用户名: 密码: 验证码:
Exiguobacterium sp.TL的性能及其处理高盐偶氮染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用高效耐盐偶氮染料降解微生物探索高效、稳定脱色并彻底矿化偶氮染料废水的生物处理工艺。考察了染料浓度、盐度及金属离子对野生菌群宏观处理效果及微观群落结构的影响;从野生土壤菌群中筛选耐盐偶氮还原菌株,对其进行鉴定及特性进行考察,并考察其与氧化还原介体的耦合作用强化偶氮脱色过程;针对偶氮染料脱色中间产物矿化难的问题,利用青霉菌-细菌联合体系改善了脱色过程及矿化程度。主要包括如下研究内容:
     以野生土壤微生物群落为研究对象,驯化其对偶氮染料进行脱色,考察了染料浓度、盐度及金属离子对菌群脱色不同偶氮染料的影响。在一定的浓度范围内,结构相对简单的偶氮染料脱色过程受初始染料浓度影响较小,而结构复杂的染料脱色速率会随着初始浓度的提升明显下降。盐度的提升会抑制染料的生物脱色过程,但随着驯化时间的延长,活性会有所恢复,说明菌群具有一定的耐盐能力。一些金属离子会对菌群的脱色活性产生抑制作用,1 mmol/L的不同金属离子对脱色过程的抑制作用顺序为:Cu2+>Al3+和Zn2+>Mg2+、Ca2+和pb2+;随着离子浓度的提升,Al3+和Zn2+产生的抑制作用会增强,而Mg2+和Ca2+的影响几乎不变。DGGE指纹图谱一定程度上显示了群落结构在不同条件下的动态变化,序列分析结果显示,优势菌种主要属于Bacillus、Pseudomonas、Sedimentibacter、Clostridiales、Streptomyces等菌属。
     从该野生土壤群落中分离得到1株耐盐偶氮染料脱色菌,命名为TL。通过形态观察、生理生化和16S rDNA序列分析,确定其归属于Exiguobacterium属,其16S rDNA全序列登录GenBank数据库,序列号为EU159578。首次验证了该菌属具有耐盐偶氮还原功能。
     以活性艳红X-3B为目标物,考察了菌株TL的基本特性,确定了其生长、降解的最佳条件为:接种量6%(v/v),pH=5.4-7.0,温度为30-40℃,盐度(NaCl)≤150g/L。相比于Na+和K+的影响,Mg2+和Ca2+的加入能够促进菌株TL对偶氮染料的脱色,而Al3+、Zn2+、Fe3+和Cu2+则会不同程度上抑制菌株TL的活性。菌株TL不能很好的利用葡萄糖、蔗糖、乳糖等作为共代谢基质进行脱色,但铵盐、硝酸盐和亚硝酸盐均为较适宜的无机氮源。其脱色反应符合一级反应动力学规律,当初始浓度小等于700 mg/L时反应动力学常数为0.22-0.26 h-1,而当浓度在800-1000 mg/L时,反应动力学常数明显下降。通过UV-Vis、LC-MS等分析手段验证,菌株TL对偶氮染料的脱色过程符合典型生物还原规律。
     氧化还原介体——蒽醌对菌株TL的完整细胞还原脱色活性艳红X-3B过程具有催化作用,其最佳条件为:染料浓度小等于75 mg/L,蒽醌浓度0.6 g/L,接种量6 g/L(湿重),温度30-40℃(30℃最佳),pH值为3.02-4.00(主要为吸附作用)和7.00-9.08(主要为生物还原作用);相比于Na+,Mg2+和Ca2+可以促进脱色过程,Zn2+、Al3+、Fe3+和Cu2+则会不同程度上抑制脱色过程。利用菌TL的生物强化作用和蒽醌介体的催化作用,模拟脱色处理酸性大红GR废水,结果显示,生物强化作用能够使工艺启动时间比非强化体系缩短了约2.5 d,而蒽醌的加入能够将低负荷和高负荷进水条件下的脱色速率分别提高1000 mg/(g·d)和500 mg/(g·d),同时满足了快速启动和稳定、高效运行的双重目的,但蒽醌会对未经驯化的体系有抑制作用,需在工艺启动完毕后加入。PCR-DGGE结果显示,采用分步耦合强化的启动模式下,微生物群落结构稳定,强化菌株能够与活性污泥中的其他优势菌种共存,说明其具有较强的环境适应能力。
     考察了具有偶氮脱色能力的青霉菌Penicillium sp. QQ-细菌Exiguobacterium sp. TL联合生物体系对高盐X-3B废水的脱色过程及脱色中间产物的初步解析,并利用该联合体系建立新型的“厌氧-好氧”组合工艺对高盐X-3B废水进行矿化处理。首先利用表面响应法对联合体系的最佳脱色条件进行了模拟,得出最佳条件为:青霉菌QQ接种量132.67 g/L,细菌TL接种量1.09 g/L,葡萄糖浓度2.25 g/L,酵母粉浓度2.10g/L,温度33.0℃,pH值6.50,初始X-3B浓度235.14 mg/L;ANOVA方差分析结果显示该模型及各考察因素对脱色过程均具有显著性影响,而其中青霉菌QQ的接种量与酵母粉浓度的协同作用具有显著性影响。青霉菌QQ、细菌TL联合作用条件下以及细菌TL单独作用条件下X-3B脱色产物的HPLC图谱具有明显的差别,根据图谱及宏观现象推断前者主要为小分子大极性化合物,为芳香胺化合物的进一步分解产物,而后者则很有可能为对应的芳香胺化合物及其自发氧化、聚合产物。通过比较确立了新型的“厌氧-好氧”组合生物工艺,厌氧及好氧生物单元的接种物分别为青霉菌QQ+细菌TL和活性污泥,200mg/L的活性艳红X-3B经该组合工艺处理后,可被完全矿化。
The purpose of this dissertation is to establish a high-salt azo dye treatment method which not only can effectively and stably decolorize but also mineralize dyes. The study was started from the investigation of efficient salt-tolerant and azo dye-reducing microbial community, mainly including the impact of initial dye concentration, salinity and metal ions from. An efficient salt-tolerant azo dye decolorizing bacterial strain was isolated, identified and its characteristics were investigated. Then the co-augmentation effect of the strain and anthraquinone on azo dye biodecolorization by activity sludge system for further improvement was studied. Finally, the synergism of a Penicillium and bacterial strain was used to promote the mineralization of azo dyes by only microbial treatment method. The contents of this dissertation were as follows:
     The influences of initial dye concentration, salinity and metal ions on azo dye decolorization by a wild soil microbial consortium were investigated. The results showed that when the initial concentration or salinity increased, the impact to the decolorization of simpler-structure dyes was less. Some metal ions would inhibit the activity of microbial community and the order of inhibition was as follows:Cu2+> Al3+ and Zn2+> Mg2+, Ca2+and Pb2+. Besides, as the concentration of metal ions increased, the inhibition effects of Al3+and Zn2+ increased, but there was little change for Mg2+ and Ca2+. DGGE fingerprint showed the dynamic shifts of microbial community structures and the dominant species were mainly belonging to Bacillus, Pseudomonas, Sedimentibacter, Clostridiales, and Streptomyces.
     A salt-tolerant bacterial strain which could decolorize azo dyes was isolated and was named as TL. It was identified as genus Exiguobacterium by morphology, physiology and biochemistry and 16S rDNA sequence analysis. The 16S rDNA sequence of strain TL had been deposited in the GenBank database under accession number EU159578. It was identified as a novel azo dye-reducing and salt-tolerant bacterium according to the previous reports.
     The characteristics of strain TL were investigated and the optimal conditions for growth and decolorization were:inoculum amount 6% (v/v), pH value 5.4-7.0, temperature 30-40℃, salinity (NaCl)≤15%(w/v). Mg2+ and Ca2+ promoted decolorization, however, Al3+, Zn2+, Fe3+ and Cu2+ could inhibite the process in different extent. Strain TL could not decolorize azo dyes efficiently when using glucose, sucrose and lactose as carbon source. Whereas, it could grow and decolorize azo dyes depending on several inorganic nitrogen source. Decolorization of active brilliant red X-3B in the medium containing peptone as carbon source followed the first-order reaction kinetics. The kinetics constants were about 0.22-0.26 mg/(L-h) when the initial dye concentrations were not more than 700 mg/L, and it decreased to nearly a half when the initial dye concentrations were higher than 700 mg/L. Decolorization of azo dye by strain TL was identified as typical azo reduction pathway by UV-Vis and LC-MS.
     The redox mediator anthraquinone could catalyze the reduction of azo dyes by the whole cells of strain TL and the optimal conditions were:initial dye concentration less than 75 mg/L, anthraquinone concentration 0.6 g/L, inoculum amount 6 g/L (wet weight), temperature 30-40℃(optimum of 30℃), pH value 3.0-4.0 (mainly bio-adsorption) and 7.0-9.0 (mainly bio-reduction). Compared with Na+, Mg2+ and Ca2+ could promote the decolorization; Zn2+, Al3+, Fe3+and Cu2+ inhibited it. The activated sludge system which was started-up by bioaugmentation with strain TL firstly and then enhanced by anthraquinone was determined as the most efficient mode of co-augmented system. This process realized both of fast-start-up and efficient & stable operation. Compared with non-augmented system, the start-up time was 2.5 d shorter and the color removal loadings were about 1000 mg/(g-d) (initial dye concentration was about 700 mg/L),500 mg/(g-d) (initial dye concentration was about 1000 mg/L), respectively. The results of PCR-DGGE showed that the the consortium was stable and strain TL could co-exist with the aboriginal microorganisms in the activated sludge.
     Penicillium sp. strain QQ was introduced to the azo dye wastewater treatment system in order to improve the biodegradability of the effluence of anaerobic unit. The optimal decolorization conditions by the synergism of strains TL and QQ was optimized and simulated by response surface methodology (RSM), and the results were:inoculum of strains TL and QQ were 1.09 g/L and 132.67 g/L (wet weight), concentrations of glucose and yeast extract were 2.25 g/L and 2.10 g/L, temperature 33.0℃, pH value 6.50, initial concentration of active brilliant red X-3B 235.14 mg/L, respectively. The inoculum of strain QQ and yeast extract concentration showed synergistic effect on decolorization. ANOVA results demonstrated that the model and tested factors were significant to decolorization by the synergism system. HPLC results showed that some compounds of low molecular and high polarity might be produced in the synergism system. Whereas, the major decolorization products in the system only contained bacterial strain TL might be high molecular compounds, which was inferred as corresponding aromatic amines and their auto-oxidation and auto-polymerization products. The anaerobic unit inoculated with strains QQ and TL followed by the aerobic unit inoculated with activated sludge were chosen as the optimal combined biological process. The dye could be mineralized with this combined process.
引文
[1]邱木清.偶氮染料废水的植物—微生物复合净化系统的研究[D].浙江:浙江大学,2007.
    [2]Cumming J W, Giles C H, McEachran A E. A study of the photochemistry of dyes on proteins and other substrates [J]. Journal of the Society of Dyers and Colourists,1956,72:373-380.
    [3]李庄,曾光明,高兴斋.偶氮染料废水处理研究现状及其发展方向[J].湖南化工,2000,30(6):12-15.
    [4]李丽华.聚毗咯固定化介体强化偶氮染料和硝基化合物厌氧生物转化[D].辽宁:大连理工大学,2008.
    [5]Sisley P, Porcher C C. Physiology. On the fate of staining substances in the animal organism [J]. C R Seance Acad Sci,1911,152:1062-1064.
    [6]Yoshida T. Hepatoma induced by feeding with o-aminoazotoluene. Proc Jpn Acad.1932,8:464-468.
    [7]Kinosita R. Studies on the cancerogenic azo and related compounds [J]. Yale J Biol Med,1940,12: 287-300.
    [8]钟金汤.偶氮染料及其代谢产物的化学结构与毒性关系的回顾与前瞻[J].环境与职业医学,2004,21(1):58-62.
    [9]Vaidya A A, Datye K V. Environmental pollution during chemical processing of synthetic fibres [J]. Colorage,1982,14 (1):3-10.
    [10]黄玉.偶氮染料废水的处理方法及研究进展[J].宜宾学院学报.2007,6(6):54-57.
    [11]宋智勇,周集体,王竞 等.偶氮染料废水的生物脱色研究进展[J].环境科学与技术.2003,26(增):78-80
    [12]Liu Z, Chen H, Shaw N, et al. Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis [J]. Archives of Biochemistry and Biophysics,2007,463:68-77.
    [13]Blumel S, Knackmuss H, Stolz A. Molecular Cloning and Characterization of the Gene Coding for the Aerobic Azoreductase from Xenophilus azovorans KF46F [J]. Appl Environ Microbiol,2002,68(8): 3948-3955.
    [14]Ooi T, Shibata T, Sato R, et al. An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.:functional expression and enzymatic characterization [J]. Appl Microbiol Biotechnol,2007,75(2):377-386.
    [15]Buitron G, Quezada M Moreno G. Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter [J]. Bioresour Technol,2004,92:143-149.
    [16]刘生浩,史玉英,娄无忌 等.青霉菌P-93对偶氮染料的降解特性研究[J].应用与环境生物学报.1995,1(2):168-172.
    [17]Blumel S, Contzen M, Lutz M, et al. Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4-sulfoazobenzene as the sole source of carbon and energy [J]. Appl Environ Microbiol,1998,64(6):2315-2317.
    [18]Horitsu H. Degradation ofp-aminoazobenzene by Bacillus subtilis [J]. Eur J Appl Microbial,1977,14: 217-224.
    [19]Hayase N, Kouno K, Ushio K. Isolation and characterization of Aeromonas sp. B-5 capable of decolorizing various dyes [J]. Appl Microbiol Biotechnol,2000,90(5):570-573.
    [20]Hong Y, Xu M, Guo J, et al. Respiration and Growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor [J]. Appl Environ Microbiol,2007,73(1):64-72.
    [21]Wong P K, Yuen P Y. Decolorization and biodegradation ofmethyl red by Klebsiella pneumoniae RS-13 [J]. Water Res,1996,30(7):1736-1744.
    [22]Pourbabaee A A, Malekzadeh F, Sarbolouki M N, et al. Aerobic decolorization and detoxification of a disperse dye in textile effluent by a new isolate of Bacillus sp. [J]. Biotechnol Bioeng.2006,93(4): 631-635.
    [23]Xu M, Guo J, Sun G. Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions [J]. Appl Microbiol Biotechnol.2007,76(3):719-726.
    [24]刘兴旺,戴友芝.厌氧生物法处理活性染料废水的研究[J].湘潭大学自然科学学报.2005,27(2):116-119.
    [25]dos Santos A B, de Madrid M P, Stams A J M, et al. Azo Dye reduction by mesophilic and thermophilic anaerobic consortia [J]. Biotechnol Prog 2005,21:1140-1145
    [26]Eaton D. Fungal decoloriaztion of kraft bleach plant effluent [J]. Tappi T,1980, (63):103-109.
    [27]Sumathi S, Manju B S. Uptake of reactive textile dyes by Aspergillus foetidus [J]. Enzyme Microb Technol,2000,27:347-355.
    [28]Tien M, Kirk T K. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds [J]. Science,1983,221:661-663.
    [29]Kuwahara M, Glenn K J, Morgan M A, et al. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium [J]. FEBS Lett, 1984,169:247-250.
    [30]Liu J. Degradation of Azo dyes by Algae [J]. Environ Pollut,1992,75(3):273-273.
    [31]Barr P, Aust S D. Mechanisms white rot fungi use to degrade pollutants [J]. Environ Sci Technol,1994, 28(2):78-87.
    [32]Omar H H. Algal decolorization and degradation of monoazo and diazo dyes [J]. Pak J Biol Sci,2008, 11(10):1310-1316.
    [33]Nakanishi M, Yatome C, Ishida N, et al. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase [J]. J Biol Chem,2001,276(49):46394-46399.
    [34]Chen H Z, Wang R F, Cerniglia C E. Molecular cloning, overexpression, purification and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis [J]. Protein Expr Purif,2004,34:302-310.
    [35]Blumel S, Knackmuss H J, Stolz A. Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F [J]. Appl Environ Microbiol,2002,68: 3948-3955.
    [36]Yan B, Zhou J T, Wang J, et al. Expression and characterization of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737 [J]. FEMS Microbiol Lett,2004,236:129-136.
    [37]Blumel S, Stolz A. Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24 [J]. Appl Microbiol Biotechnol,2003,62:186-190.
    [38]Suzuki Y, Yoda T, Ruhul A, et al. Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1-2 isolated from soil [J]. J Biol Chem,2001,276(12):9059-9065.
    [39]Moutaouakkil A, Zeroual Y, Dzayri F Z, et al. Purification and partial characterization of azoreductase from Enterobacer agglomerans [J]. Arch Biochem Biophys,2003,413:139-146.
    [40]Maier J, Kandelbauer A, Erlacher A, et al. A new alkali-thermostable azoreductase from Bacillus sp. strain SF [J]. Appl Environ Microbiol,2004,70:837-844.
    [41]Hardin L R, Cao H T, Wilson S S. Decolorization of textile waste water by selective fungi [J]. Textile Chemist and Colorist and American Dyestuff Reporter,2000,32(11):38-42.
    [42]Pasti-Grigsby M B, Paszczynski A, Goszczynski S, Crawford D L, et al. Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium [J]. Appl Environ Microbiol,1992,58 (11):3605-3613
    [43]Russ R, Rau J, Stolz A. The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria [J]. Appl Environ Microbiol,2000,66(4):1429-1434.
    [44]Keck A, Klein J, Kudlich M, et al. Reduction of azo dyes by mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6 [J]. Appl Environ Microbiol,1997,63:3684-3690.
    [45]Keck A, Conradt D, Mahler A, et al. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6 [J]. Microbiology.2006,152(Pt 7):1929-1940.
    [46]Rafii F, Franklin W, Cerniglia C E. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora [J]. Appl Environ Microbiol,1990,56(7):2164-2151.
    [47]Rau J, Stolz A. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azoreductases [J]. Appl Environ Microbiol,2003,69(6): 3448-3455.
    [48]Maier J, Kandelbauer A, Erlacher A, et al. A new alkali-thermostable azoreductase from Bacillus sp. strain SF [J]. Appl Environ Microbiol,2004,70(2):837-844.
    [49]许玫英,钟小燕,曹渭等.脱色希瓦氏菌(Shewanella decolorationis) S12T的脱色特性[J].微生物学通报,2005,32(1):5-9.
    [50]Stolz A. Basic and applied aspects in the microbial degradation of azo dyes [J]. Appl Microbiol Biotechnol,2001,56:69-80.
    [51]Banat I M, Nigam P, Singh D, et al. Microbial decolorization of textile-dye-containing effluents:a review [J]. Bioresour Technol,1996,58:217-227.
    [52]Dykes G A, Timm R G, von Holy A. Azoreductase activity in bacteria associated with the greening of instant chocolate puddings [J]. Appl Environ Microbiol,1994,60:3027-3029.
    [53]Contzen M, Moore E R B, Blumel S, et al. Hydrogenophaga intermedia sp. nov., a 4-aminobenzene-sulfonate degrading organism [J]. Syst Appl Microbiol,2000,23:487-493.
    [54]Blumel S, Contzen M, Lutz M, et al。 Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4'-sulfoazobenzene as the sole source of carbon and energy [J]. Appl Environ Microbiol,1998,64(6):2315-2317.
    [55]Coughlin M F, Kinkle B K, Bishop P L. Degradation of azo dyes containing aminonaphthol by Sphingomonas sp. strain 1CX [J]. J Ind Microbiol Biotechnol,1999,23:341-346.
    [56]Mazumder R, Logan J R, Mikell A T, et al. Characteristics and purification of an oxygen insensitive azoreductase from Caulobacter subvibrioides strain C7-D [J]. J Ind Microbiol Biotechnol,1999,23:
    476-483.
    [57]Chen H, Wang R F, Cerniglia C E. Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis [J]. Protein Expr Purif,2004,34:302-310.
    [58]戴树桂,宋文华,李彤等.偶氮染料结构与其生物降解性关系研究进展[J].环境科学进展,1996,4(6):1-9.
    [59]Urushigawa Y, Yonezawa Y. Chemico-biological interactions in biological purification system Ⅱ. Biodegradation of azocompounds by activated sludge [J]. Bull Environ Contam Toxicol,1977,17(2): 214-218.
    [60]Walker R, Ryan A J, Bridges J W, et al. Biological oxidation of nitrogen in organic molecules [M]. London:Taylor and Francis Ltd.,1972:171.
    [61]Ogawa T, Idaka E, Yatome Y. Acclimation of activated sludge to dye [J]. Bull Environ Contam Toxicol, 1981,26:31-37.
    [62]杨惠芬等.水污染防治及城市污水资源化技术[M].北京:科学出版社,1993:42-49。
    [63]Ogawa T, Yatome C, Idaka E. Biodegradation of p-Aminoazobenzene by continuous cultivation of Pseudomonas pseudomallei 13IMA [J]. Journal of the Society of Dyers and Colourists,1981,97: 435-438.
    [64]Cervantes F J. Quinones as electron acceptors and redox mediators for the anaerobic biotransformation of priority pollutants [D]. Wageningen:Wageningen University,2002.
    [65]Keck A, Klein J, Kudlich M, et al. Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6 [J]. Appl Environ Microbiol,1997,63:3684-3690.
    [66]Dunnivant F M, Schwarzenbach R P, Macalady D L. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ Sci Technol,1992,26:2133-2141.
    [67]O'Loughlin E J, Burris D R, Delcomyn C A. Reductive chlorination of trichloroethene mediated by humic-metal complexes [J]. Environ Sci Technol,1999,33:1145-1147.
    [68]Walker R, Ryan A J. Some molecular parameters influencing rate of reductions of azo compounds by intestinal microflora [J]. Xenobiotica,1971,1:483-486.
    [69]Bragger J L, Lloyd A W, Soozandehfar S H, et al. Investigations into the azo reducing activity of a common colonic microorganism [J]. Int J Pharm,1997,157:61-71.
    [70]Moir D, Masson S, Chu I. Structure-activity relationship study on the bioreduction of azo dyes by Clostridium paraputrificum [J]. Environ Toxicol Chem,2001,20:479-484.
    [71]Tatsumi H., Kano K, Ikeda T. Kinetic aspects of fast hydrogenase reaction of Desulfovibrio vulgaris cells in the presence of exogenous electron acceptors [J]. J Phys Chem B,2000,104:12079-12083.
    [72]Kudlich M, Keck A, Klein J, et al. Localization of the enzyme system involves in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction [J]. Appl Environ Microbiol,1997,63:3691-3694.
    [73]Francisco L, Francisco M, Marin P, et al. Oxidation of activated carbon:application to vinegar decolorization [J]. J Colloid Interface Sci,2003,257:173-178.
    [74]Rau J, Knackmuss H J, Stolz A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria [J]. Environ Sci Technol,2002,36:1497-1504.
    [75]Field J A, Brady J. Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge [J]. Water Sci Technol,2003,48:187-193.
    [76]Yoo E S, Libra J, Wiesmann U. Reduction of azo dyes by Desulfovibrio desulfuricans [J]. Water Science and Technology,2000,41:15-22.
    [77]Van der Zee F P, Bisschops I A E, Lettinga G, et al, Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes [J]. Environ Sci Technol,2003,37: 402-408.
    [78]Dubin P, Wright K L. Reduction of azo food dyes in cultures of Proteus vulgaris [J]. Xenobiotica, 1975,5:563-571.
    [79]Van der Zee, F P, Lettinga, G, Field, J A. The role of (auto) catalysis in the mechanism of anaerobic azo reduction [J]. Water Sci Technol,2000,42:301-308
    [80]Binder. Use of SBR's to treat pesticide wastewater [C]. Presented at the Notre Dame/Miles hazardous Waste Conference University of Notre Dame, South Bend, Ind.,1992.
    [81]张勇,祁恩成,张守诚 等.黄姜-皂素废水综合处理技术的探讨[J].环境科学与技术,2004,27(8):124-125.
    [82]刘大银,毕亚凡,李庆新 等.皂素生产废水综合治理技术研究(Ⅰ)——实用治理技术框架[J].武汉化工学院学报,2003,25(4):33-36.
    [83]刘锋,吴建华,马向华等.上流式厌氧生物滤池处理高含盐废水的试验研究[J].苏州科技学院学报(工程技术版),2003,16(2):34-35.
    [84]王晓霞,吴生,乌锡康.铁炭-生化法处理高含盐染料废水的研究[J].环境化学,2002,21(6):594-598.
    [85]马国斌,储金宇,张波.活性污泥法+接触氧化法工艺处理高盐度环氧丙烷生产废水的试验研究[J].四川环境,2004,23(6):1-3.
    [86]Guo J, Zhou J, Wang D, et al. A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition [J]. Biodegradation.2008,19(1):15-19.
    [87]信欣,王焰新,叶芝祥 等.生物强化技术处理高盐有机废水.水处理技术,2008,34(8):66-70.
    [88]Kushner D J. Life in high salt and solute concentrations:halophilic bacteria. In:Kushner D J (ed) Microbial life in extreme environments [M]. London:Academic Press,1978:317-368.
    [89]Oren A. The ecology of the extremely halophilic archaea [J]. FEMS Microbiol Rev,1994,13: 415-440.
    [90]von Weymarn N, Nyysola A. Reinikainen T, et al. Improved osmotolerance of recombinant Escherichia coli by de novo glycine betaine biosynthesis [J]. Appl Microbiol Biotechnol,2001,55(2): 214-218.
    [91]Roebler M, Muller V. Quantitative and physiological analyses of chioried dependence of growth of Halobacillus Halophilus [J]. Appl Environ Microbiol,1998,64(10):3813-3817.
    [92]Cheung J, Danna K J, Q'Connor E M. Isolation, sequence, and expression of the gene encoding halocin H4, a bacteriocin from the halophilic archaeon Haloferax mediterranei R4 [J]. J Bacteriol, 1997,179:548-551.
    [93]Oren A, Heldal M, Norland S. X-ray mieroanalysis of intracellular ions in the anaerobic halophilic eubaeterium Haloanaerobium praevalens[J]. Can J Mierobiol,1997,43:588-592.
    [94]Bremer E, Kramer R. Coping with osmotic challenges:osmoregulation through accumulation and release of compatibles solutes in bacteria [M]. Washington D.C:ASM Press,2000:79-97.
    [95]Sleator R D, Hill C. Bacterial osmoadaptation:the role of osmolytes in bacterial stress and virulence [J]. FEMS Microbio Rev,2002,26:49-71.
    [96]Kushner D J. The Halobacteriaceae. Woese C R, Wolfe R S. In:The bacteria, a treatise on structure and function. Vol. VIII. Archaebacteria. New York:Academic Press Inc.,1985:171-214.
    [97]Oren A. Microbial life at high salt concentrations:phylogenetic and metabolic diversity [J]. Saline Systems,2008,4:2 doi:10.1186/1746-1448-4-2.
    [98]Anton J, Rosello-Mora R, Rodriguez-Valera F, et al. Extremely halophilic bacteria in crystallizer ponds from solar salterns [J]. Appl Environ Microbiol,2000,66:3052-3057.
    [99]Hagemann M, Schoor A, Mikkat S, et al. The biochemistry and genetics of the synthesis of osmoprotective compounds in cyanobacteria [M]. Boca Raton:CRC Press LLC,1999:177-186.
    [100]Wood J M. Osmosensing by bacteria:signals and membrane-based sensors [J]. Microbiol Mol Biol Rev,1999,63:230-262.
    [101]Goude R, Renaud S, Bonnassie S, et al. Glutamine, glutamate, and a-glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi strain 3937 [J]. Appl Environ Microbiol,2004, 70:6535-6541.
    [102]Dagmar K, Ece K, Kathryn J P, et al. Role for glycine betaine transport in vibrio cholerae osmoadaptation and biofilm formation within microbial communities [J]. Appl Environ Microbiol, 2005,71:3840-3847.
    [103]Mackay M A, Norton R S, Borowitzka L J. Organic osmoregulatory solutes in cyanobacteria [J]. J Gen Microbiol,1984,130:2177-2191.
    [104]Ventosa A, Nieto J J, Oren A. Biology of moderately halophilic aerobic bacteria [J]. Microbiol Mol Biol Rev,1998,62:504-544.
    [105]Mukhopadhyay A, He Z, Alm E J, et al. Salt stress in Desulfovibrio vulgaris Hildenborough:an integrated genomics approach [J]. J Bateriol,2006,188:4068-4078.
    [106]Vargas C, Jebbar M, Carrasco R, et al. Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens [J]. J Appl Microbiol,2006,100:98-107.
    [107]何健,李顺鹏,崔中利 等.含盐工业废水生化处理耐盐污泥驯化及其机制[J].中国环境科学,2002,22(6):546-550.
    [108]洪青,张国顺,张忠辉 等.中度嗜盐菌Halomonas sp. BYS-1的渗透调节[J].微生物学通报,2004,31(5):71-75.
    [109]Dan N P. Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients [J]. Bioresour Technol,2003,87:51-56.
    [110]Csonka L N, Hanson A D. Prokaryotic osmoregulation:genetic and physiology [J]. Annu Rev Microbiol,1991,45:569-606.
    [111]Castillo R F, Varags C, Joaquin J N. Characterization of a plas mid from moderately halophililic eubacteria [J]. J Gen Microbiology,2,138:1133-1137.
    [112]Javed, A Q, Malik K A. Evidence for a plan mid confering salt-tolerance in plant-root associated diazotroph Klebsiella sp. [J]. Biotec Letter,1990,12(10):783-788.
    [113]Hasnain S, Thomas C M. Two related rolling circle replication plasmids from salt-tolerant bacteria [J]. Plasmid,1996,36:191-199.
    [114]Pfeifer F, Weidinger G, Goebel W. Characterization of plan mids in halobacteria [J]. J Bacteriol,1981, 145:369-374.
    [115]Rosario F C, Varags C, Joaquin J N. Characterization of a plasmid from moderately halophilic eubacteria [J]. J Gen Microbiology,92,138:1133-1137.
    [116]van der Sluis C, Tramper J, Wijffels R H. Enhancing and accelerating flavour formation by salt-tolerant yeasts in Japanese soy-sauce processes [J]. Trends in Food Science & Technology,2001, 12(9):322-327.
    [117]Nina G C. Hypersaline waters in salterns-natural ecological niches for halophilic black yeasts [J]. Microbiol Ecol,2000,32(3):235-240.
    [118]Silva-Graca M, Neves L, Lucas C. Outlines for the definition of halotolerance/halophily in yeasts: Candida versatilis (halophila) CBS4019 as the archetype? [J]. FEMS Yeast Res,2003,3(4): 347-362.
    [119]Galina K. Exponential growth phase cells of the osmotolerant yeast Debaryomyce.s haasenii are extremely resistant to dehydration stress [J]. Process Biochemistry,2001,36(12):1163-1166.
    [120]Olga K, Serge P, Hana, S. The Zygosaccharomyces rouxii strain CBS732 contains only one copy of the HOG and the SOD genes [J]. J Biotechnol,2001,88(2):151-158.
    [121]Silva-Graca M, Lucas C. Physiological studies on long-term adaptation to salt stress in the extremely halotolerant yeast Candida versatilis CBS 4019 (syn. C. halophila) [J]. FEMS Yeast Res,2003,3: 247-260.
    [122]杨永华,华晓梅,陈素玲 等.芳香族化合物生物降解代谢及其分子遗传研究[J].环境科学进展,1995,3(6):31-43.
    [123]Zimmermann T, Hans G K, Thomas L. Properties of purified orange II azo reductase, the enzyme initiating azo dye degradation by Pseudomonas KF46 [J]. Eur J Biochem,1982,19:197-203.
    [124]池振明.微生物生态学[M].济南:山东大学出版社,1999:144-145.
    [125]王兴祖,郑慧,程翔 等.沼泽红假单胞菌W12对活性黑5的厌氧脱色和降解作用[J].环境工程学报,2008,2(1):6-10.
    [126]张金平,阚振荣,李彦芹 等.染料脱色菌与芳胺降解菌的筛选及降解染料研究[J].生物技术,2006,16(1):68-70.
    [127]刘金齐,刘厚田.藻对偶氮染料降解作用的研究[J].水生生物学报,1992,16(2):133-143.
    [128]杜晓明,刘厚田.藻菌系统对偶氮染料降解作用的研究[J].环境料学研究,1993,6(3):21-25.
    [129]甘小莉.活性污泥中取代苯类化合物的生物降解性与分子结构关系的研究[D].北京:中国地质大学,2006.
    [130]李长有.DNA指纹技术的研究进展及应用[J].吉林师范大学学报(自然科学版),2004,(2):56-58.
    [131]张彤,方汉平.微生物分子生态技术:16S rRNA/DNA方法[J].微生物学通报,2003,30(2):97-101.
    [132]Qu Y, Zhou J, Wang J, Xing L, Jiang N, Gou M, Uddin M S. Population dynamics in bioaugmented membrane bioreactor for treatment of bromoamine acid wastewater [J]. Bioresour Technol,2009, 100(1):244-248.
    [133]夏月,Sardar Khan,贺纪正等.限制性片段长度多态性分析(ARDRA)方法对重金属污染土壤中细菌群落多样性的研究[J].环境科学学报,2007,27(6):953-960.
    [134]白生文,范惠玲.RAPD标记技术及其应用进展[J].河西学院学报,2008,24(2):52-54.
    [135]曲媛媛,周集体,王竞等.现代分子生物技术在废水菌群监测中的应用[J].环境科学与技术,2004,27(增):176-178.
    [136]Juretschko S, Timmermann G, Schmid M, et al. Combined molecular and conventional analysis of nitrifying bacterial diversity in activated sludge:Nitrosococcus mobilis and Nitrospira-like bacteria as dominant population [J]. Appl Environ Microbiol,1998,64:3042-3051.
    [137]Schramm A, de Beer D, Gieselce A, et al. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm [J]. Environ Microbiol,2000,2(6):680-686.
    [138]Xiao Y, Zeng G M, Yang Z H, et al. Coexistence of nitrifiers, denitrifiers and Anammox bacteria in a sequencing batch biofilm reactor as revealed by PCR-DGGE [J]. J Appl Microbiol,2009,106(2): 496-505.
    [139]Liu S, Yang F, Gong Z, et al. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal [J]. Bioresour Technol,2008,99(15): 6817-6825.
    [140]Iumstein E, Moletta R, Godon J J. Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis [J]. Environ Microbial,2000,2:69-78.
    [141]Schmidt J E, Ahring B K. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors [J]. Appl Environ Microbiol,1999,65(3):1050-1054.
    [142]Leclerc M, Delbes C, Moletta R. Single strand conformation polymorphism monitoring of 16S rDNAArchaea during start-up of an anaerobic digester [J]. FEMS Microbiol Ecol,2001,34:213-220.
    [143]Van Limbergen H, Top E, Verstraete W. Bioaugmentation in activated sludge:current features and future perspectives [J]. Appl Microbial Biotechnol,1998,50:16-23.
    [144]Rittmann B E, Whiteman R. Bioaugmentation:A coming of age [J]. Biotechnol,1994,1:12-16.
    [145]Yu Z, Mohn W W. Bioaugmentation with resin-acid-degrading bacteria enhances resin acid removal in sequencing batch reactors treating pulp mill effluents [J]. Water Res,2001,35(4):883-890.
    [146]Qu Y, Zhou J, Wang J, et al. Microbial community dynamics in bioaugmented sequencing batch reactors for bromoamine acid removal [J]. FEMS Microbiol Lett,2005,246(1):143-149.
    [147]罗凡,叶南圣,吴峰等.还原铁粉紫外光系对活性艳红X-3B溶液的脱色[J].环境污染与防治,1999,21(5):1-4.
    [148]Zhou Q. Chemical pollution and transport of organic dyes in water soil-crop systems of the Chinese coast [J]. Bull Environ Contam Toxicol,2001,66(6):784-793.
    [149]程云,周启星,马奇英等.染料废水处理技术的研究与进展[J].环境污染治理技术与设备,200,34(6):56-60.
    [150]Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments [J]. Appl Environ Microbiol,1996, 62:1405-1415.
    [151]Hsueh C C, Chen Y B. Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola [J]. J Hazard Mater,2008,154(1-3):703-710.
    [152]Low E W, Chase H A, Milner M G,et al. Uncoupling of metabolism to reduce biomass production in the activated sludge process [J].Water Res,2000,34:3204-3212.
    [153]Winderl C, Anneser B,Griebler C, et al. Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume [J]. Appl Environ Microbiol,2008,74(3):792-801.
    [154]Xie G H, Cui Z, Yu J, et al. Identification of nif genes in N2-fixing bacterial strains isolated from rice fields along the Yangtze River Plain [J]. J Basic Microbiol,2006,46:56-63.
    [155]Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soil:a review [J]. Soil Biol Biochem,1998,30:1389-1414.
    [156]Cabrero A, Fernandez S, Mirada F, et al. Effects of copper and zinc on the activated sludge bacteria growth kinetic [J]. Water Res,1998,32:1355-1362.
    [157]R E布坎南,N E吉本斯等.伯杰细菌系统鉴定手册(第八版)[M].中国科学院微生物研究所译.北京:科学出版社,1984.
    [158]东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [159]Collins M D, Lund B M, Farrow J A E, et al. Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. [J]. J Gen Microbiol,1983,129:2037-2042.
    [160]Yumoto I, Hishinuma-Narisawa M, Hirota K, et al. Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity [J]. Int J Syst Evol Microbiol,2004,54:2013-2017.
    [161]Lopez-Cortes A, Schumann P, Pukall R, et al. Exiguobacterium mexicanum sp. nov. and Exiguobacterium artemiae sp. nov., isolated from the brine shrimp Artemia franciscana [J]. Syst Appl Microbiol,2006,29:183-190.
    [162]Chaturvedi P, Shivaji S. Exiguobacterium indicum sp. nov., a psychrophilic bacterium from the Hamta glacier of the Himalayan mountain ranges of India [J]. Int J Syst Evol Microbiol,2006,56: 2765-2770.
    [163]Lopez L, Pozo C, Rodelas B, et al. Identification of bacteria isolated from an oligotrophic lake with pesticide removal capacities [J]. Ecotoxicology,2005,14:299:312.
    [164]Wang L, Qiao N, Sun F, et al. Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment [J]. Extremophiles,2008,12:335-342.
    [165]Benedict C O. Bioremoval of hexavalent chromium from water by a salt tolerant bacterium, Exiguobacterium sp. GS1 [J]. J Ind Microbiol Biotechnol,2008,35(12):1571-1579.
    [166]Anderson C R, Cook G M. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand [J]. Curr Microbiol,2004,48:341-347.
    [167]郭建博.高盐染料废水的生物降解及介体强化作用研究[D].辽宁:大连理工大学,2006.
    [168]Tan L, Qu Y, Zhou J, et al. Identification and characteristics of a novel salt-tolerant Exiguobacterium sp. for azo dyes decolorization [J]. Appl Biochem Biotechnol,2009,159(3):728-738.
    [169]Li T L, Mazeas L, Sghir A, et al. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions [J]. Environ Microbiol,2009,11:889-904.
    [170]李啸,陈长华,李友元.红霉素A发酵条件的优化[J].中国医药工业杂志,2006,37(6):381-383.
    [171]Montgomery D C. Design and analysis of experiments [M]. New York:Wiley,1991.
    [172]Can M Y, Kaya Y, Algur O F. Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris [J]. Bioresour Technol,2006,97:1761-1765.
    [173]Hardin L R, Cao H, Wilson S S. Decolorization of textile wastewater by selective fungi [J]. Textile Chemist and Colorist & American Dyestuff Reporter,2000,32(11):38-42.
    [174]Thurston C F. The structure and function of fungal laccase. Microbiology,1994,140:19-26.
    [175]Paszczynski A, Pasti-Grigsby M B, Goszczynski S, et al. Mineralization of sulfonated azo dyes and sulfanille acid by Phanerochaete chrysosporium and Streptomyces chromofuscus [J]. Appl Environ Microbiol,1992,58(11):3598-3604.
    [176]Spadaro J T, Gold M H, Renganathan V. Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium [J]. Appl Environ Microbiol,1992,58(8):2397-2401.
    [177]Haug W, Schimidt A, Nortemann B, et al. Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium [J]. Appl Environ Microbiol, 1991,57:3144-3149.
    [178]Lin J, Zhang X, Li Z, et al. Biodegradation of reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate [J]. Bioresour Technol,2010,101:34-40.
    [179]Boer W, FolmanL B, Summerbell R C, et al. Living in a fungal world:impact of fungi on soil bacterial niche development [J]. FEMS Microbiol Rev,2005,29:795-811.
    [180]Pennisi E. The secrete life of fungi [J]. Science,2004,304:1620-1622.
    [181]韩慧龙,汤晶,江皓,等.真菌-细菌修复石油污染土壤的协同作用机制研究[J].环境科学,2008,29(1):189-195.
    [182]韩慧龙,陈镇,杨健民,等.真菌-细菌协同修复石油污染土壤的场地试验[J].环境科学,2008,29(2):454-461.
    [183]李平,张山,郑永良,等.反硝化真菌-细菌优化组合及其脱氮能力研究[J].环境科学与技术.2006,29(3):9-10,45,Ⅰ.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700