_3 for the oxidation of levulinic acid in NaOH KH2PO4 solution has been studied. As the dosage of CeO_2 or Al_2O_3 increase, both the MVK yield and LA conversion increase on the condition of the same CuO dosage. Thereby CeO_2 was used in the reaction alone and it was revealed that levulinic acid is only marginally oxidized to MVK in the presence of CeO_2. Moreover, levulinic acid can be oxidized with a better MVK yield when CuO/CeO_2 and CuO/Al_2O_3 particles are smaller.
     The oxidation of levulinic acid by H_2O_2/O_2 in water solution has been studied and the result analyzed by HS GC–MS that 2,3 butandione formed as the main product. The effects of temperature (180°C–260°C), retention time (0.25h–9 h), dosage of H_2O_2 (the mol ratio of H_2O_2 and LA=1:2–2:1) and the pressure of O_2 (10bar–50bar) have been investigated. It indicated the reaction was carried out at the temperature of 220°C for 1h in the presence of H_2O_2 (the ratio of H_2O_2 and LA of 1.2:1) and O_2 (20bar), the yield of 2,3 butandione reaches the maximum of 32%. Compared with other methods for the production of 2,3 butandione, raw material levulinic acid is degraded from hydrolysis of biomass, but not petrochemicals such as isobutylaldehyde and acetoin et al. In addition, the H_2O_2/O_2 oxidation can get better yield of 2,3 butandione with simple reaction processes; H_2O_2 is reduced to water after the reaction, which is economic and environment protected.
引文
[1]林鹿,何北海,孙润仓,等.木质生物质转化高附加值化学品[J].化学进展. 2007, 19(7/8): 1206–1216.
    [2]余燕春.利用农林纤维废弃物生产酒精的社会经济效益[J]. 1998, 6: 18–20.
    [3]田泽.世界油气资源现状及未来趋势预测.新疆社会科学[J]. 2007, 2: 24–30.
    [4]李哲,冒泗农,张淑英.世界石油资源现状、供需状况预测分析和对策.技术经济与管理研究[J].2007, 6: 105–107.
    [5]段泽凯.中国油情与油资源可持续发展战略[J].天然气与经济.2005, 2: 26–30.
    [6]江苏,张麦花,张亚芬.我国石油依存度现状与发展趋势发展战略[J].天然气与经济. 2006, 3: 30–31.
    [7]勇强.植物纤维资源高效生物利用[J].林业科技开发.2002, 16, 3:6–9.
    [8]陈彪,叶红.植物纤维资源的利用[J].化工时刊. 1999, 8: 8–10.
    [9]王燕洁,冯贵颖,李美,等.黄姜皂素废渣生产乙酰丙酸的研究[J].西北农林科技大学学报(自然科学版). 2010, 38(9):141–147,140.
    [10]张来新.用棉籽壳制乙酰丙酸及活性炭[J].化工环保. 2001, 21(3): 161–163.
    [11]张来新,杨琼.木糖生产残液制取乙酰丙酸及活性炭[J].现代化工.2001, 20(2): 32–34.
    [12] He, Z.S. Extraction of Levulinic Acid from Paper making Black Liquor[J]. Chem. Ind. Eng. 1999, 2: 163–166.
    [13]何柱生.从造纸黑液中提取乙酰丙酸的研究[J].化学工业与工程. 2002, 19(2): 163–166.
    [14]常春,马晓建,岑沛霖.小麦秸秆制备新型平台化合物乙酰丙酸的工艺研究[J].农业工程学报. 2006, 22(6):161–164.
    [15]徐兆瑜.农产品副产物生产乙酰丙酸[J].精细化工原料及中间体. 2006, 5: 35–38.
    [16]周存山,林琳,杨虎清,等.利用生物质转化制备乙酰丙酸的研究进展[J].安徽农业科学. 2010, 38(28): 15832–15834,15837.
    [17]李锦春.乙酰丙酸应用开发前景[J].四川化工, 1996, (2): 54–55.
    [18]张建伟,樊金龙,吴卫泽.乙酰丙酸加氢生成γ戊内酯的反应动力学[J].北京化工大学学报(自然科学版)[J]. 2010, 37(5): 25–29.
    [19] Yan, Z.P.; Lin L.; Liu S.J. Synthesis ofγValerolactone by Hydrogenation of Biomass derived Levulinic Acid over Ru/C Catalyst[J]. Energy Fuels. 2009, 23: 3853–3858.
    [20]苏萍.乙酰丙酸的研究现状[J].广西轻工业. 2008, 8: 24–26,28.
    [21] Chang, C.; Cen, P.L.; Ma, X.J. Levulinic acid production from wheat straw[J]. Bioresour. Technol. 2007, 98: 1448–1453.
    [22] Cha, J.Y.; Hanna, M.A. Levulinic acid production based on extrusion and pressurized batch reaction[J]. Ind. Crops Products. 2002, 16:109–118.
    [23] Fang, Q.; Hanna, M.A. Experimental studies for levulinic acid production from whole kernel grain sorghum[J]. Bioresour. Technol. 2002, 81: 187–192.
    [24] Williamd, D.E; George, B.L. Peroxytrifluoroacetic Acid. V. The Oxidation of Ketones to Esters[J]. J. Am. Chem. Soc. 1955, 77: 2287–2288.
    [25] Lou, Z.Y.; Chen, X.Y.; Qiao, Li, T.M. et al. Preparation and characterization of the chirally modi?ed rapidly quenche skeletal Ni catalyst for enantioselective hydrogenation of butanone to R (?) 2 butanol[J]. J. Mol. Catal. A: Chem. 2010, doi:10.1016 /j.molcata.2010.04.018.
    [26] Gao, F.; Li, R.J.; Garland, M. An on line FTIR study of the liquid phase hydrogenation of 2 butanone over Pt/Al2O3 in d8 toluene The importance of anhydrous conditions[J]. J. Mol. Catal. A: Chem. 2007, 272: 241–248.
    [27]沈兆兵,杜风光,史吉平,等.丙酮丁醇生产技术进展[J].广州化工, 2007, 35(5): 8–9,19.
    [28]周京波.计划用甜菜生产生物丁醇用作车辆驱动燃料[J].功能材料信息.2006, 3(5): 47.
    [29]玄恩峰.国内正丁醇的生产、消费及市场分析[J].化工时刊. 2001, (1): 53–54
    [30]胡中华,吴效普,罗平,等.丙丁菌发酵法生产丙酮丁醇的研究[J].大同医专学报. 1995, 15(2): 15–16.
    [31] Atsumi S, Cann A F, Michael R. Connor. Metabolic engineering of Escherichia coli for 1 butanol production[J]. Metabolic Engineering, 2007, doi:10.1016/j.ymben.2007.08.003.
    [32] Qureshi N, Ezeji T C, Ebener J. Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber[J]. Bioresource Technology. 2007,doi:10.1016/j.biortech.2007.09.087.
    [33]郭学阳.国内宜加强丁酮的开发研究[J].湖南化工.1996, 26(2): 61.
    [34] Fu Xiaoqin, Tian Songbai. Development of Catalytic Decarboxylation of Highly Sour Crude Oil[J]. Chemical industry and engineering progress.2005, 24 (9): 968–970.
    [35]苗勇,纪琳.原油脱酸方法研究进展[J].石油与天然气化工.2006, 35(4): 292–297.
    [36]章烨.有机化学[M].北京:科学出版社.2006. 352–354.
    [37] Davood Nori Shargh, Abolfazl Shiroudi. Ab initio study and NBO analysis of the allylic rearrangements (hetero Claisen and Cope rearrangements) and decarboxylation reactions (retro carbonyl ene reaction) of allylformate and allyldithioformate[J]. Journal of Molecular Structure: THEOCHEM.2007: 1–19.
    [38]程晓红,刘复初.脱羧反应研究进展[J].云南化工.1995, (3): 22–26.
    [39]刘尚长.光电催化化学[M].北京:科学出版社.2005,104–135
    [40] H.L.Chum, M. Ratcliff. Photoelectrochemistry of Levulinic Acid on Undoped Platinized n TIO2 Powders [J]. The Journal of Physical Chemistry. 1983, 87(16): 3089–3093.
    [41]赵振国.胶束催化与微乳催化[M].北京:化学工业出版社.2006,1–3.
    [42]赵春海,阚振荣.乙酰乳酸脱羧酶的储存初探[J].酿酒科技.2007, (3): 28–29,31.
    [43] Christophe Monnet, Georges Corrieu. Selection and properties of a acetolactate decarboxylase deficient spontaneous mutants of Streptococcus thermophilus[J]. Food Microbiology. 2007, 24 : 601–606.
    [44] Brian P. Callahan, Brian G. Miller. OMP decarboxylase—An enigma persists[J]. Bioorganic Chemistry.2007:1–5.
    [45] Yongge Qiu, Jinbo Gao. Mutation and inhibition studies of mevalonate 5 diphosphate decarboxylase[J]. Bioorganic & Medicinal Chemistry Letters. 2007: 1–5.
    [46]张翘楚,梅光泉.金属酶及其配位催化[J].微量元素与健康研究. 2005, 22(2): 52–54
    [47]谢如刚.仿酶催化与绿色化学[J].化学研究与应用. 1999,11(4): 344–349.
    [48] Zheng Bo Han, Xiao Ning Cheng. Hydrothermal Syntheses and Structural Studies of Lanthanide Coordination Polymers Involving In Situ Decarboxylation and their Luminescence Properties[J]. Z. Anorg. Allg. Chemistry. 2005, 631: 937–942.
    [49]陈诵英,陈平等.催化反应动力学[M].北京:化学工业出版社. 2007, 45–67.
    [50]杨小弟,白志平.铝离子对α酮戊二酸的催化脱羧作用[J].无机化学学报. 2002, 18(10): 981–986
    [51] ZHANG Zailong, SUN Yanhua. Catalytic decarboxylation of fatty acid by iron containing minerals in immature oil source rocks at low temperature [J]. Chinese Science Bulletin. 1999, 44(16): 1523–1527.
    [52]夏青天.脱羧反应的历程及其应用[J].黔南民族师范学院学报.2004, (6): 15–19.
    [53] M. Snare, I. Kubickova, et al. Production of diesel fuel from renewable feeds: Kinetics of ethyl stearate decarboxylation[J]. Chemical Engineering Journal. 2007: 1–6.
    [54]曹声春.催化原理及其工业应用技术[M].长沙:湖南大学出版社.2001,13–160.
    [55]陈海锋,杨琳.钯催化β酮酸酯脱羧制备α,β不饱和酮的方法介绍[J].合成化学. 2007, 15(1): 7–11,29.
    [56] Miyuki Ota, Makoto Naoi Toshihiko Hamanaka. Inhibition of human brain aromatic L amino acid decarboxylase by cooked food derived 3 amino 1 methyl 5H pyrido indole and other heterocyclic amines[J]. Neuroscience Letters. 1990,116(3): 372–378.
    [57] A.S. Lisitsyn. 2,20 Bipyridine and related N chelants as very effective promoters for Cu catalysts in the decarboxylation[J]. Applied Catalysis. 2007, 332: 166–170.
    [58] Vinod Kumar, Abhishek Sharma. Remarkable synergism in methylimidazole promoted decarboxylation of substituted cinnamic acid derivatives in basic water medium under microwave irradiation: a clean synthesis of hydroxylated (E) stilbenes[J]. Tetrahedron. 2007, 63: 7640–7646.
    [59]顾勤兰,林克江.奎诺酮类化合物的3脱羧研究[J].中国新药杂志. 2006, 15(24): 2127–2129.
    [60]陈国才,王之建,王肇中,等. DBU—一种多功能的碱性试剂[J].化学试剂. 1999, 21(6) , 339–346
    [61]王乃兴,李纪生. DBU—一种大有可为的试剂[J].化学试剂. 1997, 19(1): 24–25,7
    [62]李邦玉.有机碱DBU催化酞菁类化合物合成[J].无锡职业技术学院学报. 2007, 6(1): 35–37.
    [63]林军,程晓红,刘复初. DBU的合成及其在经基酸和伯醇消除反应中的应用[J].合成化学. 1994, 2(1): 37–41.
    [64]胡炳成,吕春绪. 3甲基4乙氧甲酰2环己烯酮合成方法的改进[J].应用化学. 2003,20(10): 1012–1014.
    [65] Roberta Bernini, Enrico Mincione. Obtaining 4 vinylphenols by decarboxylation of natural 4 hydroxycinnamic acids under microwave irradiation[J]. Tetrahedron. 2007, 63: 9663–9667.
    [66] Michael Reuman, Michael A. Eissenstat. Cyanide mediated decarboxylation of 1 substituted 4 oxoquinoline and 4 oxo 1, 8 naphthyridine 3 carboxylic acids[J]. Tetrahedron Letters. 1994, 35(45): 8303–8306.
    [67] Marchionni, G.; Petricci, S.; Spataro, G. et al. A study of the thermal decarboxylation of three per?uoropolyether salts[J]. J. Fluorine Chem. 2003, 124: 123–130.
    [68] Nai Liang Zhong,Le Gang Wang,Yan Ling Xu, et al. Magnetite Nanoparticles Prepared by Thermal Decarboxylation and Decomposition of Iron Hydroxide Alkylsulfonyl Acetate[J].无机化学学报. 2009, 25(5): 833–837.
    [69] Zhang, G.; Shen, K.H.; Zhao, D.F. et al. Preparation of uncoated iron oxide nanoparticles by thermal decarboxylation of iron hydroxide cetylsulfonyl acetate in solution[J]. Mater. Lett. 2008, 62: 219–221.
    [70] Martins, C.P.B.; Awan, M.A.; Freeman, S. et al. Fingerprint analysis of thermolytic decarboxylation of tryptophan to tryptamine catalyzed by natural oils[J]. J Chromatogr. A. 2008, 1210: 115–120.
    [71] Farhadi, S.; Zaringhadam, P.; Sahamieh, R.Z. Photolytic decarboxylation of a arylcarboxylic acids mediated by HgF2 under a dioxygen atmosphere[J]. Tetrahedron Lett. 2006, 47: 1965–1968.
    [72] Pavel Kukula, Vaclav Matousek, Tamas Mallat et al. Structural effects in the Pd induced enantioselective deprotection–decarboxylation ofβketoesters[J]. Tetrahedron: Asymmetry. 2007, 18: 2859–2868.
    [73]徐兆瑜.生物质开发的平台化合物乙酰丙酸[J].杭州化工. 2006, 36(2): 11–14.
    [74]常春,马晓建,方书起,等.可再生资源制备平台化合物乙酰丙酸的研究进展[J].化工新型材料. 2005, 33(8): 69–70,77.
    [75]吴瑛,付时雨,柴欣生.顶空气相色谱在化学研究中的应用[J].广州化学. 2008, 33(2): 59–66.
    [76]孙华.顶空气相色谱法测定土壤中挥发性有机物[J].环境科学与管理. 2008, 33(6):134–137.
    [77]陈伟东,老倩群,梁彩凤,等.顶空毛细管柱气质联用法测定饮用水中10种有机化合物[J].中国卫生检验杂志.2008, 18(6): 984–985.
    [78] María del Rosario Brunetto, Yelitza Delgado Cayama, Lubin Gutiérrez, et al. Headspace gas chromatography–mass spectrometry determination of alkylpyrazines in cocoa liquor samples[J]. Food Chemistry. 2009, 112: 253–257.
    [79] Zhou D., Zhang L., Guo S. Mechanisms of lead biosorption on cellulose/chitin beads[J]. Water Research. 2005. 39(16): 3755–3762.
    [80] Focher B., Palma M., Canetti T. et al. Structural differences between non wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X ray diffractometry. Industrial Crops and Products[J]. 2001, 13(3): 193–208.
    [81]宗水珍.α碳负离子在羟醛缩合反应中的作用[J].常熟高专学报, 1999, 13(2): 88–92.
    [82] John P. Gilday, Leo A. Paquette. Stabilized carbanions by alkyllithium induced decarboxylation of non enolizable carboxylic acids. An anionic equivalent to the hunsdiecker reaction[J].Tetrahedron Letters. 1988, 29(36): 4505–4508.
    [83] Fong Ying Yeoh, Roxanne R. Cuasito, Christina C. Capule et al. Carbanions from decarboxylation of orotate analogues: Stability and mechanistic implications[J].Bioorganic Chemistry, 2007, 35: 338–343.
    [84] Tadhg P Begley, Steven E Ealick. Enzymatic reactions involving novel mechanisms of carbanion stabilization[J].Current Opinion in Chemical Biology. 2004, 8: 508–515.
    [85] Gonzalo Blay, Isabel Ferna′ndez, Bele′n Monje et al. Highly diastereoselective Michael reaction of (S) mandelic acid enolate. Chiral benzoyl carbanion equivalent through an oxidative decarboxylation ofαhydroxyacids[J]. Tetrahedron Letters. 2002, 43: 8463–8466.
    [86] Siamak Noorizadeh, Ehsan Shakerzadeh. Bond dissociation energies from a new electronegativity scale[J]. Journal of Molecular Structure. 2009, 920: 110–113.
    [87]曹锡章,王杏乔,宋天佑.无机化学[M].北京:高等教育出版社,1994: 833.
    [88] Liu, X.L.; Jiang, Z.H.; Li, J. et al. Super hydrophobic property of nano sized cupric oxide ?lms[J]. Surf. Coat. Technol. 2010, doi: 10.1016/j.surfcoat.2010.03.012.
    [89] Hoa, N.D.; An, S.Y.; Dung, N.Q. et al. Synthesis of p type semiconducting cupric oxidethin ?lms and their application to hydrogen detection[J]. Sens. Actuators B. 2010, 146: 239–244.
    [90] Zhou,Y.Z.; Li, S.; Li, Q.S. et al. Theoretical investigation of the decarboxylation reaction of CH3CO2 radical[J]. J. Mol. Struct.: THEOCHEM. 2008, 854: 40–45.
    [91] Sn?re, M.; Kubi?ková, I.; M?ki Arvela, P. et al. Production of diesel fuel from renewable feeds: Kinetics of ethyl stearate decarboxylation[J]. Chem. Eng. J. 2007, 134: 29–34.
    [92] Chuchev, K.; BelBruno, J.J. Mechanisms of decarboxylation of ortho substituted benzoic acids[J]. J. Mol. Struct.: THEOCHEM. 2007, 807: 1–9.
    [93] Ma, Y.X.; Wu, R.M. Chemistry English[M]. Lanzhou(GS): Publishing company of Wuhan University, 2003: 126–131.
    [94] Feng, J.C.; Zhu, Y. Purification and preparation of reagent commonly used in organic labs[M]. Beijing(BJ): Publishing company of science, 2006: 5–7.
    [95]王玉棉,侯新刚,王大辉,等.纳米氧化锌的制备技术及应用[J].有色金属(冶炼部分). 2002, 3: 39–41,48.
    [96]俞建群,徐政.纳米氧化物的合成新方法[J].功能材料与器件学报. 1999, 5(4): 267–272.
    [97]袁芳芳,吴现棉,吴勇,等.微波辅助合成纳米氧化铜[J].广州化工. 2009, 37(5)72–73,76.
    [98]李东升,史振民,王文亮,等.超声沉淀法制备CuO Fe2O3纳米粉体催化剂[J].延安大学学报(自然科学版). 2001, 20(1): 56–58.
    [99]王积森,杨金凯,鲍英,等.氧化铜纳米粉体的制备新方法[J].中国粉体技术. 2003, 9(4): 39–41.
    [100]王家真,王亚平,杨志懋,等. SnO2 CuO纳米粉体的制备研究[J].材料科学与工程学报. 2004, 22(3): 369–372.
    [101]俞建群,徐政,方明豹,等.一步室温固相化学反应法合成CuO纳米粉体[J].同济大学学报. 2000, 28(3): 364–367.
    [102] Martinson, C.A.; Reddy, K.J. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles[J]. J. Colloid Interface Sci. 2009, 336: 406–411.
    [103] Mirkhani, V.; Tangestaninejad, S.; Moghadam, M. et al. Efficient oxidativedecarboxylation of carboxylic acids with sodium periodate catalysted by supported manganese(Ш) porphyrin[J]. Bioor. Med. Lett. 2003, 13: 3433–3435.
    [104] Mirkhani, V.; Tangestaninejad, S.; Moghadam, M. et al. Rapid and efficient oxidative decarboxylation o carboxylic acid with sodium periodate catalyzedvby manganese (III) Schiff base complexes[J]. Bioorg. Med. Chem. 2004, 12: 903–906.
    [105] Guitton, J.; Tinardon, F.; Lamrini, R. et al. Decarboxylation of [1 13C]Leucine by hydroxyl radicals[J]. Free Radical Biol. Med. 1998, 25: 340–345.
    [106] Lamrini, R.; Lacan, P.; Francina, A. et al. Oxidative decarboxylation of benzoic acid by peroxyl radicals[J]. Free Radical Biol. Med. 1998, 24: 280–289.
    [107] Trahanovsky, W.S.; Cramer, J.; Brixius, D.W. Oxidation of organic compounds with cerium(IV). XVIII. Oxidative decarboxylation of substituted phenylacetic acids[J]. J. Am. Chem. Soc. 1974, 96: 1077–1081.
    [108] Dessau, R.M.; Heiba, E.I. Oxidation by metal salts. XIII. Oxidation of arylcarboxylic acids by Cobaltic acetate[J]. J. org. chem. 1975, 40: 3647–3649.
    [109] Pocker, Y.; Davis, B.C. Oxidative cleavage by Lead(IV). I. The mechanism of decarboxylation of 2 Hydroxycarboxylic acids[J]. J. Am. Chem. Soc. 1973, 95: 6216–6223.
    [110] Latimer, W.M. Oxidation Potentials[D]. Prentice Hall, Inc., Engle wood Cliffs, NJ., 1952.
    [111] Liang, C.J.; Lee, I.L.; Hsu, I.Y. et al. Persulfate oxidation of trichloroethylene with and without iron activation in porous media[J]. Chemosphere. 2008, 70: 426–435.
    [112] Yang, S.Y.; Wang, P.; Yang, X. et al. A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave activated persulfate oxidation[J]. J. Environ. Sci. 2009, 21: 1175–1180.
    [113] Shanmugam, P.; Perumal, P. T. An unusual oxidation–dealkylation of 3,4 dihydropyrimidin 2(1H) ones mediated by Co(NO3)2 6H2O/K2S2O8 in aqueous acetonitrile[J]. Tetrahedron. 2007, 63: 666–672.
    [114] O’Neill, P.; Steenken, S.; Schulte Frohlinde, D. Formation of Radical Cations of Methoxylated Benzene by Reaction with OH Radicals Ti2+, Ag2+, and SO4?- in Aqueous Solution. An Optional and Conductiometric Pulse Radiolysis and in situRadiolysis Electron Spin Resonance Study[J]. J. Phys. Chem. 1975, 79: 2773–2779.
    [115] Jonsson, L.;Wistrand, L.G. Acyloxylation of methylbenzenes by potassium peroxydisulphate[J]. J.Chem. Soc. Perkin I. 1979: 669–672.
    [116] Walling, C.; Camaioni, D.M.; Kim, S.S. Aromatic Hydroxylation by Peroxydisulfate[J]. J. Am. Chem. Soc. 1978, 100: 4814–4818.
    [117] Eberhardt, M.K. Reaction of benzene radical cation with water. Evidence for the reversibility of OH radical addition to benzene[J]. J. Am. Chem. Soc. 1981, 103: 3876–3878.
    [118] Anderson, J.M.; Kochi J.K. Silver(I) Catalyzed Oxidative Decarboxylation of Acids by Peroxydisulfate. The Role of Silver(II)[J]. J. Am. Chem. Soc. 1970, 92: 1651–165.
    [119] Miller, J.D. The kinetics of formation of a silver(II) and a silver(III) complex by peroxydislphate oxidation[J]. J. Chem. Soc., A. 1968, 8: 1778–1780.
    [120] Giordano, C.; Belli, A.; Citterio, A. et al. Electron transfer Processes: Oxidation of Arylacetic Acids by Peroxydisulfate in Acetic Acid[J]. J.Chem. Soc. Perkin I. 1981: 1574–1576.
    [121] Fristad, W.E.; Klang, J.A. Sliver(I)/persulfate oxidative decarboxylation of carboxylic acids. Arylacetic acid dimerization[J]. Tetrahedron Lett. 1983, 24: 2219–2222.
    [122]孙宝国,何坚.香料化学与工艺学[M].北京:化学工业出版社, 2004: 172–174.
    [123] Braneni A. L, Keenan T. W. Diacetyl and acetoin production by Lactobacillus casei[J]. Applied Microbiology. 1971, 22(4): 517–521.
    [124] Lee W. Production of diacetyl(2,3 butanediol) by continuous fermentation with simultaneous product separation[D]. USA: Purdue University, PhD thesis, 1991.
    [125] A. Gomez Zavaglia, R. Fausto. Matrix isolation and solid state low temperature FT IR study of 2,3 butanedione (diacetyl)[J]. J. Mol. Struct. 2003, 661–662: 195–208.
    [126] Rowe D J. Chemistry and technology of flavors and fragrances[M]. Oxford UK: Blackwell Publishing Ltd, 2005: 103–110.
    [127] Raghu, N.P., Devendra, S.P. Complexes of a New Series ofαDiimine Macroeycles, I: Template Synthesis of Cadmium(II) Complexes of Tetraazamacrocycles Derived from 2,3 Butanedione or Benzil[J]. Monatshefte für Chemie. 1991, 122: 683–689.
    [128] Rai, P.K., Prasad, R.N. Cr(III), Fe(III), and Co(II) Complexes ofTetra azamacrocycles Derived from 2,3 Butanedione or Benzil and 1,8 Diamino 3,6 diazaoctane[J]. Monatshefte für Chemie. 1994, 125: 385–394.
    [129] Xiaobin Zuo, YanLi, Hanfan Liu. Modi?cation effect of metal cations on the stereoselective hydrogenation of 2,3 butanedione[J]. Catal. Lett. 2001, 71: 3–4.
    [130] Jay J M. Antimicrobial Properties of Diacetyl[J]. Applied and Environ mental Microbiology, 1982, 44: 525–532.
    [131] G.J. Sun, K.H. Chae. Properties of 2,3 butanedione and 1 phenyl 1,2 propanedione as new photosensitizers for visible light cured dental resin composites[J]. Polymer. 2000, 41: 6205–6212.
    [132]谢海燕,尹笃林,董银红,等.丁酮气相催化氧化制丁二酮[J].湖南化工. 2000, 30(4): 22–23,26.
    [133]谢存明,闫延平,李自力.丁二酮制备新工艺研究[J].河南化工. 1998, 8: 11–13.
    [134]欧阳天惠,田红玉,张浩,等.丁二酮的合成研究[J].北京工商大学学报(自然科学版). 2008, 26(5): 1–4.
    [135] Krishnaswamy M A, Babel F J. Diacetyl production by culture of lactic acid producing Streptococci[J]. Journal of Dairy Science. 1951, 64: 1527–1539.
    [136] Chuang L F, Collins E B. Biosynthesis of diacetyl in bacteria and yeast[J]. Journal of Bacteriology. 1968, 95: 2083–2089.
    [137] Suomaleinen H, Ronkainen P. Mechanism of diacetyl formation in yeast fermentation[J]. Nature. 1968, 220: 792–793.
    [138]胡文效,魏彦锋,渊辛华.微生物发酵生产2,3丁二酮的研究[J].香料香精化妆品. 2006, 1: 1–4.
    [139] Aymes F, Monnet C, Corrieu G. Effect ofαacetolactate decarboxylase inactivation onαacetolactate and diacetyl production by Lactococcus lactis subsp. lactis biover diacetylactis[J]. Biosci Bioeng. 1999, 87: 87–92.
    [140]赵玲,王静云,包永明,等.丁二酮高产菌株的选育及发酵动力学分析[J].生物技术. 2007, 17(5): 59–64.
    [141]练敏,纪晓俊,黄和,等.香料2,3丁二酮的合成现状及展望[J].现代化工. 2008, 28(8): 29–32,34.
    [142]童遵兴.甲乙酮合成丁二酮[J].浙江化工. 1990, 22(4): 48–51.
    [143]韦宏.亟待规范丁二酮的生产和使用[J].行业之窗. 2006. 9: 21.
    [144] Fukuda O, Sakaguchi S, Ishii Y. A new strategy for catalytic Baeyer– Villiger oxidation of KA– oil with molecular oxygen using N– hydroxyphthalimide[J]. Tetrahedron Lett. 2001, 42: 3479–3481.
    [145]马叶芬,朱志鑫,林晓珊,等.顶空气相色谱/质谱法测定香精香科中丁二酮[J].广州化工.2010, 38(6): 161–162.
    [146] Alfredo Diaz, Francesc Ventura, Ma Teresa Galceran et al. Identi?cation of 2,3 butanedione (diacetyl) as the compound causing odor events at trace levels in the Llobregat River and Barcelona’s treated water (Spain)[J]. Journal of Chromatography A, 2004, 1034: 175–182.
    [147]李妍,邢慧敏,邵亚东,等.发酵乳酸中丁二酮和乙醛含量检测方法探讨[J].食品与发酵工业. 2008, 34(3): 157–159.
    [148]纪红兵,佘远斌.绿色氧化与还原[M].北京:中国石化出版社, 2005: 7–14.
    [149] Gong, Y.; Lin, L.; Shi, J.B. et al. Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides[J]. Mol. 2010, 15(11): 7946–7960.
    [150] Yan Gong, Lu Lin. Oxidative Decarboxylation of Levulinic Acid by Silver(I)/Persulfate[J]. Molecules. 2011, 16(3): 2714–2725.
    [151] Luo, M.F.; Zhong, Y.J.; Yuan, X.X. et al. TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation[J]. Appl. Catal., A: Gen. 1997, 162: 121–131.
    [152] Luo, M.F.; Fang, P.; He, M. et al. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J. Mol. Catal. A: Chem. 2005, 239: 243–248.
    [153] Torre Abreu, C.; Ribeiro, M.F.; Henriques, C. et al. NO TPD and H2 TPR studies for characterisation of CuMOR catalysts The role of Si/Al ratio, copper content and cocation[J]. Appl. Catal., B: Environ. 1997, 14: 261–272.
    [154] Mei Li, Zhaogang Liu, Yanhong Hu et al. Effects of the synthesis methods on the physicochemical properties of cerium dioxide powder[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2007, 301: 153–157.
    [155] V.D. Kosynkin; A.A. Arzgatkina; E.N. Ivanov et al. The study of process production of polishing powder based on cerium dioxide[J]. Journal of Alloys and Compounds. 2000, 303/304: 421–425.
    [156]刘强,陈志刚,赵晓兵,等.超声雾化反应法制备CeO2纳米粉体[J].中国稀土学报. 2008, 26(4): 516–520.
    [157]于强强,董园园,廖卫平,等.CeO2 Al2O3负载金催化剂用于水煤气变换反应的催化活性[J].燃料化学学报. 2010, 38(2): 223–229.
    [158] Mats Lundberg; Bj?rn Sk?rman; Fredrik Cesar et al. Mesoporous(介孔) thin ?lms of high surface area crystalline cerium dioxide[J]. Microporous and Mesoporous Materials. 2002, 54: 97–103.
    [159] OCONNELL M, MORRIS M A. New ceria based catalysts for pollution abatement[J] . Catal Today. 2000, 59(3/4): 387–393.
    [160] Lu J L,Gao H J,Shaikhutdinov S,et al. Gold supported on well ordered ceria films: nucleation, growth and morphology in CO oxidation reaction[J]. Catalysis Letters. 2007, 114(1/2): 8–16.
    [161]廖卫平,董园园,金明善,等. Au/Ce1-xZrxO4催化剂用于CO氧化及水气变换反应的研究[J].催化学报.2008, 29(2): 134–140.
    [162]蔡建信,罗来涛. Au/CeO2催化剂乙醇部分氧化制氢的研究[J].稀土.2007, 281(1): 80–83.
    [163] STAGG W ILLIAMSM S, NORONHA F B, FENDLEY G, et al. CO2 reforming of CH4 over Pt /ZrO2 catalysts promoted with La and Ce Oxides[J]. J Catal. 2000, 194(2): 240–249.
    [164]廖卫平,左进红,安立敦.Au/Al2O3/Al整体型催化剂的研究[J].烟台大学学报(自然科学与工程版). 2009, 22(1): 14–18.
    [165] Trapp, D.; Cooke, K. M.; Fischer, H. et al. Isoprene and its degradation products methyl vinyl ketone, methacrolein and dormaldehyde in an eucalyptus forest during the FIELDVOC’94 campaign in Portugal[J]. Chemos Glob Change Sci. 2001, 3: 295–307.
    [166] Iannone, R.; Koppmann. R.; Rudolph, J.12C/13C kinetic isotope effects of the gas phase reactions of isoprene, methacrolein, and methyl vinyl ketone with OH radicals[J]. Atmos. Environ. 2009, 43: 3103–3110.
    [167] Aschmann, S. M., Arey, J., and Atkinson, R.OH radical formation from the gas phase reactions of O3 with methacrolein and methyl vinyl ketone[J]. Atmos. Environ. 1996, 30(17): 2939–2943.
    [168] Gao, J.; Ma, G. N.; Li, Q. J. et al. Aza Morita–Baylis–Hillman reaction of ethyl (arylimino)acetate with methyl vinyl ketone and ethyl vinyl ketone[J]. Tetrahedron Lett. 2006, 47: 7685–7688.
    [169]陈志荣,李浩然,梁晓东,等.一种提高丁烯酮合成收率和纯度的工艺方法[P].中国: 00133038, 2001.6.6
    [170] Jiang, X.Y; Lou L.P.; Chen Y.X et al. Effects of CuO/CeO2 and CuO/γAl2O3 catalysts on NO + CO reaction[J]. J. Mol. Catal. A: Chem. 2003, 197: 193–205.
    [171] Guoxin Sun, Xiaolei Mu, Yang Zhang, et al. Rare earth metal modi?ed CuO/γAl2O3 catalysts in the CO oxidation[J]. Catalysis Communications. 2011, 12: 349–352.
    [172] Liu, W.; Flytzani Stephanopoulos, M. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts[J]. J.catal. 1995, 153: 317–332.
    [173] Vellaisamy Sridharan; J. Carlos Menendez. Cerium(IV) Ammonium Nitrate as a Catalyst in Organic Synthesis[J]. Chem. Rev. 2010, 110: 3805–3849

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700