用户名: 密码: 验证码:
高盐染料废水的生物降解及介体强化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过对驯化、筛选耐盐菌的基础生物学研究和氧化还原介体加速偶氮染料厌氧生物降解技术,来解决高含盐染料废水中高盐对传统生物处理系统抑制现象和偶氮染料厌氧生物降解耗时长的问题。
     由3种不同来源的污泥进行耐盐驯化得到3种耐盐菌群,耐盐程度达到250g L~(-1)NaCl,用其对高含盐染料K-2BP模拟废水的厌氧降解研究,具有高效的降解效果,同时进行了耐盐菌的降解广谱性实验,结果表明驯化耐盐菌群对所选取的13种不同结构的染料均有较高的降解效果,从而为常规生物法应用于高含盐废水的处理提供了实验基础和理论依据。
     通过优势耐盐菌对偶氮染料K-2BP废水厌氧降解动力学实验,模拟得出高盐条件下,偶氮染料K-2BP和盐浓度对生物降解双重影响动力学模型。其抑制常数K_(IS)和K_T值分别为329.5±175.8 mg L~(-1)和39.7±27.1 g L~(-1),说明耐盐菌受盐浓度和染料浓度的双重抑制。
     针对偶氮染料厌氧生物降解耗时长的问题,进行了溴氨酸和固定化非水溶性蒽醌作为氧化还原介体对偶氮染料生物降解促进作用的研究,及4种固定化蒽醌技术的对比和溶解氧对降解过程的影响研究。结果表明溴氨酸和固定化蒽醌可提高偶氮染料生物厌氧降解速度率1.5-5倍,说明偶氮染料厌氧生物降解的氧化还原介体强化技术具备了理论上的可行性。
     通过对4种结构相似偶氮染料的循环伏安特性测量及其生物厌氧降解速率实验,结果发现研究所选染料的生物降解速率分别为酸性黄-bis(Er-616.75 mV,0.01209 mol(g cell protein)~(-1)(h)~(-1)),酸性黄-11(Er-593.25 mV,0.01040 mol(g cellprotein)~(-1)(h)~(-1)),酸性黄-4(Er-513 mV,0.007575 mol(g cell protein)~(-1)(h)~(-1)),与各自循环伏安图中的还原峰电位间存在线性关系,Y=0.00004X-0.0116(R2=0.9424),表明电化学方法有可能用于生物体系发生反应部分模拟和预测研究
     通过氧化还原电位(ORP)的变化特征来研究降解过程,对比分析了15%(W/W)NaCl和15%(W/W)Na_2SO_4对氧化还原电位变化特征的影响;以及醌类化合物对染料降解和氧化还原电位变化特征的影响。结果推测和理论分析表明ORP下降到-93mV以下才可能发生偶氮染料厌氧降解,且降解过程中电位维持在较稳定区域(-200mV至-300mV);不同盐类和醌类化合物(蒽醌和溴氨酸)对降解过程的氧化电位变化特征和降解有一定影响;而菌的浓度和染料浓度只对降解速度有影响,对ORP变化特征无影响。认为研究过程中ORP可作为偶氮染料生物厌氧降解过程中的一个重要控制参数。
The purpose of this dissertation is to acclimate and isolate the salt-tolerant bacteria and investigate the accelerating effect of redox mediators in the bio-decolorization, which is used to solve the two possible bottlenecks of anaerobic-aerobic biotreatment of azo dyes: (1) high salinity of the dye wastewaters usually causes plasmolysis and/or loss of activity of cells, and some traditional aerobic- and anaerobic-biological treatments in low BOD removal performance;(2) anaerobic azo dye reduction is a time-consuming process, reflected by the requirement of long reaction times.Firstly, Three salt-tolerant mixed cultures (AS, SW, TAS) were acclimatized by the gradually increasing NaCl concentration and these acclimatized cultures could decolorize the 13 selected dyes with high salt concentration. The effects of salt concentration and dye concentration on decolorization rate were compared. With the elevated concentrations of salt and dye, the decolorization was lower. The abilities of decolorization by three mixed cultures were studied.Secondly, Degradation and inhibition kinetics of Reactive Brilliant Red K-2BP by salt-tolerant mixed culture were developed based on experimental results at different salt (NaCl) concentrations (5-150 g L~(-1)) and different dye concentrations (100-600 mg L~(-1)). The observed kinetic reaction coefficient was determined and correlated as a function of salt and dye concentration. The degradation rate follows first order kinetics with respect to dye concentration. Salt inhibition was expressed as a hyperbolic function. The values of K_T and K_(IS) were 39.784±27.169 g L~(-1) and 329.524±175.822 mg L~(-1), respectively.Then, The accelerating effect of redox mediators in the bio-decolorization was conducted. Decolorization of azo dyes was carried out experimentally using the salt-tolerant bacteria under redox mediators and high salt conditions. Anthnaquinone and bromoamine acid used as redox mediators were able to increase the decolorization rate of wastewater containing azo dyes. High decolorization rate was obtained in the presence of redox mediators at 30℃, which increased 1.5-5 fold, in comparison with the control of redox mediators. The experiments explored a great improvement of the redox mediator application and the new bio-treatment concept.
    Experiments were also conducted to study some electrochemical factors affecting the bacterial reduction (cleavage) of four azo dyes. And a common mixed culture was used as test organism and the reduction of azo dyes Acid Yellow 4, 11, 17 and Acid Yellow Bis was studied. It was found that the azo dyes were reduced at different rates, which could be correlated with the reduction potential of the azo compounds in cyclic voltammetric experiments. Acid Yellow bis (Er -616.75 mV) was reduced at the highest rate of 0.01209 mol (g cell protein)'1 (h)"1, Acid Yellow 11 (Er -593.25 mV) at 0.01040 mol (g cell protein)'1 (h)"1 and Acid Yellow 4 (Er -513 mV) at 0.007575 mol (g cell protein)"1 (h)"1. It was showed that the reduction potential would be a preliminary tool to predict the decolorization capacity of oxidative and reductive biocatalysts.Meanwhile, this work was conducted to study the change characteristics of the oxidation-reduction potentials (ORP) during the process of the biological decolorization of azo dyes, knowledge of which will be useful in the prediction of the decolorization capacity of oxidative and reductive biocatalysts. Reduction of these azo dyes did not occur under aeration conditions, and azo dyes were reduced by microorganisms only when the Oxidation-Reduction Potential (ORP) values decrease the certain limits (<-93 mV) during the decolrization processes. At the same time, sulfate salt, anthnaquinone (AQ) and 1-amino -4-bromo-2-anthraquinonesulfonic acid (BAA) were tested to assess the effects on the change of ORP during the decolorization process. These studies with the salt-tolerant mixed culture indicate that the reduction of azo dyes might be influenced by the chemical nature of the azo compound and redox mediatorsAt last, strain GTW and GTY were isolated and identified as Halomonas sp. and Gracilibacillus sp. based on morphological and physio-biochemical characteristics and 16S rDNA sequence analysis, and were deposited as patent strains in China General Microorganism Culture Center with the accession number CGMCC 1528 and CGMCC 1527, respectively. The 16S rDNA sequence of strain strain GTW and GTY were also submitted to GenBank with the number DQ 279849 and DQ 286727, respectively.
引文
[1] Woolard C R, Irvine R L. Response of a periodically operated halophilic biofilm reactor to changes in salt concentration. Water Science and Technology, 1995, 31: 41-50.
    [2] Carliell C M, Barclay S J, Naidoo N, et al. Anaerobic decolorisation of reactive dyes in conventional sewage treatment processes. Water SA, 1994, 20: 341-344.
    [3] EPA. Profile of the textile industry. Washington: Environmental Protection Agency, 1997.
    [4] Shim S B, Asher B. Biology treatment of a high salinity chemical industry wastewater. Water Science and Technology, 1993, 1(9): 61-72.
    [5] Woolard C R, Irvine R L. Biological treatment of hypersaline wastewater by a biofilm of halophilie bacteria. Water Envionmental Research, 1994, 66(3): 230-235.
    [6] Ventosa A, Nieto J J. Biotechnological applications and potentialities of halophilic microorganisms. World Journal of Microbiology and Biotechnology, 1995, 11: 85-94.
    [7] Dos Santos A B, Bisschops I A E, Cervantes F J, et al. Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30℃) and thermophilic (55℃) treatments for decoloufisation of textile wastewaters. Chemosphere, 2004, 55:1149-1157.
    [8] Field J.A., Cervantes F. J., Van der Zee F.P, et al. Role of quinones in the biodegradation of priority pollutants: a review. Water Science and. Technology, 2000, 42: 215-22.
    [9] Panswad T, Anan C. Impact of high chloride wastewater on anaerobic/anoxic/aerobic process without inoculation of chloride acclimated seeds. Water Research, 1999, 33: 1165-1172.
    [10] 文湘华,占新民,王建龙等.含盐废水的生物处理进展.环境科学,1999,20(3):104-106.
    [11] 刘占孟.电化学法处理高盐度染料中间体废水实验研究.山东轻工业学院学报,2005,19(4):30-34.
    [12] 杨晔,陆芳,潘志彦等.高盐度有机废水处理研究进展.中国沼气,2003,21(1):21-25.
    [13] 杨健,郭长虹.废水中高浓度钠盐对活性污泥法系统的影响.污染防治技术,1998,11(4)199-204.
    [14] 沈耀良,黄勇.赵丹等.固定化微生物污水处理技术.北京:化学工业出版社,2002.
    [15] 郭永海.河北平原地下水环境演化规律及其与人类活动相互关系的研究.中国地质大学博士论文,1993.
    [16] Yang L. Biodegradation of dispersed dieselfuel under high salinity conditions. Water Research, 2000, 34(13): 3303-3314.
    [17] 刘正.高含盐废水生物处理技术探讨.给水排水,2001,27(11):54-57.
    [18] 徐亚同,黄民生.废水生物处理的运行管理与异常对策.北京:化学工业出版社,2003.
    [19] Liesack W, Stackbrandt E. Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. Journal of Bacteriology, 1992, 174: 5072-5078.
    [20] Wong P.K. and Yuen P. Y. Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13, Water Research., 1996, 30(7): 1736-1744.
    [21] Zobell C E. The bacterio static and bactericidal action of great salt lake water. Journal of Bacteriology, 1937, 33: 253-262.
    [22] 王志霞,王志岩,武周虎.高盐度废水生物处理现状与前景展望.工业水处理,2002,22(11):1-4.
    [23] Tiemen V D H, Bert P. Glycine Betaine transport in Lactococcis Lactisis osmotically regulated at the level of express ion and translocation activity. Journal of Bacteriology, 2000, 182(1): 203-206.
    [24] 陈雪松,张海瑜,高为民等.苜蓿中华根瘤菌与耐盐有关的DNA片段的克隆.微生物学报,1999,39(6):489-494.
    [25] Ludzack F, Noran D K. Tolerance of high salinities by conventional wastewater treatment process. Journal of Water Pollution Control Fed, 1965, 37: 1404-1406.
    [26] Oren A, Gurevich P, Azachi M, et al. Microbical degradation of pollutants at high salt concenrntrations. Biodegradation, 1992, 3: 387-389.
    [27] Hinteregger C, Streichsbier F. Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic wastewater. Biotechnology Letters, 1997, 19(1): 1099-1102.
    [28] Peyton M B, Wilson T, Yonge D R. Kinetics of phenol biodegradation in high salt solutions. Water Research, 2002, 36: 4811-4820.
    [29] Hamoda M F, Al-Atlar M S. Effects of high sodium chloride concentration on activated sludge treatment. Water Science and Technology, 1995, 31(9): 61-72.
    [30] Karigi F, Dincer A R. Enhancement of biological treatment performance of saline wastewater by halophilic bacteria. Bioprocess and Biosystems Engineering, 1996 15: 51-58.
    [31] Ferrer M R, Del Moral A, Quesada E, et al. Growth rate and some physiological features of Deleya Halophila CCM3662 at different salt concentrations. Ann l'institut Pasteur, Microbiology, 1987;138(1): 49-58.
    [32] Bertrand J C, Amallah M, Acquaviva M, et al. Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Letters in Applied Microbiology 1990, 11: 260-263.
    [33] Azachi M, Henis Y, Oren A, et al. Transformation of formaldehyde a Halomonas sp. Can Journal of Microbiology, 1995, 41:548-553.
    [34] McMeekinT A, Nichols P D, Nichols S D, et al. Biology and biotechnological potential of halotolerant bacteria from Antarctic saline lakes. Experientia, 1993, 49: 1042-1046.
    [35] 安林,顾国维.二段生物接触氧化法处理含盐有机废水的研究.上海环境科学,1990,9(11):6-9.
    [36] 杨健.高含盐量石油发酵废水处理研究.给水排水,1999,25(3):5-39.
    [37] 梁展辉,王士芬.SBBR法处理高盐度有机废水的应用研究.污染防治技术,1998,11(4):226-228.
    [38] 何健,陈立伟,李顺鹏.高盐度难降解工业废水生化处理的研究.中国沼气,2000,18(2):12-16.
    [39] Kushner D J. Life in high salt and solute concentrations: halophilic bacteria. Microbial life in extreme environments, London: Academic Press, 1978.
    [40] 刘铁汉,周培瑾.嗜盐微生物.微生物学通报,1996,126(3):232
    [41] 阮继生,刘志恒,梁丽糯等.放线菌研究及应用.北京:科学出版社,1990.
    [42] Robert H, Marrec C L, Blanco C, et al. Glycine betaine, carnitine and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of tetragenococcu halophila. Applied and Environmental Microbiology, 2000, 66(2): 509-517.
    [43] 池振明.微生物生态学.济南:山东大学出版社,1999.
    [44] 周培瑾.嗜盐细菌.微生物学通报,1989,119(1):31-34.
    [45] Marquez M C, Ventosa A, Ruiz-Berraquero F. A taxonomic study of heterotrophic halophili and non-halophilic bacteria from a solar saltern. Gene Micobiology, 1987, 133: 45-56.
    [46] Woolard C R, Irvine R L. Treatment of hypersaline wastewater in the sequencing batch reactor. Water Research, 1995, 29: 1159-1168.
    [47] 田新玉.极端嗜盐细菌和耐盐细菌的区分.微生物学报,1990,30(4):314-317.
    [48] 陶卫平.嗜盐菌的嗜盐机制.生物学通报,1996,36(1):23-24.
    [49] 刘爱民.嗜盐菌的研究进展.安徽师范大学学报,2002,25(2):181-184.
    [50] 侯毓汾,朱振华,王任之.染料化学.北京:化学工业出版社,1994.
    [51] Zollinger H. Color Chemistry.(2nd Edition). VCH Pulishers, Inc., New York, NY, USA,1991.
    [52] Reid T M, Morton K C, Wang C Y, et al. Mutagenicity of azo dyes following metabolism by different reductive/oxidative systems. Environmental Mutagenesis, 1984, 6: 705-717.
    [53] Brown M.A. and Devito S.C. Predicting azo dye toxicity. CRC Rew. Environmental Science and Technology, 1993, 23(3): 249-324.
    [54] 程铸生,朱承炎,王雪梅.精细化学品化学(第2版).上海:华东理工大学出版社,1996.
    [55] 杨惠芳.水污染防治及城市污水资源化技术.北京:科学出版社,1993.
    [56] Walker R, Ryan A J, Bridges J W, et al. Biological oxidation of nitrogen in organic molecules. Taylor & Francis Ltd, 1972: 171-174.
    [57] Ogawa T, Yatome C, Idaka E. Biodegradation of paminoazobene by continuous cultivation of Pseudomonas pesudomallei. Journal of the Society of Azo dyes and Colourists, 1981, 97: 435-438.
    [58] Michaels G B, Lewis D L. Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environmental Toxicology Chemistry, 1985, 25(6): 45-50.
    [59] 杜晓明,刘厚田.偶氮染料分子结构特征与其生物降解性的关系.环境化学,1991,10(6):12-17.
    [60] 戴树桂,宋文华,李彤等.偶氮染料结构与其生物降解性关系研究进展.环境科学进展,1996,6(4):1-9.
    [61] 《化工百科全书》编辑委员会.化工百科全书(13).北京:化学工业出版社.1997.
    [62] Vaidya A A, Datye K V, Environmental pollution during chemical processing of synthetic fibres, Colorage.1982, 14: 3-10.
    [63] 刘华丽.印染废水的生物处理技术.环境科学与技术,1996,1:42-45.
    [64] 《中国环境年鉴》编辑委员会编.《中国环境年鉴》.北京:中国环境科学出版社,1999.
    [65] 李茵.染料废水处理技术的研究进展.化工时刊,2005,19(10):60-63.
    [66] 程云,周启星,马奇英等.染料废水处理技术的研究与进展.环境污染治理技术与设备,2003,4(6):56-60.
    [67] Kusvurana E., Irmaka S., Yavuza H. Comparison of the treatment methods efficiency for decolorization and mineralization of Reactive Black 5 azo dye. Journal of Hazardous Materials, 2005, 119: 109-116.
    [68] 阎存仙.粉煤灰的综合利用.上海环境科学,1996,15(2):21-23.
    [69] Ozacar M;Scedilengil I A. Adsotption of acid dyes from aqueous solute Ions by alcined atunitean granular activated carbon. Adsorption, 2002, 8(4): 301-308.
    [70] 宋光蒲,蒋志贤,施清.阳离子交换纤维对阳离子染料的脱色.水处理技术,1989,15(4):243-246.
    [71] 吴敦虎,王毅力,郑有君.硼泥复合混凝剂处理印染废水的研究.环境污染与控制,1997,19(5):11-13.
    [72] 李胜利,李劲.用高压脉冲放电等离子体处理印染废水的研究.中国环境科学.1996,16(1):73-76.
    [73] Tezuka M, Jwasaki M. Oxidative degradeation of organic pollutants in water by glow discharge of science. In Japan society for the promotion of science.Proceeding of Asia-Pac Conf Pasma Sci Technol 3rd (APCPST96,Tokyo,1996)Tokyo: Local Organizing Committee of APCPST96, 1996: 423-427.
    [74] Oliveira L C A, Rios R V R A, Fabris J D, et al. Activated carbon/iron oxide magnetic composite for the adsorption of contaminants in water. Carbon, 2002, 40(12): 2177-2183.
    [75] 罗凡,叶南圣,吴峰等.还原铁粉 紫外光系对活性艳红X3B溶液的脱色.环境污染与防治,1999,21(5):1-4.
    [76] Solpan D, Guven O. Decolratio and degradation of some textile dyes by gammairradiation. Radiation Physics and Chemistry, 2002, 65(4): 549—558.
    [77] Al Momani F, Touraud E. Degotce Dumas J R, et al. Biodegradability enhancement of textile dyes and textile wastewater by VUV photolysis. Journal of Photochemistry and Photobiology, 2002, 153(1): 191-197.
    [78] 甘光奉,甘利.无机高分子絮凝剂研究的进展.工业水处理,1999,19(2):6-7.
    [79] 秦蓁,乌锡康.镁盐对水溶性阴离子染料废水的脱色研究.中国环境科学,1994,14(5):359-360.
    [80] 嵇鸣,赵宜江,张艳等.氢氧化镁对印染废水脱色处理.水处理技术,2000,26(4):245-248.
    [81] 余颖,庄源益,邹其猛等.有机絮凝剂对水中染料的絮凝作用探讨.环境化学,2000,19(2):142-147.
    [82] Rccd B E, Matsumoto M R, JensenJ N. Physicochemical processes. Water Environmental Research, 1998, 70(4): 449-473.
    [83] Modell M. Processing methods for the oxidation of organics in supercritical water. U.S.Patent, 1985.
    [84] 胡文容,钱梦,高廷耀.超声强化臭氧氧化偶氮染料的脱色效能.中国给水排水,1999,15(11):1-4.
    [85] Arslan I. Treat ability of a simulated disperse dye-bath ferrous iron coagulation ozonation. Journal of Hazardous Materials. 2001, 85(3): 229-241.
    [86] 周建,章亭曦,洪利光.染料废水的催化氧化处理.环境污染与防治,2000,22(4):25-26.
    [87] Schiavello M. Photocatalysis and Environment Trends and Applications Dordrecht: Kluwer Academic Publishers, 1988.
    [88] Hoffmann M R. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69-76.
    [89] 胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践进展.环境科学进展,1995,3(1):55-64.
    [90] Hachem C, Bocquillon F, Zahraa O, et al. Decolourization of texitile industry wastewater by the photocatalytic degradation proess. Dyes and Pigments, 2001, 49(2): 117-125.
    [91] 岳林海,樊邦棠.半导体复合体系光催化降解水溶性染料的研究.环境污染与防治,1994,16(4):2-5.
    [92] 张桂兰,全燮,杨凤林等.染料废水在旋转式光催化反应器中的降解研究.环境科学,1999,20(3):79-81.
    [93] Naumczyk J, Szpyrkowicz L, Grandi F Z. Electrochemical treatment of texitile wastewater. Water Science Technology, 1996, 33(7): 17-24.
    [94] Naohide T, Yukio M, Masataka Y, et al. Application of solid polymer electrolytefor treatment of water colored by dyestuffs. Mizu KankyoGakkaishi, 1998, 21(1): 47-50.
    [95] 汪群慧.复极性粒子群电极用于印染废水的处理.南京化工学院学报,1990,12(3):69-71.
    [96] 韩洪军,刘彦忠,杜冰.铁屑-炭粒法处理纺织印染废水.工业水处理,1997,17(6):15-17.
    [97] 贾金平,杨骥,廖军.活性炭纤维电极法处理染料废水的探讨.上海环境科学,1997,16(4):19-22.
    [98] 杨卫身,周集体,杨凤林.微电解法处理印染废水的研究.环境保护科学,1996,22(3):30-34.
    [99] 李长海.导流电凝聚法脱除印染废水色度的研究.化工环保,1999,19(5):264-268.
    100] Michael S. Bahorshy. Textiles. Water Environment Research, 1997, 69(4): 658-662.
    [101] 彭跃莲.生物技术在印染和染料废水处理中的应用.环境科学进展,1997,5(3):56-64.
    [102] 安虎仁,钱易,顾夏生.染料在好氧条件下的生物降解性能.环境科学,1995,15(6):16-18.
    [103] 肖羽堂,许建华,陈伟等.难生化降解的某丝绒印染废水处理新工艺(A/O2)工程应用研究.工业水处理,1999,19(3):14-16.
    [104] 贾金平,申哲民.含染料废水处理方法的现状与进展.上海环境科学,2000,9(1):26-29
    [105] Ibrahim M. Banat, Datel S, et al. Microbial decolorization of textile dye containing effluents:A Review. Bioresource Technology, 1996, 58:217-227.
    [106] Wouter D, Cliona O, Freda R, et al. Anaerobic Treatment of textile effluents: A review. Journal of Chemical Technology and Biotechnology, 1998, 73: 323-335.
    [107] 徐文东,文湘华.微生物在含染料废水处理中的应用.环境污染治理技术与设备,2000,1(2)9-16.
    [108] 陈勇,沈日华.染料废水的微生物处理法.应用基础与工程科学学报.1998,6(4):353-359.
    [109] 张志杰.染料在厌氧塘内净化的可行性与转移规律的研究.环境科学学报,1993,13(4):198-404.
    [110] 刘厚田,杜晓明,刘金齐等.藻菌系统降解偶氮染料的机理研究.环境科学学报,1993,13(3)332-338.
    [111] Zimmermann T, Kulla H G, Leisinger T. Properties of Purified Orange Ⅱ azo reductase, the Enzyme Initiating Azo Dyes Degradation by Pseudomonas KF46. European Journal of Biochemistry, 1982, 129: 197-203.
    [112] Horitsu H, Tateda M., Idaka E, et al. Degradation of p-aminoazobenzene by Bacillus subrilis. European Journal of Applied Microbial, 1977, 14: 217-224.
    [113] Wang P K, Yuen P Y. Decolorization and biodegradation of methyl red by klebsiella Pneumonia RS-13. Water Researh. 1996, 30(7): 1736-1744.
    [114] Hu T L. Decolorization of reactive azo dyes by transformation with pseudomonas luteola. Biosource Technology, 1994, 49: 47-51.
    [115] Hu T L. Degradation of azo dye RP2B by pseudomonas luteola. Water Science and Technology, 1998, 38: 299-306.
    [116] Silke Blumel, Matthias Contzen, Martina Lutz, et al. Isolation of a bacterial strain with the ability to utilize the sulfonated azo compound 4-carboxy-4'-sulfoazobenzene as the sole source of carbon and energy. Applied and Environmemal Microbiology, 1998, 64(6): 2315-2317.
    [117] 鲜海军,杨惠芳.多种染料的微生物脱色研究.环境科学学报,1988,8(3):266-273.
    [118] 鲜海军,贾省芬,杨惠芳等.用高效染料脱色菌和PVA降解菌混合培养液处理印染废水.环境科学学报,1993,13(4):420-426.
    [119] 闵一珏.ZE-1号印染废水脱色菌群的选育及适用条件的研究.环境污染与防治,1992,14(6):14-16.
    [120] 曾丽璇,罗国维.优势菌处理印染废水中水解池的脱色机理.中国环境科学,1998,18(5):423-426.
    [121] 李慧蓉,谭晓莲,凌瑞锋.黄孢原毛平革菌细胞固定化技术的比较研究.环境科学研究,2001,14(1):41-44.
    [122] Jeremy S. Knapp,Zhang F, Tapley K N. Decolorurisation of orange Ⅱ by a Wood Rotting Funfus. Journal of Chemical Technology and Biotechnology, 1997, 45(69): 289-296.
    [123] David P Barr, Steven D. Aust. Mechanisms white rot fungi use to degrade pollutants. Environmental Science and Technology, 1994, 28(2): 78-87.
    [124] Lan R H, Cao H, Susan S. Decolofization of textile wastewater by selective fungi. Textile Chemist and Colorist & American Dyestuff Reporter, 2000, 32(11): 38-42.
    [125] Thurston C F. The structure and function of fungal laccase. Microbiology, 1994, 140:19-26.
    [126] Swamy J.J, Ramsay A. Effects of glucose and NH_4~+ concentrations on sequential dye deceleration by Trametes versicolor. Enzyme and Microbial Technology, 1999, 25: 278-284.
    [127] Kirhy N, Mullan GM, Marchant R. Decolourisation of an afitificial textile effluent by Phanemchaete chrysosporium. Biotechnology Letters, 1995, 17(7): 761-764.
    [128] MATTHEW T, John A. Biodegradation of congo red by phanerochaete chrysosporium, Water Research, 1998, 32(5): 1713-1717.
    [129] 周申范,唐婉莹,黄俊.白腐真菌及其在有机废水处理中的研究与应用.重庆环境科学,1998,20(6):22-25.
    [130] 李向飞,文湘华,林刚.白腐真菌F1对染料脱色特性的研究.环境污染治理技术与设备,2002,3(7):1-4.
    [131] 黄民生,程永前,张国莹.白腐真菌对染料的脱色与降解.上海环境科学,2000,19(3):124-128.
    [132] Seong J K, Makoto S. Purification and characterization of a novel peroxidase from deotrachum candidum decl involved in decolorization of dyes. Applied and Environmental Microbiology, 1999, 65(3): 1029-1035.
    [133] Liu J, Liu H. Degradation ofazo dyes by algae, Environmental Pollution. 1992,75: 273-278.
    [134] 孙红文,黄国兰,丛丽莉等.藻类对偶氮染料的降解及定量结构生物降解性研究.中国环境科 学,1999,19(4):289-291.
    [135] Dos Santos A B, Reductive decolourisation of dyes by thermophilic anaerobic granular sludge. Ph. D Wageningen University, Wageningen, The Netherlands, 2005.
    [136] 洪义国,许玫英,郭俊等.细菌偶氮还原研究进展.应用与环境生物学报.2005,11(5):642-647
    [137] Russ R., Rau J, Stolz A. The function of cytoplasmic ravin reductases in the reduction of azo dyes by bacteria. Applied and Environmental Microbiology, 2000, 66: 1429-1434.
    [138] Nam S, Renganathan V. Non-enzymatic reduction of azo dyes by NADH. Chemosphere, 2000, 40: 351-357.
    [139] Hernandez P H, Gilette R, Mazel R Studies on the mechanism of action of mammalian hepatic azoreductase. Ⅰ. Azoreductase activity of reduced nicotinamide adenine dinucleotide phosphate-cytochrome creductase. Biochemical Pharmacology, 1967, 16: 1859-1875.
    [140] Hernandez P H, Gilette R, Mazel P. Studies on the mechanism of action of mammalian hepatic azoreductase. Ⅱ. The effect of phenobarbital and 3-methylcholanthrene on carbon monoxide sensitive and insensitive azoreductase activity. Biochemical Pharmacology, 1967, 16: 1877-1888.
    [141] Semde R, Pierre D, Geuskens G, et al. Study of some important factors involved in azo derivative reduction by Clostridium perfringens. International Journal of Pharmaceutics, 1998, 161: 45-54.
    [142] Cervantes F J. Quinones as electron acceptors and redox mediators for the anaerobic biotransformation of priority pollutants. Ph.D. Wageningen University, Wageningen, The Netherlands. 2002.
    [143] Keck A, Klein J, Kudlich M, et al. Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Applied and Environmental Microbiology, 1997, 63: 3684-3690.
    [144] Dunnivant F M, Schwarzenbach R P, Macalady D L. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environmental Science and Technology, 1992, 26: 2133-2141.
    [145] O'Loughlin E J, Burris D R, Delcomyn C A. Reductive dechlorination of trichloroethene mediated by humic-metal complexes. Environmental science and technology 1999, 33: 1145-1147.
    [146] Walker R, Ryan A J. Some molecular parameters influencing rate of reductions ofazo compounds by intestinal microflora. Xenobiotica, 1971, 1: 483-486.
    [147] Bragger J L, Lloyd AW, Soozandehfar S H, et al. Investigations into the azo reducing activity of a common colonic microorganism. International Journal of Pharmaceutics, 1997, 157: 61-71.
    [148] Moir D, Masson S, Chu I. Structure-activity relationship study on the bioreduction of azo dyes by Clostridium paraputrificum. Environmental Toxicology and Chemistry, 2001, 20: 479-484.
    [149] Tatsumi H., Kano K, Ikeda T. Kinetic aspects of fast hydrogenase reaction of Desulfovibrio vulgaris cells in the presence of exogenous electron acceptors. Journal of. Physical. Chemistry, 2000, 104: 12079-12083.
    [150] Kudlich M., Keck A., Klein J, et al. Localization of the enzyme system involves in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction Applied and Environmental Microbiology, 1997, 63: 3691-3694.
    [151] Francisco L., Francisco M., Marin P., et al. Oxidation of activated carbon: application to vinegar decolorization. Journal of Colloid and Interface Science, 2003, 257:173-178.
    [152] Rau J, Knackmuss H J, Stolz A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environmental Science and Technology, 2002, 36: 1497-1504.
    [153] Field J A, Brady J. Riboflavin as a redox mediator accelerating the reduction of the azo dye Mordant Yellow 10 by anaerobic granular sludge. Water Science and Technology,2003, 48: 187-193.
    [154] Yoo E S, Libra J,Wiesmann U. Reduction of azo dyes by Desulfovibrio desulfurieans. Water Science and Technology, 2000, 41: 15-22.
    [155] Van der Zee F P, Bisschops I A E, Lettinga G, et al, Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science and Technology, 2003, 37: 402-408.
    [156] Dubin P, Wright K L. Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica, 1975, 5: 563-571.
    [157] Van der Zee, F P, Lettinga, G, Field, J A. The role of(auto)catalysis in the mechanism of anaerobic azo reduction. Water Science and Technology, (2000), 42: 301-308
    [158] Zhou Q. Chemical pollution and transport of organic dyes in water soil-crop systems of the Chinese coast. Bulletin of Environmental Contamination and Toxicology, 2001, 66(6): 784-793.
    [159] 胡纪萃.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003.
    [160] De Baere L A, Devocht M, Assche P V, et al. Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Research, 1984, 18(5): 543-648.
    [161] Yang P Y, Nitisoravut S, Wu J Y S. Nitrate removal using a mixed-culture entrapped microbial cell immobilization process under high salt conditions. Water. Research, 1994, 29(6): 1525-1532.
    [162] Benedict C, Okeke T G, William T, et al. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environmential Pollution, 2002, 118: 357-363.
    [163] Fikret K A, Dincer R. Saline wastewater treatment by halophile-supplemented activated sludge culture in an aerated rotating biodisc contactor. Enzyme and Microbial Technology, 1998, 22: 427-433.
    [164] 何健,崔中利,刘智等.耐盐降解苯乙酸类菌株A1(Arthrobacter A1)的分离和特性研究.环境科学学报,2002,22(3):374-378.
    [165] 冯叶成,占新民,文湘华等.活性污泥处理系统耐含盐废水冲击负荷性能.环境科学,2000,1:106-108.
    [166] Markus R, Xaver S, Volker M. Chloride dependence of growth in bacteria. Microbiology Letters, 2003, 225: 161-165.
    [167] Haugh.W, NortmanB, Hempel, D C, et al. Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Applied and Environmental Microbiology, 1991, 57: 3144-3149.
    [168] Seshadri S, Bishop P L, Agha A M. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 1994, 14: 127-137.
    [169] Hao O J, Kim H, Chiang P. Decolourisation of wastewaters. Critical Reviews in Environmental Science and Technology, 2000, 30(4): 449-505.
    [170] Kudlich M, Hetheridge M J, Knackmuss H J, et al. Autoxidation reactions of different aromatic ortho-aminohydroxynaphthalenes which are formed during the reduction of sulphonated azo dyes. Environmental science and technology, 1999, 33: 896-901.
    [171] 张笑一,兰薇,潘渝生.偶氮染料分子的电子结构与生物降解活性(Ⅱ)——取代基非定域活性对偶氮键还原裂解的影响.高等学校化学学报,1999,20(2):268-271.
    [172] 胡家骏,周群英.环境工程微生物学.北京:高等教育出版社,1992.
    [173] Juretschko S, Timmermann G, Schmid M, et al. Combined molecular and conventional analysis of nitrifying bacterial diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant population. Applied and Environmental. Microbiology, 1998, 64:3042-3051.
    [174] Brown J P. Reduction of polymeric azo and nitro dyes by intestinal bacteria. Applied and Environmental Microbiology, 1981, 41:1283-1286.
    [175] Sponza D T, Isik M. Decolorization and inhibition kinetic of direct black 38 azo dye with granulated anaerobic sludge. Enzyme and Microbial Technology, 2003, 34(2): 147-158.
    [176] Chang J S, Kuo T S. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO_3 Bioresource Technology, 2000, 75(2): 107-111.
    [177] 张锡辉.高等环境化学与微生物学原理及应用.北京:化学工业出版社,2001.
    [178] 蒋宇红,黄霞.几种固定化细胞载体的比较.环境科学,1993,14:11-15.
    [179] 黄霞,刘建广.固定化细胞处理难降解有机废水.城市环境与城市生态,1993,6:1-4.
    [180] 全向春,施汉昌,王建龙等.固定化氯酚降解菌强化SBR系统治理氯酚废水.中国环境科学,2002,22:132-136.
    [181] 王兰,廖丽华.光合细菌固定化及对养殖水净化的研究.卫生学杂志,2005,25(3):350-53.
    [182] 王连生,杨翃,张爱茜等.定量结构-活性相关研究进展.环境科学进展,1994,2(4):15-22.
    [183] Mandic Z, Nigovic B, Simunic B, et al. The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids. Electrochmical Acta, 2003, 49: 607-615.
    [184] Bourbonnals R, Leech D, Paice M G. Electrochemical analysis of the interaction of laccase with lignin model compounds Biochimicaland Biophysical Acta, 1998, 1379: 381-390.
    [185] Semde R, Pierre D, Geuskens G, et al. Study of some important factors involved in azo derivative reduction by Clostridium perfringens. Journal International Journal of Pharmaceutics, 1998, 161: 45-54.
    [186] Ramakrishna K R, Viraraghavan T. Dye removal using low cost adsorbents. Water Science Technology, 1997, 36: 189-196.
    [187] Chagas E P, Durrant L R. Decolorization of azo dyes by Phanerochaete chrysosporium and pleurotus saiorcaju. Enzyme and Microbial Technology, 2001, 29: 473-477.
    [188] Malik P K. Use of activated carbon prepared from sawdust and rice-husk for adsorption of acid dyes a case study of Acid Yellow 36. Dyes and Pigments, 2003, 56: 239-249.
    [189] Nigam P, Armour G, Banat I M, et al. Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource. Technology, 2000, 72: 219-226.
    [190] Seshadri S, Bishop P L, Agha A M. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Management, 1994, 15: 127-137.
    [191] Bromley-Challenor K C A, Knapp J S, Zhang Z, et al. Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Research, 2000, 34:4410-4418.
    [192] German B, Maribel Q, Gloria M. Aerobic degradation of azo dye acid red 151 in a sequencing batch biofilter. Bioresource Technology, 2004, 92: 143-149.
    [193] Dykes A. G., Timm G.R. and Holy V.A. Azoreductase activity in bacteria associated with the greening of instant chocolate puddings. Applied and Environmental Microbiology, 1994, 60: 3027-3029.
    [194] Isik, M., Sponza, D.T. A batch kinetic study on decolorization and inhibition of reactive black 5 and direct brown 2 in an anaerobic mixed culture. Chemosphere, 2003, 55(1), 119-128.
    [195] 朱德煦,郑昌学.基础生物化学(译)(上册).北京:科学出版社,2003:523-527.
    [196] 国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法.北京:中国环境科学出版社,1989.
    [197] 萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T(金冬雁,黎孟枫,侯云德译).分子克隆实验指南(第2版).北京:科学出版社,1998.
    [198] 奥斯伯F,布伦特R,金斯顿R E等,(颜子颖,王海林,金冬雁译).精编分子生物学实验指南(第3版).北京:科学出版社,2001.
    [199] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biological Evolutionary, 1987, 4: 406-425.
    [200] 郭亚辉,郭坚华,李斌.根据16S rRNA序列对假单胞菌属分类学的研究进展.微生物学杂志,2004,24:38-41.
    [201] 王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究.微生物学报,2000,40:115-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700