河套平原农业灌溉影响下地下水中砷迁移富集规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,高砷地下水已相继在70多个国家和地区被发现,并威胁着1.5亿人口的饮水安全。高砷地下水已成为各国政府、公众和学术界高度关注的全球性问题。
     砷(As)是变价元素(常见的是+3和+5),毒性强(As(Ⅲ)>As(ⅤV)),在多数地下水环境中(pH为6.5-8.5之间)As可以多种形式存在。氧化环境中,当pH约小于6.9时,H2AsO4-占优势;当pH值较高时,以HAsO42-为主(H3AsO40和AsO43-可能分别在强酸和强碱环境中存在)。还原环境中,当pH值约小于9.2时主要以电中性的H3AsO30形式存在。As的释放和迁移对人为干扰很敏感。在某些地区,由于抽取地下水用于灌溉、改变农业方式、建造防堤工程等都将改变地下水流场和/或砷的物质来源,从而影响地下水中As的含量。砷的独特的水文地球化学特点决定了其成因是复杂的。
     灌溉作为人类的一种重要的农业活动,不仅改变着高砷地下水分布区地下水的水动力场和水化学场,同时可能将地质环境中的砷带入食物链,进而威胁人类的粮食安全。为此,灌溉影响下地下水中砷的迁移富集规律研究成为当今地学界高度关注的热点研究领域。
     内蒙古河套平原是我国高砷地下水分布最为广泛和严重的地区之一。地下水中砷的含量最高达1.74mg/L,超过国家饮用水标准(10μg/L)174倍。已发现的高砷地下水分布于巴彦淖尔市临河区、五原县、杭锦后旗、阿拉善盟阿左旗等19个乡镇,近100个自然村,受威胁的人口超过30万,砷中毒患者达2000余人(2002年)。河套平原作为我国重要的商品粮基地之一,有着上千年的引黄灌溉历史,构筑了亚洲最大的一首制自流灌区。巨大的排灌水网孕育着50多万公顷的耕地和100多万河套人民。
     自河套平原高砷地下水被发现的十多年间,国内外学者围绕该地区高砷地下水成因开展了卓有成效的研究,但却忽略了灌溉这一重要影响因素。引黄灌溉水是该地区地下水最主要的补给来源,通过灌溉,土壤中的氮、磷、砷等组分将被淋滤而进入地下水环境,有可能对地下水造成污染。该地区任何不考虑灌溉影响的高砷地下水研究是不全面的。
     本文以河套平原高砷地下水分布典型区——杭锦后旗为研究区,以地下水系统理论和水岩相互作用理论为指导,在对研究区地下水、灌溉水、土壤、沉积物等系统开展水文地球化学野外调查基础上,综合运用水化学、正向水文地球化学模拟等方法,以面状和线状入渗为主线,首次开展了灌溉影响下地下水中砷的迁移、富集规律研究,揭示了灌溉水-地下水-含水层介质间的水文地球化学过程,提出了灌溉影响下的砷释放概念模型。本研究丰富和发展了我国高砷地下水研究的内容和方法,对于进一步提升我国对高砷地下水成因的认识水平,科学指导高砷地下水分布区水资源的合理开发利用,具有重要理论和实际参考价值。
     本文取得了如下研究进展:
     1.研究区灌溉水水样的水化学特征分析表明研究区内引黄灌溉水本身并不是地下水中As浓度增加的来源,灌溉水中As含量很低(3.7μg/L)。
     2.排干沟承担着排泄灌溉余水的作用。按照“源头-上游-中游-下游”的采样原则,在研究区三个主要的排干沟沿程采集了12件排干水。排干水的水化学特征表现为:除总排干源头之外,其余各点的排干水总As含量均高于灌溉水中的;各排干中的TOC的含量以及全盐量均高于灌溉水中的;总N、总P和NH4-N无明显变化规律。导致排干水水化学特征发生变化的原因包括:(1)从灌溉到排水的过程中,水-土之间发生了相互作用;(2)生产、生活废水等排入排干沟,排干沟的水质受到影响。
     3.为了研究排干水中As的来源,我们在研究区排干沟附近共采集了6件不同深度的地表土并进行总As含量的测定。测定结果显示,研究区表层土壤As含量超过了内蒙古表层土壤As含量背景值6.12mg/kg,说明土壤中的As能够在灌溉水的淋滤下迁移并随灌溉退水排入排干沟中,As含量较高的表层土壤可以为排干水中As浓度的增加提供物源。
     4.为了研究杭锦后旗地下水中As的来源,我们于2007年在研究区钻凿了三个深度约50m的钻孔。沉积物化学组成分析结果显示,高砷区沉积物中的As含量高于非高砷区的。As含量较高的沉积物所在层位主要岩性为粘土、亚粘土。从垂向分布上来看,沉积物中As与Fe、Mn、Sb、B、V的含量变化规律较为一致。沉积物中P含量高的层位,As含量相对较低。这可能是磷酸盐与As进行竞争吸附的结果。
     5.研究区高As地下水主要分布在总排干流经的地带。这里是研究区的低洼地带。多数高As地下水呈弱碱性,电导率变化较大。高As地下水中TOC与HCO3-、总N与TOC、总As与TOC以及总As与总P之间存在较好的正相关关系。
     6.总排干附近地下水中As含量升高的来源包括:(1)研究区北部狼山一带含砷多金属硫铁矿床的开采引发As的释放,随着大气降水的淋滤进入地下水,并向南部山前冲洪平原前缘的低洼地带(总排干附近)流动。此外,山区一些风化的含砷矿石、岩石在大气降水、洪水的搬运作用下向平原方向移动。在水动力条件缓和的冲洪积平原前缘的低洼地带,含砷碎屑物逐渐沉积下来,随着大气降水或地下水的淋溶,其中的As有可能释放并进入地下水。(2)平原区因农业灌溉而使用的含砷农药也会在灌溉水的淋滤作用下释放As而进入地下水。这两种补给来源不同的高As地下水最终在总排干流经地带汇流,因此导致总排干附近地下水As含量升高。
     7.总排干附近地下水As富集的原因为:(1)总排干内底泥As含量高,是潜在的地下水As污染源,当排干水的pH值、氧化还原条件等因素发生变化时,底泥上吸附的As会随之释放进入地下水中;(2)残留在土壤中的过量磷肥在灌溉水和雨水的淋滤下渗入地下。随着夏灌、秋浇的持续交替进行,渗入地下的磷素在地下水水位周期性涨落的情况下被逐渐带入地下水中,由于磷酸盐竞争吸附沉积物表面的吸附点位,导致原本吸附在沉积物表面的As释放并进入地下水中。随着地下水向总排干方向流动,因此,释放到地下水中的As逐渐在总排干附近富集;(3)还原环境的形成也为总排干富集高As地下水创造了条件。由于灌区不合理的漫灌方式,导致总排干附近低洼地带的地下水位抬升明显,在强烈的蒸发浓缩作用下,土壤积盐现象严重,极易造成土壤盐渍化,因此土壤的透气性降低,空气中的氧气难以进入含水层,为含水层还原环境的形成创造了条件。此外,由于总排干中沉积底泥含有大量有机质,也为还原环境的形成提供了条件,这将有利于沉积物中铁锰氧化物的还原性溶解,从而As随之释放到地下水中。
     8.利用正向水文地球化学模拟方法中的混合模型对研究区灌溉水-地下水-含水层介质之间的化学热力学平衡进行了模拟。制定了几组不同的灌溉水与地下水的混合比。模拟结果显示,灌溉水入渗到含水层的量增大时,将促进铝硅酸盐矿物的非全等溶解,从而形成更多的次生矿物,它们将会吸附更多的As。当含水层环境发生变化时,这些吸附在粘土矿物表面的As将释放到地下水中。
     9.结合地下水和沉积物的地球化学特征分析结果和水文地球化学模拟结果,建立了研究区农业灌溉影响下的砷释放概念模型:大量灌溉水的渗透促进了土壤中的As向水相中迁移。As向下迁移,粘土矿物成为潜在的As的源或汇。随着灌溉水下渗量的增加,地下水位抬升了许多,此时更多的粘土矿物与地下水接触。另外,土壤中因过量施肥而残留的磷素也随着灌溉水下渗。抬升的地下水位使得更多的磷酸盐向地下水中迁移。由于磷酸盐的竞争吸附,使得原本吸附在粘土矿物表面的As向地下水中释放,因此导致地下水中As含量增加。
     本文的主要创新点:
     (1)提出了灌溉影响下的地下水中砷的释放、迁移与富集模式;
     (2)应用正向水文地球化学模拟定量揭示了灌溉水-地下水-含水层介质间的水文地球化学过程。成果丰富和发展了高砷地下水研究的内容和方法。
Currently, high-arsenic groundwater has been found successively in more than 70 countries and regions and the security of the drinking water of 150 million people has been threatened.
     Arsenic (As) is a variable-price element (most common valence is+3 and+5) and highly poisonous metallic element. In most groundwater environments (pH is between 6.5-8.5)As exists in its many forms.Under the oxidizing condition, when pH< 6.9, H2AsO4- is a dominant form; when the pH value is higher, HAsO42- is a dominant form. Under the reducing environment, H3ASO30 is a dominant form when pH< 9.2.The release and migration of As are sensitive to human disturbance.In some areas, as the extraction of groundwater for irrigation, changes in agricultural practices and construction of embankment works will change the groundwater flow field and/or arsenic source, so the content of As will change in groundwater. Hydrogeochemical characteristics of As indicate that its causes are complex.
     Irrigation as an important human agricultural activity, not only change the groundwater hydrodynamic field and hydrochemical field of high arsenic groundwater areas, but also can carry the geological environment of arsenic in the food chain and thereby threaten the food security of human. Therefore, under the influence of irrigation the study in migration and enrichment of arsenic in groundwater become one of the hot fields in academic research. Hetao Plain, Inner Mongolia is a one of the most widely distributed high-arsenic groundwater areas and serious arseniasis regions.Content of As in groundwater is up to 1.74mg/L, which exceeds maximum contaminant level (MCL) based on the health risk associated with arsenic in drinking water (10μg/L) 174 times. Distribution of high-arsenic groundwater is in 19 villages and towns, including Linhe, Wuyuan, Hangjinhouqi, Tumoteyouqi, Azuoqi, et. Population at risk is more than 300,000 and arsenic poisoning patients are more than 2000 (data of 2002).Hetao Plain as one of the important commodity grain base in China, it has a history of thousands years of Yellow River irrigation and it is largest single-head irrigated area of Asia. Huge net of irrigation and drainage breed more than 500,000 hectares of arable land and million of people.
     Since the high-arsenic groundwaters were found in Hetao Plain, many researchers have done the effective research around the cause of high-arsenic groundwater, but they neglected one important factor—irrigation. Irrigation water from Yellow River is the main recharge source of groundwater in Hetao Plain. Through irrigation, N、P、As and other elements can enter into groundwater and these elements maybe pollute groundwater. Study on high-arsenic is not comprehensive without regard to influence of irrigation.
     In this paper, we take Hangjinhouqi as the typical high-arsenic groundwater study area. On the base of systematic hydrogeochemical investigation on groundwater, irrigation water, soil and sediments, using the method of hydrochemical and hydrogeochemical modeling we carry out research on migration and enrichment of arsenic in groundwater under the influence of irrigation for the first time and exposit the hydrogeochemical process between irrigation water groundwater—aquifer, and then establish a conceptual model of arsenic release under the influence of irrigation. This study enriches and develops the research content and method of high-arsenic groundwater, and also has important theoretical and practical value for improving awareness of the causes of high-arsenic groundwater and the scientific development concept to guide rational development and utilization of water resources in high-arsenic areas.
     Our progresses achieved include: 1.Irrigation water from Yellow River is not the source of elevated arsenic concentration in groundwater.
     2. Irrigationreturnflow, precipitate water and wastewater run into drainage ditch. Hydrochemical characteristics of drain water:except for source of large drainage ditch, arsenic contents in other drainage ditches are higher than which in irrigation water; TOC and salinity in drainage ditches are higher than which in irrigation water; Total N, total P and NH4-N had no significant variation.
     3.In order to study the source of arsenic in drain water, we collected 6 surface soil samples at different depths along drainage ditch and determined arsenic content. The result shows that arsenic contents in surface soils are higher than arsenic background value of Inner Mongolia (6.12 mg/kg). This shows that arsenic of surface soil can transport to drainage ditch with irrigation water leaching. Surface soil with high arsenic content is one source of elevated arsenic content in drainage ditches.
     4. In order to study the source of arsenic in groundwater, we drilled 3 boreholes with depth about 50m. Chemical composition of sediment analysis shows that arsenic contents of sediments in high-arsenic area are higher than low-arsenic area. Clay and loam are main lithological characters in high arsenic sediments. Point of view from the vertical distribution, there is a similar feature between As, Fe, Mn, Sb, B and V content variation. In sediment if P content is high, arsenic content is relatively low. This may be the result of competition adsorption between phosphate and arsenic.
     5.High-arsenic groundwaters distribute mainly in the areas where large drainage ditch flows through. Most of high-arsenic groundwater is alkaline and the electrical conductivity change significantly. TOC was in negative correlation with the HCO3-, and the same as TN with TOC, As with TOC and total As with TP.
     6. The sources of elevated As in groundwater near the large drainage ditch contain:(1)the arsenic release by multi metal pyrite deposit extraction along the Lang Mountain in north plain, and leach into the groundwater with precipitation. (2) arsenical pesticide release and leach into the groundwater with irrigation water because of the agricultural irrigation in plain. The high-arsenic groundwater with different sources finally converges near the large drainage ditch. Therefore contents of arsenic in groundwater near the large drainage ditch are higher.
     7. The reasons of enrichment of arsenic in groundwater in the vicinity of the large drainage ditch are:(1)contents of arsenic are high in substrate sludge in large drainage ditch. So substrate sludge is potential source of elevated arsenic in groundwater. When pH values of drain water, redox conditions, groundwater temperature etc are change, arsenic adsorbed on substrate sludge will release into groundwater; (2) with leaching of irrigation water and rain water phosphate in soils will downwards migrate. During the period of irrigation in summer and autumn, groundwater table variation can cause phosphate migrate to groundwater. As the result of competition adsorption between phosphate and arsenic, arsenic will release into groundwater. With the direction of groundwater flow, arsenic radually accumulated in groundwater in the vicinity of the large drainage ditch; (3) the formation of reducing environment is conducive to enrichment arsenic in groundwater near the large drainage ditch. As irrational irrigation methods, the groundwater table significantly elevate in low-lying areas near the large drainage ditch. In the strong effect of evaporation, soil salinity is serious, therefore, soil permeability reduce, and oxygen in the air difficult to enter the aquifer, so aquifer environment easy to form reducing environment. In addition, due to organic matter riched in substrate sludge in large drainage ditch, it also can contribute to form reducing environment of aquifer. This will facilitate the reductive dissolution of iron and manganese oxides in sediments, and therewith arsenic will release to groundwater.
     8.Simulation has done for chemical thermodynamic equilibrium between irrigation water—groundwater—aquifer use of hydrogeochemical positive modeling in the study area. Through analyses of geochemical processes to study migration and enrichment process of arsenic. In order to better reflect the difference mixed proportion between irrigation water and groundwater interacted with sediments, we design several groups of mixing ratio. Simulation results show that the amount of irrigation water increase in the aquifer will promote the non-congruent dissolution of the aluminum silicate mineral and then the formation of chlorite, montmorillonite and kaolinite and other secondary minerals will increase, they can adsorb more arsenic. While irrigation water infiltration, P in the soils because of excessive fertilization will leach to groundwater with groundwater. Increase the amount of irrigation water increased the probability of P into groundwater. When more P into the groundwater they will competitive adsorb with arsenic, so more arsenic will desorbs from clay mineral surface and then transfer to the groundwater. In addition, pH values have important influences on arsenic adsorption in clay minerals. When the pH value increases, the number of negative charge of the clay mineral surface will increase and their adsorption capacity in arsenic will fall. Groundwater pH value is 6.74-8.64. So with the increase of pH value, the release of arsenic to the groundwater increases. However, due to different local hydrological conditions and redox environment, and also different arsenic contents in sediments, the release of arsenic in different areas varies widely.
     9.Combined with the simulation results, conceptual model of arsenic release under the influence of irrigation has established:the infiltration of a large number of irrigation water contributes to arsenic adsorbed on soil migrate to aqueous phase. Arsenic migrates downward, and clay minerals become potential source or sink. With the increase in the amount of irrigation water, water table rise and more contact with the clay mineral and groundwater. Soil phosphate also with irrigation water infiltrates into groundwater. Elevation of water table makes more phosphate migrate to groundwater. Because of competitive adsorption of phosphate and arsenic, arsenic adsorbed on the surface of clay minerals will release to groundwater. Therefore arsenic contents increase in groundwater.
     The innovations of this study contain:
     (1)put forward arsenic release, migration and accumulation mode under the influence of irrigation;
     (2) quantitatively reflect hydrogeochemical process between irrigation water groundwater—aquifer by means of hydrogeochemical positive modeling.
引文
[1]Ashraf Ali Seddique, Harue Masuda, Muneki Mitamura, et al. Arsenic release from biotite into a Holocene groundwater aquifer in Bangladesh. Applied Geochemistry,2008,23: 2236-2248
    [2]Bachate SP, Cavalca L, Andreoni V. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains.Journal of Applied Microbiology,2009,107(1):145-156
    [3]Busbee M W, Kocar B D, Benner S G. Irrigation produces elevated arsenic in the underlying groundwater of a semi-arid basin in Southwestern Idaho.Applied Geochemistry,2009,24:843-859
    [4]Choi S Y, O'Day P A, Hering J G. Natural Attenuation of Arsenic by Sediment Sorption and Oxidation. Environmental Science & Technology,2009,43(12):4253-4259
    [5]Chowdhury R, Sen A K, Karak P, et al.Isolation and characterization of an arsenic-resistant bacterium from a bore-well in West Bengal, India. Annals of microbiology,2009,59(2):253-258
    [6]Clemente R, Dickinson NM, Lepp NW. Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environmental Pollution,2008,155(2):254-261
    [7]Davenport J R, Peryea F J.Phosphate fertilizers influence leaching of lead and arsenic in a soil contaminated with lead arsenate.Water, Air and Soil Pollution,1991,57-58:101-110
    [8]Debasish Mohapatra, Debaraj Mishra, Gautam Roy Chaudhury, et al.Arsenic adsorption mechanism on clay minerals and its dependence on temperature. Korean Journal of Chemical Engineering,2007,24(03):426-430
    [9]Dowling C B,Poreda R J, Basu A R. The groundwater geochemistry of the Bengal Basin: Weathering, chemsorption, and trace metal flux to the oceans.Geochimica et Cosmochimica Acta,2003,67(12):2117-2136
    [10]Feng Zhaozhong, Wang Xiaoke, Feng Zongwei. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agricultural Water Management,2005,71:131-143
    [11]Harvey C F, Ashfaque K N, Yu W,et al.Groundwater dynamics and arsenic contamination in Bangladesh. Chemical Geology,2006,228:112-136
    [12]Hasan M A, Bhattacharya P, Sracek O, et al. Geological controls on groundwater chemistry and arsenic mobilization:Hydrogeochemical study along an E-W transect in the Meghna basin, Bangladesh. Journal of Hydrology,378(1-2):105-118
    [13]Hill J, Hossain F, Bagtzoglou A C.Zonal management of arsenic contaminated ground water in Northwestern Bangladesh. Journal of Environmental Management,2009,90(12), Sp.lss.SI:3721-3729
    [14]Hiller E, Jurkovic L, Kordik J, et al.Arsenic mobility from anthropogenic impoundment sediments-Consequences of contamination to biota, water and sediments,Posa, Eastern Slovakia. Applied Geochemistry,2009,24(11):2175-2185
    [15]Hug SJ, Leupin OX, Berg M. Bangladesh and Vietnam:Different groundwater compositions require different approaches to arsenic mitigation. Environmental SCIENCE & Technology,2008,42(17):6318-6323
    [16]Johannesson K H, Tang J W. Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system. JournaL of Hydrology,2009,378(1-2):13-28
    [17]Johannesson K H, Tang Jianwu. Conservative behavior of arsenic and other oxyanion-forming trace elements in an oxic groundwater flow system. Journal of Hydrology,2009,378:13-28
    [18]Keon N E, Swartz C H, Brarander D J, et al.Validation of an arsenic sequential extraction method for evaluating mobility in sediments.Environmental Science and Technology, 2001,35(13):2778-2784
    [19]Kim K, Moon JT, Kim SH, et al.Importance of surface geologic condition in regulating As concentration of groundwater in the alluvial plain. Chemosphere,2009,77(4):478-484
    [20]Kumar P, Kumar M, Ramanathan A L, et al.Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India:a source identification perspective.Environmental Geochemistry and Health,2010,32(2):129-146
    [21]Lawson M, Ballentine C J, Polya D A, et al.The geochemical and isotopic composition of ground waters in West Bengal:tracing ground-surface water interaction and its role in arsenic release. Mineralogical magazine,2008,72(1):441-444
    [22]Lee Jin Jing, Jang Cheng Shin, Wang Sheng Wei, et al. Delineation of spatial redox zones using discriminant analysis and geochemical modeling in arsenic-affected alluvial aquifers.Hydrological Processes,2008,22:3029-3041
    [23]Li F, Zheng Y M, He J Z. Microbes influence the fractionation of arsenic in paddy soils with different fertilization regimes.Science of the total Environment,2009,407(8): 2631-2640
    [24]Liu TK, Chen KY, Yang TF, et al.Origin of methane in high-arsenic groundwater of Taiwan-Evidence from stable isotope analyses and radiocarbon dating. Journal of Asian Earth Sciences,2009,36(4-5):364-370
    [25]Ludek Sisr, Martin Mihaljevic, Vojtech Ettler, et al.Effect of application of phosphate and organic manure-based fertilizers on arsenic transformation in soil columns. Environmental monitoring and assessment,2007,135:465-473
    [26]Michael H A,Voss C I. Controls on groundwater flow in the Bengal Basin of India and Bangladesh:regional modeling analysis.Hydrogeology Journal,2009,17(7):1561-1577
    [27]Mukherjee A, Bhattacharya P, Shi F, et al.Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India).Applied Geochemistry,2009,24(10):1835-1851
    [28]Mukherjee A, Bhattacharya P, Shi F, et al.Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Applied Geochemistry,2009,24(10):1835-1851
    [29]Mukherjee A, Fryar A E, Howell P D. Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeology Journal,2007,15(7):1397-1418
    [30]Naidu R, Smith E, Huq SMI,et al.Sorption and bioavailability of arsenic in selected Bangladesh soils.Environmental Geochemistry and Health,2009,31, Sp.lss.SI Suppl.1: 61-68
    [31]Neumann R B,Ashfaque K N, Badruzzaman A B M, et al.Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience,2010,3 (1):46-52
    [32]Oremland R S,Stolz J F. The ecology of arsenic. Science,2003,300:939-944
    [33]Pal T, Mukherjee PK. Study of subsurface geology in locating arsenic-free groundwater in Bengal delta, West Bengal, India. ENVIRONMENTAL GEOLOGY,2009,56(6): 1211-1225
    [34]Pigna M, Cozzolino V, Violante A, et al.Influence of phosphate on the arsenic uptake by Wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations.Water, Air and Soil Pollution,2009,197:371-380
    [35]Polizzotto M L, Kocar B D,Benner S G, et al.Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature,2008,454:505-509
    [36]Rodrigues SM, Henriques B,Coimbra J, et al.Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils. Chemosphere,2010,78(11):1301-1312
    [37]Saada A, Breeze D, Crouzet C, et al.Adsorption of arsenic (V) on kaolinite and on kaolinite-humic acid complexes Role of humic acid nitrogen groups. Chemosphere,2003, 51:757-763
    [38]Savchenko A V, Gramm-Osipov L M, Mar'yash A A.Physicochemical Modeling of the Behavior of Microelements (As, V, Cr, Co, and Hg) under the Mixing of Riverine and Marine Waters (the Razdol'naya River-Amur Bay System).Oceanology,2009,49(1): 39-46
    [39]Scanlon B R, Nicot J P, Reedy R C, et al. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA.Applied Geochemistry,2009,24(11):2061-2071
    [40]Sharif M U, Davis R K, Steele K F, Kim B,et al.Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas. Journal of Contaminant Hydrology,2008,99 (1-4):49-67
    [41]Smedley P L, Kinniburgh D G.A review of the source, behaviour and distribution of arsenic in natural waters.Applied Geochemistry,2002,17:517-568
    [42]Smedley P L, Zhang M, Zhang G, Luo Z.Mobilisation of arsenic and other trace elements in fluoviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 2003,18:1453-1477
    [43]Smith E, Naidu R. Chemistry of inorganic arsenic in soils:kinetics of arsenic adsorption-desorption.Environmental Geochemistry and Health,2009,31, Sp.lss.SI Suppl.1:49-59
    [44]Solaiman A R M, Meharg A A, Gault A G, et al. Arsenic mobilization from iron oxyhydroxides is regulated by organic matter carbon to nitrogen (C:N) ratio.Environment International,2009,35:480-484
    [45]Sonderegger J L, Ohguchi T. Irrigation related arsenic contamination of a thin, alluvial aquifer, Madison River Valley, Montana, USA.Environmental Geology and Water Sciences,1988,11 (2):153-161
    [46]Su Chunming, Puls R W. In situ remediation of arsenic in simulated groundwater using zerovalent iron:laboratory column tests on combined effects of phosphate and silicate. Environmental Science and Technology,2003,37:2582-2587
    [47]Sun Wenjie, Alvarez R S,Milner L, et al. Arsenite and Ferrous Iron Oxidation Linked to Chemolithotrophic Denitrification for the Immobilization of Arsenic in Anoxic Environments.Environmental Science & Technology,2009,43(17):6585-6591
    [48]Takaaki Itai, Harue Masuda, Ashraf A Seddique, et al. Hydrological and geochemical constraints on the mechanism of formation of arsenic contaminated groundwater in Sonargaon, Bangladesh. Applied Geochemistry,2008,23:3155-3176
    [49]von Bromssen M, Larsson S H, Bhattacharya P, et al.Geochemical characterisation of shallow aquifer sediments of Matlab Upazila, Southeastern Bangladesh-Implications for targeting low-As aquifers.Journal of Contaminant Hydrology,2008,99(1-4):137-149
    [50]Wang Suiling, Mulligan C N. Effect of natural organic matter on arsenic mobilization from mine tailings.Journal of Hazardous Materials,2009,168:721-726
    [51]Wang Yanxin, Ma Teng, Ryzhenko B N, Limantseva O A, Cherkasova E V. Model for the formation of arsenic contamination in groundwater.1.Datong Basin, China. Geochemistry International,2009,47(07):713-724
    [52]Wolthers M, Charlet L, van Der Weijden CH, et al.Arsenic mobility in the ambient sulfidic environment:Sorption of arsenic (Ⅴ) and arsenic (Ⅲ) onto disordered mackinawite. Geochimica et Cosmochimica Acta,2005,69:3483-3492
    [53]Xu H, Allard B,Grimvall A.Effects of acidification and natural organic materials on mobility of arsenic in the environment. Water, Air snd Soil Pollution,1991,57/58: 269-278
    [54]Yang LS,Wang WY, Hou SF, et al.Arsenism clinical stages and their relation with hair arsenic concentration of residents of Bayinmaodao rural district, Inner Mongolia, China. Environmental Geochemistry and Health,2002,24(4):337-348
    [55]Zaharescu D G, Hooda P S,Fernandez J, et al.On the arsenic source mobilisation and its natural enrichment in the sediments of a high mountain cirque in the Pyrenees. Journal of Environmental Monitoring,2009,11(11):1973-1981
    [56]Zhang H, Ma D S, Hu X X.Arsenic pollution in groundwater from Hetao Area, China. Environmental Geology,2002,41:638-643
    [57]Zhang Y, Stute M, et al.Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry,2004,19:201-214
    [58]Zobrist J, Dowdle P R, Davis J A, et al. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate.Environmental Science and Technology,2000,34: 4747-4753
    [59]巴彦淖尔盟志编纂委员会编.巴彦淖尔盟志.呼和浩特:内蒙古人民出版社,1997.1874p
    [60]陈亚新.地面水-土壤水-地下水连续系统田间水有效性评价.灌溉排水学报,1993,12(01):1-6
    [61]邓娅敏.河套盆地西部高砷地下水系统中的地球化学过程研究:博士学位论文.武汉:中国地质大学,2008
    [62]杜新强,齐素文,廖资生,李研阁.人工补给对含水层水质的影响.吉林大学学报(地球科学版),2007,37(02):293-297
    [63]范定邦,温玉亭.黄河内蒙古河套段水质动态.内蒙古水利,1994,04:23-28
    [64]冯占和,王利民.提高磷肥利用率的主要技术措施.内蒙古农业科技,2005,07:388
    [65]冯兆忠,王效科,冯宗炜,刘宏云,李延林.河套灌区秋浇对不同类型农田土壤氮素淋失的影响.生态学报,2003,23(10):2027-2032
    [66]高存荣,李朝星,周晓红等.河套平原临河区高砷地下水分布及水化学特征.水文地质工程地质,2008,06:22-28
    [67]高晶,郝爱兵,魏亚杰等.河套平原中东部地下水的环境同位素特征分析.水文地质工程地质,2009,03:55-58
    [68]高胜利.河套盆地浅层气(生物气)成藏地质条件研究:博士学位论文.西安:西北大学,2007
    [69]郭华明,唐小惠,杨素珍等.土著微生物作用下含水层沉积物砷的释放与转化.现代地质,2009,23(1):86-93
    [70]郭华明,杨素珍,沈照理.富砷地下水研究进展.地球科学进展,2007,22(11):1109-1117
    [71]韩翠莲,武石军.总排干沟排退水质变化及对乌梁素海湿地的影响.内蒙古水利,2005,3:79-82
    [72]何军.内蒙古河套平原高砷地下水赋存环境研究,硕士学位论文.武汉:中国地质大学,2009
    [73]姜凌.干旱区绿洲地下水水化学成分形成及演化机制研究——以阿拉善腰坝绿洲为例:博士学位论文.西安:长安大学,2009
    [74]李树范,李浩基.内蒙古河套地区地方性砷中毒区地质环境特征与成因探讨.中国地质灾害与防治学报,1994,S1:213-219
    [75]李晓霞,白洋.浅谈河套灌区农田氮磷流失量及对乌梁素海输入量的估算.内蒙古环境科学,2009,21(03):44-49
    [76]刘开泰.我国控制地方性砷中毒面临的机遇与挑战.中国地方病学杂志,2007,26 (1):4-5
    [77]罗磊,张淑贞,马义兵.土壤中砷吸附机理及其影响因素研究进展.土壤,2008,40(03):351-359
    [78]马复祥,张玉芬,范瑞瑛.河套灌区春小麦川字施肥法施种肥的探讨.土壤通报,1980,03
    [79]戎秋涛,翁焕新.环境地球化学.北京:地质出版社,1990.217-220
    [80]沈照理,朱宛华等编.水文地球化学基础.1993.189p
    [81]苏春利,Win hlaing,王焰新等.大同盆地砷中毒病区沉积物中砷的吸附行为和影响因素分析.地质科技情报,2009,28(3):120-126
    [82]苏春利.大同盆地区域水文地球化学与高砷地下水成因研究:博士学位论文.武汉:中国地质大学,2006
    [83]孙殿军.论中国地方病控制之前景.中国地方病学杂志,2009,28(1):3-6
    [84]孙殿军.应进一步加强我国地方性砷中毒现场流行病学研究.中国地方病学杂志,2006,25(1):1-2
    [85]孙金铸.河套平原自然条件及其改造.呼和浩特:内蒙古人民出版社,1978.202p
    [86]汤洁,林年丰,卞建民等.内蒙河套平原砷中毒病区砷的环境地球化学研究.水文地质工程地质,1996,1:49-54
    [87]王喜宽,黄增芳,苏美霞等.河套地区土壤基准值及背景值特征.岩矿测试,2007,26(04):287-292
    [88]王严,杜红,盛金妹.北京市饮用水TOC标准的研究.中国卫生工程学,2005,4(05):290-292
    [89]王焰新主编.地下水污染与防治.北京:高等教育出版社,2007.p8-9
    [90]文冬光,沈照理,钟佐粲.水-岩相互作用的地球化学模拟理论及应用.1988.88p
    [91]夏玉红,陈智渊,徐建新.河套灌区七排域的排水与节水灌溉分析.内蒙古石油化工,2006,12:97-99
    [92]谢先军,王焰新,苏春利等.大同盆地高砷地下水系统沉积物环境磁学特征.地球科学——中国地质大学学报,2008,33(1):117-123
    [93]谢正苗,黄昌勇,何振立.土壤中砷的化学平衡.环境科学进展,1998,6(1):22-37
    [94]徐苑苑.饮水型砷暴露人群砷甲基化模式及其与机体氧化应激状态关系的研究:博士学位论文.沈阳:中国医科大学,2009
    [95]杨素珍,郭华明,唐小惠,沈照理.内蒙古河套平原地下水砷异常分布规律研究.地学前缘,2008,15(1):242-249
    [96]杨素珍.内蒙古河套平原原生高砷地下水的分布与形成机理研究:博士学位论文.北京地质大学,2008
    [97]杨云友.内蒙河套盆地第四系生物气藏形成地质条件分析.西安科技大学学报,2004,24(03):320-323
    [98]曾阿妍,郝芳华,张嘉勋,欧阳威等.内蒙古农业灌区夏、秋浇的氮磷流失变化.环境科学学报,2008,28(05):838-844
    [99]张佳勋.内蒙古农业灌区磷元素时空分布与迁移规律研究.硕士学位论文.北京:北京师范大学,2008
    [100]张永玲,肖军民.含砷农药污染环境的调查.康复与疗养杂志,1993,8(4):165-166
    [101]赵文涛,王喜宽,张青等.河套地区土壤矿物组成分析及与各元素的关系.物探与化探,2009,33(01):16-19
    [102]周晓虹.基于GIS的杭锦后旗浅层地下水化学分析与水质评价:硕士学位论文.北京:首都师范大学,2008
    [103]朱成立,张展羽.灌溉模式对稻田氮磷损失及环境影响研究展望.水资源保护,2003,06:56-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700