高碳烃氧化裂解制低碳烯烃的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳烯烃在石化工业中起着举足轻重的作用。目前,其仍以高能耗、高CO_2排放的热裂解生产过程为主,热裂解的强吸热特性使其进一步发展的空间变小。
     本论文以正己烷、环己烷、异辛烷和正癸烷为模型化合物,对高碳烷烃经氧化裂解过程制低碳烯烃进行了研究。侧重对不同烷烃经气相氧化裂解(GOC)制低碳烯烃并联产一氧化碳过程及铂基催化剂催化的正己烷临氢氧化裂解催化过程进行了研究。论文的主要目的是,通过将氧气、氢气(或合成气)引入低碳烯烃生产过程,实现低碳烯烃生产的低能耗、低CO_2排放和高碳资源利用率;并试图为共同加工天然气和重质原料烃过程寻找结合点。
     不同原料烃的气相氧化裂解实验表明,与热裂解相比,气相氧化裂解在较低温度下就具有很高的烷烃转化率和高的烯烃收率;对难开环热裂解的环烷烃仍具有优良的裂解性能,所以适合加工富环烷烃的重烃组分。气相氧化裂解是一个高碳资源利用率的生产过程,除低碳烯烃外,其产物中的CO_x主要为CO,而CO_2的选择性低于1%。热力学计算结果表明,气相氧化裂解过程可在自热条件下进行,这将大大降低因燃料燃烧而向大气排放出的CO_2量。由于产物中相当量CO的存在,气相氧化裂解过程不适合生产纯的低碳烯烃,更适合为诸如加氢甲酰化等同时需要CO和低碳烯烃的过程提供原料。
     典型催化剂催化下的正己烷催化氧化裂解实验表明,CO_x的选择性很难控制,且烷烃转化率和烯烃选择性与气相氧化裂解相比不具竞争性。铂基催化剂存在条件下,向原料中添加氢气可大大降低产物中CO_x的选择性,进而提高烯烃选择性。合成气(H_2/CO)可代替纯氢作为氢源,这不但解决了氢源问题,而且还便于调节产物中氢气、CO和烯烃的比例,为天然气和重质原料的共同加工提供结合点。
Light alkenes play a significant role in the petrochemical industry. They are commercially prepared by the traditional pyrolysis with the characteristics of high-energy consumption and high CO2 emission. Due to its strong endothermic nature, the further development in the pyrolysis is inhibited.
    The oxidative cracking of model compounds, such as hexane, cyclohexane, isooctane and decane, were investigated in this paper. Emphases were put on the co-production of light alkenes and CO by the gas phase oxidative cracking (GOC) of above hydrocarbons and the oxidative cracking of hexane with the addition of hydrogen over platinum based catalysts. The aim of this paper is to decrease the energy consumption, reduce CO2 emission and realize the high efficient utilization of carbon resource during the process for the production of light alkenes by the introduction of oxygen, hydrogen (or syngas) and to find out if there exists a relationship between the utilization of natural gas and the processing of heavy feed.
    It had been demonstrated by our experiments that higher conversion of hydrocarbons and yield of light alkenes could be obtained in the GOC of various hydrocarbons than those in the pyrolysis. The GOC process was also fit for the cycloalkanes, the ring cleavage of which was known to be hard in the pyrolysis process. Therefore, the GOC process could process naphthenes rich heavy feed. Apart from light alkenes, CO prevailed in the produced COX while the selectivity to CO2 was always below 1 %, so the efficient utilization of carbon resources in the GOC process is high. Based on the thermodynamic calculations, the GOC process
    
    
    
    could proceed in an autothermic way, which would reduce greatly the discharging of
    CO2 from the external burning of fuel. Due to the considerable CO in the products, the GOC process would be fit for offering raw materials to such process as hydroformylation, which demands for a mixture of light alkenes and CO instead of pure light alkenes.
    In the catalytic oxidative cracking of hexane with three typical catalysts, the selectivity to COX could not be low enough and the conversion of hexane and yield of light alkenes could not compete with those in the GOC process. With the platinum based catalysts, the selectivity to COX could be significantly depressed and the selectivity to light alkenes could be correspondingly enhanced in the oxidative cracking of hexane with the addition of hydrogen. However, the hydrogen produced in the reactions could not compensate for that added in the feed. Syngas (H2 / CO) could replace the pure hydrogen in the oxidative cracking of hexane with the addition of hydrogen, which not only acted as a hydrogen resource but also adjusted the ratio of light alkenes / H2 / CO in the products. The usage of syngas in the oxidative cracking of hexane enlightens a way to co-process natural gas and heavy feed.
引文
[1] 陈滨.乙烯工学.第一版.北京:化学工业出版社,1997:5-6
    [2] 茅文星.烃类催化裂解制烯烃技术.乙烯工业,1996,8(1):35-44
    [3] Picciotti M. Oil Gas J, 1997, 95(25): 53-56
    [4] Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Murata K, Yoshimura Y, Mizukami F. Catalytic cracking of n-butane over rare
    
    earth-loaded HZSM-5 catalysts. Sekiyu Gakkaishi, 1999, 42(5): 307-314
    [5] Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Murata K, Yoshimura Y, Mizukami F. Catalytic cracking of n-butane over rare earth-loaded HZSM-5 catalysts. Stud. Surf. Sci. Catal., 1999, 125:449-456
    [6] Wakui K, Satoh K, Sawada G, Shiozawa K, Matano K, Suzuki K, Hayakawa T, Murata K, Yoshimura Y, Mizukami F. Analysis of nature of adsorption of hydrocarbons on rare earth-loaded HZSM-5 catalysts by pulse-injection method. Sekiyu Gakkaishi, 2000, 43(3): 218-224
    [7] Yoshimura Y, Kijima N, Hayakawa T, Murata K, Mizukami F, Matano K, Konishi T, Oikawa T, Saito M, Shiojima T, Shiozawa K, Wakui K, Sawada G, Sato K, Matsuo S, Yamaoka N. Catalytic cracking of naphtha to light olefins. Catalysis Surveys from Japan, 2000, 4(2): 157-167
    [8] Yoshimura Y, Matano K, Mizukami F. Catalytic cracking of naphtha to light olefins. Shokubai, 2001, 43(3): 218-223
    [9] 谢朝钢.制取低碳烯烃的催化裂解催化剂及其工业应用.石油化工,1997,26(12):825-828
    [10] 沙颖逊,崔中强,王明党,王国良,张洁.重质油裂解制烯烃的HCC工艺.石油化工,1999,28(9):618-621
    [11] 曾清泉.烃类催化裂解制乙烯.石油化工,1994,23(2):114-120
    [12] 程义贵,茅文星,贺英侃.烃类催化裂解制烯烃技术进展.石油化工,2001,30(4):311-314
    [13] 李小明,宋芙蓉.催化裂解制烯烃的技术进展.石油化工,2002,31(7):569-573
    [14] Hu Y C. Unconventional olefin processes. Hydrocarbon Process, 1982, 11:109-116
    [15] Compagnie francase de raffinage. Process for the production of olefins. UK patent 1,067,957 (1967)
    [16] Sampson R J. Improvements in and relating to the production of lower olefins. UK patent 976,966 (1964)
    [17] Chen Q, Schweitzer E J A, Oosterkamp P F V D, Berger R J, Smet C R H D, Marin G B. Oxidative pyrolysis of ethane. Ind. Eng. Chem. Res., 1997, 36:3248-3251
    
    
    [18] Choudhary V R, Rane V H, Rajput A M. Simultaneous thermal cracking and oxidation of propane to propylene and ethylene. AIChE J., 1998, 44:2293-2301
    [19] Morales E, Lunsford J H. Oxidative dehydrogenation of ethane over a lithium-promoted magnesium oxide catalyst. J. Catal., 1989, 118:255-265
    [20] Burch R, Crabb E M, Squire G D, Tsang S C. The importance of heterogeneous and homogeneous reactions in oxidative coupling of methane over chloride promoted oxide catalysts. Catal. Lett., 1989, 2:249-256
    [21] Nguyen K T, Kung H H. Generation of gaseous radicals by a V-Mg-O catalyst during oxidative dehydrogenation of propane. J. Catal., 1990, 122:415-428
    [22] Burch R, Crabb E M.. Homogeneous and heterogeneous contributions to the catalytic oxidative dehydrogenation of ethane. Appl. Catal. A, 1993, 97:49-65
    [23] Burch R, Crabb E M.. Appl. Catal. Homogeneous and heterogeneous contributions to the oxidative dehydrogenation of paopane on oxide catalysts. A, 1993, 100:111-130
    [24] Mulla S A R, Buyevskaya O V, Baerns M. A comparative study on non-catalytic and catalytic oxidative dehydrogenation of ethane to ethylene. Appl. Catal. A. 2002,226:73-78
    [25] 张新杰,庄伟,谢有畅.空石英管中乙烷氧化脱氢制乙烯.分子催化,1999,13(3):223-225
    [26] 葛庆杰,于春英,李文钊,徐恒泳.乙烷氧化裂解制乙烯.石油化工,2000,29(1):4-7
    [27] 葛庆杰,于春英,李文钊,徐恒泳.炼厂干气中的乙烷氧化裂解制乙烯.天然气化工,2000,25(5):1-4
    [28] 葛庆杰,于春英,李文钊,徐恒泳.乙烷-氧-水氧化裂解制乙烯反应的研究.化工科技,2000,8(4):9-12
    [29] Lemonidou A A, Stambouli A E. Appl. Catal. Catalytic and non-catalytic oxidative dehydrogenation of n-butane. A. 1998, 171: 325-332
    [30] 上海科学技术情报研究所.乙烯生产的裂解技术.第一版.上海:上海商务印刷厂,1973:9
    [31] Bhasin M M, Mccain J H, Vora B V, Tmai T, Pujadó P R. Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl. Catal. A. 2001, 221: 397-419
    
    
    [32] Watson R B, Ozkan U S. Mo loading effects over Mo/Si:Ti catalysts in the oxidative dehydrogenation of ethane J. Catal., 2002, 208:124-138
    [33] Thorsteinson E M, Wilson T P, Young F G, Kasai P H. The oxidative dehydrogenation of ethane over catalysts containing mixed oxides of molybdenum and vanadium. J. Catal., 1978, 52:116-132
    [34] Ruth K, Kieffer R, and Burch R. Mo-V-Nb oxide catalysts for the partial oxidation of ethane Ⅰ. preparation and structural characterisation. J. Catal., 1998, 175:16-26
    [35] Ruth K, Burch R, and Kieffer R. Mo-V-Nb oxide catalysts for the partial oxidation of ethane Ⅱ. chemical and catalytic properties and structure function relationships. J. Catal., 1998, 175:27-39
    [36] Ueda W, Chen N F, and Oshihara K. Hydrothermal synthesis of Mo-V-M-O complex metal oxide catalysts active for partial oxidation of ethane. Chem. Commun., 1999:517-518
    [37] Kutyrev M, Cavani F, Trifiro F. Catalyst and process for oxidative dehydrogenation of ethane into ethylene. EUR patent 0544372A2 (1993)
    [38] Magistro J. Process for the preparation of ethylene and vinyl chloride from ethane in the presence of water. US patent 5,087,791 (1992)
    [39] Liu Y, Xue J, Liu X, Hou R, Li S. Oxidative dehydrogenation of ethane over Na2WO4-Mn/SiO2 catalyst using oxygen and carbon dioxide as oxidants. Stud. Surf. Sci. Catal., 1998, 119:593-597
    [40] Liu Y, Zhang Y, Liu X, et al. Chem. Lett., 1998:1057-1058
    [41] Dang Zh, Gu J, Lin J, Yang D. V-BaCO_3 catalysts for the oxidative dehydrogenation of ethane. Catal. Lett., 1998, 54:129-132
    [42] Zhou X P, Chao Z S, Luo J Z, Wan H L, Tsai K R. Oxidative dehydrogenation of ethane over BaF_2-LaOF catalysts. Appl. Catal. A., 1995, 133:263-268
    [43] Ge Q, Zhaorigetu B, Yu C, Li W, Xu H. Ocidative dehydrogenation of ethane and paopane over Mn-based catalysts. Catal. Lett., 2000, 68:59-62
    [44] Ge Q J, Li W Zh, Yu C Y, Xu H Y. Oxidative dehydrogenation of ethane to ethylene over LiCl/MnOx/PC catalysts. Chin. J. Chem., 2001, 19(1): 63-66
    [45] Au C T, Chen K D, Dai H X, Liu Y W, Ng C F. The modification of Ho_2O_3 with
    
    Bacl_2 for the oxidative dehydrogenation of ethane. Appl. Catal. A, 1999, 177:185-191
    [46] Dai H X, Ng C F, Au C T. The catalytic performance and characterization of a durable perovskite-type chloro-oxide SrFeO_(3-q)Cl_q catalyst selective for the oxidative dehydrogenation of ethane. Catal. Lett., 1999, 57:115-120
    [47] Dai H X, He H, Au C T. Ethane Oxidative Dehydrogenation over halogenated Bi_2Sr_2CaCu_2O_(8-q) Catalysts. Ind. Eng. Chem. Res., 2002, 41:37-45
    [48] Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki K. Excellent performance of lithium doped slfated zirconia in oxidative dehydrogenation of ethane. Chem. Commun., 1999:103-104
    [49] Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki K. Lithium-chloride-promoted sulfated zirconia catalysts for the oxidative dehydrogenation of ethane. Catal. Lett., 1999, 59:173-178
    [50] Lin S W, Kim Y C, Ueda W. Bull. Complex metal halide oxides(2). layered complex metal chloride oxides having the X1X2 structure as catalysts for the oxidative dehydrogenation of ethane. Chem. Soc. Jpn., 1998, 71: 1089-1094
    [51] Ueda W, Lin S W, Tohmoto I. Highly selective dehydrogenation of ethane to ethene over layered complex metal chloride oxide catalysts. Catal. Lett., 1997, 44:241-245
    [52] Fuchs S, Leveles L, Seshan K, Leffert L, Lemonidou A, Lercher J A. Oxidative dehydrogenation and cracking of ethane and propane over LiDyMg mixed oxides. Topics in Catalysis, 2001, 15(2-4): 169-174
    [53] Chang Y F, Somorjai G A, Heinemann H. Oxydehydrogenation of ethane over ZSM-5 zeolite catalysts Effect of steam. Appl. Catal. A, 1993, 96:305-318
    [54] Chang Y F, Somorjai G A, Heinemann H. An ~(18)O_2 temperature-programmed isotope exchange study of transition-metal-containing ZSM-5 zeolites used for oxydehydrogenation of ethane. J. Catal., 1995, 154:24-32
    [55] Concepción P, Corma A, López Nieto J M, Pérez-Pariente J. Selective oxidation of hydrocarbons on V- and/or Co-Containing aluminophosphate(MeAPO-5) using molecular oxygen. Appl. Catal. A, 1996, 143:17-28
    [56] Marchese L, Frache A, Gatti G, Coluccia S, Lisi L, Ruoppolo G, Russo G, Pastore
    
    H O. Acid SAPO-34 catalysts for oxidative dehydrogenation of ethane. J. Catal.,2002, 208:479-484
    [57] Lisi L, Marchese L, Pastore H O, Frache A, Ruoppolo G, Russo. Evaluating the catalytic performances of SAPO-34 catalysts for the oxidative dehydrogenation of ethane. Topics in Catalysis, 2003, 22 (1-2): 95-99
    [58] Zhang Q, Wang Y, Ohishi Y, Shishido T, Takehira K. Vanadium-containing MCM-41 for partial oxidation of lower alkanes. J. Catal., 2001, 202:308-318
    [59] Miller J E, Gonzales M M, Evans L, Sault A G, Zhang C, Rao R, Whitwell G, Maiti A, King-Smith D. Oxidative dehydrogenation of ethane over iron phosphate catalysts. Appl. Catal. A, 2002, 231:281-292
    [60] Ji L, Liu J. Excellent promotion by lithium of a lanthanum-calcium oxide catalyst for oxidative dehydrogenation of ethane to ethane. Chem. Commun., 1996:1203
    [61] Ji L, Liu J, Chen X, Li M. The oxidative dehydrogenation of ethane over alkali-doped lanthanum-calcium oxide catalysts. Catal. Lett., 1996, 39:247-252
    [62] Ciambelli P, Lisi L, Pirone R, Ruoppolo G, Russo G. Comparison of behaviour of rare earth containing catalysts in the oxidative dehydrogenation of ethane. Catal. Today, 2000, 61:317-323
    [63] Chao Z S, Ruckenstein E. A comparison of catalytic oxidative dehydrogenation of ethane over mixed V-Mg oxides and over those prepared via a mesoporous V-Mg-O pathway. Catal. Lett., 2003, 88(3-4): 147-154
    [64] Cavani F, Trifirò. The oxidative dehydrogenation of ethane and propane as an alternative way for the production of light olefins. Catal. Today, 1995, 24:307-313
    [65] Ba(?)ares M A. Supported metal oxide and other catalysts for ethane conversion: a review. Catal. Today, 1999, 51: 319-348
    [66] Donsì F, Pirone R, Russo G. Oxidative dehydrogenation of ethane over a perovskite-based monolithic reactor. J. Catal., 2002, 209:51-61
    [67] Wang H, Cong Y, Yang W. High selectivity of oxidative dehydrogenation of ethane to ethylene in an oxygen permeable membrane reactor. Chem. Commun.,2002:1468-1469
    [68] Wang H, Cong Y, Yang W. Continuous oxygen ion transfermediumas a catalyst
    
    for high selective oxidative dehydrogenation of ethane. Catal. Lett., 2002, 84(1-2):101-106
    [69] Rulkens R, Tilley T D. A molecular precursor route to acitve and selective vanadia-silica-zirconia heterogeneous catalysts for the oxidative dehydrogenation of propane. J. Am. Chem. Soc., 1998, 120:9959-9960
    [70] Viparelli P, Ciambelli P, Lisi L, Ruoppolo G, Russo G, Volta J C. Oxidative dehydrogenation of propane over vanadium and niobium oxides supported catalysts. Appl. Catal. A, 1999, 184:291-301
    [71] Fang Z M, Hong Q, Zhou Z H, Dai S J, Weng W Z, Wan H L. Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. Catal. Lett., 1999, 61:39-44
    [72] Kondratenko E V, Baerns M. Catalytic oxidative dehydrogenation of propane in the presence of O2 and N2O-the role of vanadia distribution and oxidant activation. Appl. Catal. A, 2001, 222:133-143
    [73] Zhaorigetu B, Kieffer R, Li W. Investigations on the promoting effect of metal oxides on La-V-O catalyst in propane oxidative dehydrogenation. Catal. Lett., 2001,73(2-4): 133-136
    [74] Zhou R, Cao Y, Yan S, Deng J, Liao Y, Hong B. Oxidative dehydrogenation of propane over mesoporous HMS silica supported vanadia. Catal. Lett., 2001, 75(1-2):107-112
    [75] Solsona B, Blasco T, Nieto J M L, Pe(?)a M L, Rey F, Vidal-Moya A. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes. J. Catal., 2001, 203:443-452
    [76] Argyle M D, Chen K, Bell A T, Iglesia E. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia. J. Catal.,2002, 208:139-149
    [77] Machli M, Heracleous E, Lemonidou A A. Effect of Mg addition on the catalystic performance of V-based catalysts in oxidative dehydrogenation of propane Appl. Catal. A, 2002, 236:23-34
    [78] Samson K, Klisi(?)ska A, Gressel I, Grzybowska B. Effect of the rhenium additive to VOx/TiO_2 and MoOx/TiO_2 catalysts on their properties in oxidative
    
    dehydrogenation of propane. React. Kinet. Catal. Lett., 2002, 77(2): 309-315
    [79] Pak C, Bell A T, Tilley T D. Oxidative dehydrogenation of propane over vanadia-magnesia catalysts prepared by thermolysis of OV(OtBu)_3 in the presence of nanocrystalline MgO. J. Catal., 2002, 206:49-59
    [80] Barbero B P, Cadus L E. Vanadium species: Sm-V-O catalytic system for oxidative dehydrogenation of propane. Appl. Catal. A, 2003, 244:235-249
    [81] Kubacka A, Wloch E, Sulikowski B, Valenzuela R X, Corberán V C. Oxidative dehydrogenation of propane on zeolite catalysts. Catal. Today, 2000, 61:343-352
    [82] Wang S, Murata K, Hayakawa T, Hamakawa S, Suzuki K. Propane oxidative dehydrogenation over nickel suported on sulfated zirconia. Chem. Lett., 1999:25-26
    [83] Leveles L, Fuchs S, Seshan K, Lercher J A, Lefferts L. Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts. Appl. Catal. A, 2002,227:287-297
    [84] Tsikoyiannis J G, Stern D L, Grasselli R K. Metal oxides as selective hydrogen combustion (SHC) catalysts and their potential in light paraffin dehydrogenation. J. Catal., 1999, 184:77-86
    [85] Al-Zahrani S M, Jibril B Y, Abasaeed A E. Activities of r-Al_2O_3-supported methal oxide catalysts in propane oxidative dehydrogenation. Catal. Lett., 2003,85(1-2): 57-67
    [86] Cherian M, Gupta R, Rao M S, Deo G. Effet of modifiers on the reactivityof Cr_2O_3/Al_2O_3 and Cr_2O_3/TiO_2 catalysts for the oxidative dehydrogenation of propane. Catal. Lett., 2003, 86(4): 179-189
    [87] Dury F, Gaigneaux E M, Ruiz P. The active role of CO_2 at low temperature in oxidation processes: the case of the oxidative dehydrogenation of propane on NiMoO_4 catalysts. Appl. Catal. A, 2003, 242:187-203
    [88] Dury F, Centeno M A, Gaigneaux E M, Ruiz P. An attempt to explain the role of CO_2 and N_2O as gas dopes in the feed in the oxidative dehydrogenation of propane. Catal. Today, 2003, 81:95-105
    [89] Creaser D, Andersson B, Hudgins R R, Silveston P L. Cyclic operation of the oxidative dehydrogenation of prpane. Chem. Eng. Sci., 1999, 54:4437-4448
    [90] Alfonso M J, Julbe A, Farrusseng D, Menéndez M, Santamaría J. Oxidative
    
    dehydrogenation of propane on V/Al_2O_3 catalytic membranes. Effect of the type of membrane and reactant feed configuration. Chem. Eng. Sci., 1999, 54:1265-1272
    [91] Dejoz A, López Nieto J M, Márquez F, Vázquez M I. The role of molybdenum in Mo-doped V-Mg-O catalysts during the oxidative dehydrogenation of n-butane. Appl. Catal. A, 1999, 180:83-94
    [92] Téllez C, Abon M, Dalmon J A, Mirodatos C, Santamaría J. Oxidative dehydrogenation of butane over VMgO catalysts. J. Catal., 2000, 195: 113-124
    [93] Marcu I -C, Sandulescu I, Millet J -M M. Oxidehydrogenation of n-butane over tetravalent metal phosphates based catalysts. Appl. Catal. A, 2002, 227:309-320
    [94] Larese C, Campos-Martin J M, Calvino J J, Blanco G, Fierro J L G, Kang Z C. Alumina- and alumina-zirconia-supported Pt-Sn bimetallics: microstructure and performance for the n-utane ODH reaction. J. Catal., 2002, 208:467-478
    [95] Kijima N, Matano K, Saito M, Oikawa T, Konishi T, Yasuda H, Sato T, Yoshimura Y. Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst. Appl. Catal. A, 2001, 206:237-244
    [96] Hickman D A, Schmidt L D. Production of syngas by direct catalytic oxidation of methane. Science, 1993, 259:343-346
    [97] Goetsch D A, Schmidt L D. Microsecond catalytic partial oxidation of alkanes. Science, 1996, 271:1560-1562
    [98] Bodke A S, Olschki D A, Schmidt L D, Ranzi E. High selectivities to ethylene by partial oxidation of ethane. Science, 1999, 285:712-715
    [99] Huff M, Schmidt L D. Ethylene formation by oxidative dehydrogenation of ethane over monoliths at very short contact times. J. Phys. Chem., 1993, 97:11815-11822
    [100] Huff M, Schmidt L D. Production of olefins by oxidative dehydrogenation of propane and butane over monoliths at short contact times. J. Catal., 1994, 149:127-141
    [101] Huff M, Schmidt L D. Oxidative dehydrogenation of isobutane over monoliths at short contact times. J. Catal., 1995, 155:82-94
    [102] Schmidt L D, Siddall J, Bearden M. New ways to make old chemicals. AIChE J,2000, 46(8): 1492-1495
    
    
    [103] Bodke A, Henning D, Schmidt L D. A comparison of H_2 addition to 3 ms partial oxidation. Catal. Today, 2000, 61:65-72
    [104] Dente M, Beretta A, Faravelli T, Ranzi E, Abbá A, Motarbartolo M. Ethylene production via partial oxidation and pyrolysis of ethane. Stud. Surf. Sci. Catal., 2001,136:313-318
    [105] Dietz Ⅲ A G, Carlsson A F, Schmidt L D. Partial oxidation of C5 and C_6 alkanes over monolith catalysts at short contact times. J. Catal., 1996, 176:459-473
    [106] O'Connor R P, Klein E J, Henning D, Schimidt L D. Tuning millisecond chemical reactors for the catalytic partial oxidation of cyclohexane. Appl. Catal. A,2003: 238:29-40
    [107] Krummenacher J J, West K N, Schmidt L D. Catalytic partial oxidation of higher hydrocarbons at millisecond contact times: decane, hexadecane, and diesel fuel. J. Catal., 2003, 215:332-343
    [108] Iordanoglou D I, Schmidt L D. Oxygenate formation from n-butane oxidation at short contact times: different gauze sizes and multiple steady states. J. Catal., 1998,176:503-512
    [109] Iordanoglou D I, Bodke A S, Schmidt. Oxygenates and olefins from alkanes in a single-gauze reactor at short contact times. J. Catal., 1999, 187:400-409
    [110] O'Connor R P, Schmidt L D. Catalytic partial oxidation of cyclohexane in a single-gauze reactor. J. Catal., 2000, 19l: 245-256
    [111] O'Connor R P, Schmidt L D. C_6 oxygenates from n-hexane in a single-gauze reactor. Chem. Eng. Sci., 2000, 55:5693-5703
    [112] O'Connor R R, Schmidt L D. Oxygenates and olefins from catalytic partial oxidation of cyclohexane and n-hexane in single-gauze chemical reactions. Stud. Surf. Sci. Catal., 2001, 133:289-296
    [113] O'connor R P, Schmidt L D, Deutschmann O. Simulating cyclohexane millisecond oxidation: coupled chemistry and fluid dynamics. AIChE. J., 2002, 48(6):1241-1256
    [114] Beretta A, Forzatti P, Ranzi E. Production of olefins via oxidative dehydrogenation of propane in autothermal conditions. J. Catal., 1999, 184:469-478

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700