用户名: 密码: 验证码:
基于三种新型复合纳米材料的H_2O_2电化学生物传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今基于新型纳米材料及复合纳米材料构置高灵敏、高选择性的电化学生物传感器是生物电分析化学研究的热点之一。本论文基于三种新型复合材料构置了三种H202电化学生物传感器,采用循环伏安法、电化学阻抗法、计时安培法及扫描电镜技术对其进行了表征,研究了氧化还原蛋白质(酶)的直接电化学和电催化特性,建立了检测H202的新方法。该研究丰富了生物电分析化学的研究内容,拓展了复合纳米材料的应用范围。全文共分三章,内容如下:
     1、综述了电化学生物传感器的研究进展情况,提出了本论文的研究内容及意义,引用参考文献113篇。
     2、构置了基于纳米碳酸钙的H202电化学生物传感器,研究了Hb的直接电化学和电催化特性,建立了检测H202的新方法。结果表明,循环伏安图上出现了Hb的一对峰形良好、准可逆的氧化还原峰,其式量电位为-0.295 V;电子传递速率常数(ks)为1.98 s-;Hb对H202具有良好的电催化作用,催化电流与H202浓度在5.0×10-6-1.3×10-3mol·L-1范围内呈线性关系,灵敏度为0.16AM-1cm-2,检出限为1.6×10-6mol·L-1;表观米氏常数KMapp为8.17×10-4mol·L-1。
     3、构置了基于聚苯乙烯和多壁碳纳米管的H202电化学生物传感器,研究了HRP的直接电化学和电催化行为,建立了检测H202的新方法。研究表明,循环伏安图上出现了HRP的一对峰形良好、准可逆的氧化还原峰,其式量电位为-0.400 V;电子传递速率常数(ks)为1.15 s-1;催化电流与过氧化氢浓度在5.0×10--7-8.2×10-4mol·L-1范围内呈线性关系,检出限为1.6×10-7mol·L-1。表观米氏常数KMapp为6.64x10-4mol·L-1。
     4、构置了基于二氧化硅和四氧化三铁纳米粒子的H202电化学生物传感器,研究了Hb的直接电化学和电催化行为,建立了检测H202的新方法。结果表明,循环伏安图上出现了Hb的一对峰形良好、准可逆的氧化还原峰,其式量电位为-0.195 V;其电子传递速率常数(ks)为1.54 s-1;电极响应时间小于2s;Hb对H202具有良好的电催化作用,催化电流与H202浓度在1.0×10-7-1.7×10-3mol·L-1范围内呈线性关系,检出限为3.3×10-8mol·L-1;表观米氏常数KMapp为8.12×10-4mol·L-1。与本论文构置的其他二种过氧化氢电化学传感器相比,该传感器具有灵敏度高、线性范围宽、选择性好等优点。
Nowadays the construction of novel electrochemical biosensor with high sensitive and selective sensing interface based on new nanomaterials and nanocomposite has become one of the research subjects for analysts. In this thesis, three types novel hydrogen peroxide biosensor were fabricated based on three types of nanocomposite, which was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, chronoamperometry and scanning electron micros copy. After which the electrochemical behaviors of redox protin (enzyme) were studied in details and the new methods for determination of H2O2 were developed. These studies enriched the study of biological electroanalytical chemistry, expanding the scope of the application of nanocomposites. The thesis was divided into three chapters and presented as follows:
     1. A review on the eleetroehemieal sensor and its researeh progress was presented with 113 referenees.
     2. A hydrogen peroxide biosensor based on nanoCaCO3 was fabricated and the direct electrochemistry and electrocatalysis of Hb at the electrode was investigated. The results showed that the biosensor displayed a pair of well defined redox peaks with the formal potential (E0') of-0.295 V. The electron transfer rate constant (ks) was estimated to be 1.98 s-1. The biosensor also exhibited excellent electrocatalytic activity to H2O2. The linearity range for determination of H2O2 is from 5.0x10-6 to 1.3×10-3mol·L-1, with a sensitivity of 0.16 AM-1cm-2 and a detection limit of 1.6×10-6mol·L-1. The apparent Michaelis-Menten constant was calculated to be 8.1×10-4mol·L-1.
     3. A Hydrogen peroxide biosensor based on PS-MWCNT composite was fabricated and the direct electrochemistry and electrocatalysis of HRP at the electrode was investigated. The results showed that the biosensor displayed a pair of well defined redox peaks with the formal potential (E0') of-0.400 V. The electron transfer rate constant (ks) was estimated to be 1.15s-1 The biosensor also exhibited excellent electrocatalytic activity to H2O2. The linearity range for determination of H2O2 is from 5.0×10-7 to 8.2×10-4mol·L-1 with a detection limit of 1.6×10-7 mol·L-1. The apparent Michaelis-Menten constant was calculated to be 6.64×10-4mol·L-1.
     4. A Hydrogen peroxide biosensor based on Fe3O4 and SiO2 nanomaterials was fabricated and the direct electrochemistry and electrocatalysis of Hb at the electrode was investigated. The results showed that the biosensor displayed a pair of well defined redox peaks with the formal potential (E0') of-0.195 V. The electron transfer rate constant (ks) was estimated to be 1.54 s-1. The biosensor also exhibited excellent electrocatalytic activity to H2O2. The response time is lower than 2s; the linearity range for determination of H2O2 is from 1.0×10-7 to 1.7×10-3 mol·L-1 with a detection limit of 3.3×10-8 mol·L-1. The apparent Michaelis-Menten constant was calculated to be 8.12×10-4 mol·L-1. Compare with other two hydrogen peroxide biosensor, this biosensor has the Characteristics like high sensitivity, wide linear range and good selectivity.
引文
[1]Koncki R., Recent Developments in Potentiometric Biosensors for Biomedical Analysis[J]. Analytical Chimica Acta,2007,599(1):7-15.
    [2]Mello L. D., Kubota L. T., Review of the Use of Biosensors as Analytical Tools in the Food and Drink Industries[J]. Food Chemistry,2002,77(2):237-256.
    [3]Ohashi E., Karube I., Sensors for the Food Industry[J]. Food Control,1993,4(4):183-188.
    [4]Tothill I. E., Biosensors Developments and Potential Applications in the Agricultural Diagnosis Sector[J]. Computers and Electronics in Agriculture,2001,30(1-3):205-218.
    [5]Bourgeois W., Burgess J. E., Stultz R. M., On-line Monitoring of Wastewater Quality:A Review[J]. Journal of Chemistry Technology and BioTechnology,2001,76(4):337-348.
    [6]Wang J., Amperometric Biosensors for Clinical and Therapeutic Drug Monitoring:A Review[J]. Journal of Pharmaceutical & Biomedical Analysis,1999,19(1-2):47-53.
    [7]Clark L.C., Lyons C., Electrode systems for continuous monitoring in cardiovascular surgery[J]. Annals of the New York Academy of Sciences,1962,102(1):29-45.
    [8]Updike S. J., Hicks J. P., The enzyme electrode[J]. Nature,1967,214:986-988.
    [9]Guilbault G. G., Montalvo J., A urea specific enzyme electrode [J]. Journal of the American Chemical Society,1969,91,2164-2165.
    [10]陈绚,杨安,综述生物传感器及发展研究前景,南昌高专学报[J].2005,1:94-96.
    [11]Stoecker, P. W., Yacynych, A. M, Chemically modified electrodes as biosensors[J]. Selective Electrode Reviews,1990,12(1):137-160.
    [12]饶家声,生物传感器的研究现状和发展趋势,湖南冶金职业技术学院学报[J].2007,7(2):21-23.
    [13]董绍俊,车广礼,谢远武,化学修饰电极[M].北京,科学出版社,1995,6-8.
    [14]Thevenot D. R., Toth K., Durst R. A., Electrochemical Biosensors:Recommended Definitions and Classification[J]. Biosensors & Bioelectronics,2001,16(1-2):121-131.
    [15]金利通,仝威,徐金瑞,方禹之,化学修饰电极[M].上海,华东师范大学出版社,1992,9-10.
    [16]Dzyadevych S. V., Arkhypova V. N., Soldatkin A. P., Amperometric Enzyme Biosensors:Past, Present and Future[J]. ITBM-RBM,2008,29(2-3):171-180.
    [17]Thevenot D. R., Toth K., Durst R. A., Wilson G. S., Electrochemical Biosensors:Recommended Definitions and Classification[J]. Biosensors and Bioelectronics,2001,16(1-2):121-131.
    [18]胡晓歌,王铁,程文龙,汪尔康,董绍俊,金属纳米线的合成与组装[J].分析化学评述与进展,2004,32(9):1240-1245.
    [19]张立德,纳米材料[M].北京:化学工业出版社,2000,1-40.
    [20]Park K., Koerner H., Vaia R. A., Depletion-Induced Shape and Size Selection of Gold Nanoparticles[J]. Nano Letters,2010,10(4):1433-1439.
    [21]Zan X. J., Kozlov M., McCarthy T. J., Su Z. H., Covalently Attached, Silver-Doped Poly(vinyl alcohol) Hydrogel Films on Poly(L-lactic acid) [J]. Biomacromolecules,2010,11(4):1082-1088.
    [22]Bondi J. F., Oyler K. D., Ke X. L., Schiffer P., Schaak R. E., Chemical Synthesis of Air-Stable Manganese Nanoparticles[J]. Journal of the American Chemical Society,2009,131(26): 9144-9145.
    [23]Astruc D., Boisselier E., Ornelas C., Dendrimers Designed for Functions:From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine[J]. Chemical Reviews,2010,110(10):6338-6442.
    [24]Chen Y. L., Kung S. C., Taggart D. K., Halpern A. R., Penner R. M., Corn R. M., Fabricating Nanoscale DNA Patterns with Gold Nanowires[J]. Analytical Chemistry,2010,82(15): 6440-6446.
    [25]Gu G. H., Suh J. S., Aluminum Plate for Surface-Enhanced Raman Scattering[J]. The Journal of Physical Chemistry C,2010,114(16):7258-7262.
    [26]Corgier B. P., Blanger D., Electrochemical Surface Nanopatterning Using Microspheres and Aryldiazonium[J]. Langmuir,2010,26 (8):5991-5997.
    [27]Choi I. D., Lee H., Shim Y. B., Lee D., A One-Step Continuous Synthesis of Carbon-Supported Pt Catalysts Using a Flame for the Preparation of the Fuel Electrode[J]. Langmuir,2010,26(13): 11212-11216.
    [28]Dai L. L., Sharma R., Wu C. Y., Self-Assembled Structure of Nanoparticles at a Liquid-Liquid Interface[J]. Langmuir,2005,21(7):2641-2643.
    [29]Leroux F., Gysemans M., Bals S., Batenburg K. J., Snauwaert J., Verbiest T., Haesendonck C. V., Tendeloo G. V., Three-Dimensional Characterization of Helical Silver Nanochains Mediated by Protein Assemblies[J]. Advanced Materials,2010,22(19):2193-2197.
    [30]Singamaneni S., Kharlampieva E., Jang J. H., McConney M. E., Jiang H., Bunning T. J., Thomas E. L., Tsukruk V. V, Metalized Porous Interference Lithographic Microstructures via Biofunctionalization[J]. Advanced Materials,2010,22(12):1369-1373.
    [31]Kang Z. H., Wang E. B., Mao B. D., Su Z. M., Gao L., Lian S. S., Xu L., Controllable Fabrication of Carbon Nanotube and Nanobelt with a Polyoxometalate-Assisted Mild Hydrothermal Process[J]. Journal of the American Chemical Society,2005,127(18):6534-6535.
    [32]Zhang H., Lv X. J., Li Y. M., Wang Y, Li J. H., P25-Graphene Composite as a High Performance Photocatalyst[J]. ACS Nano,2010,4(1):380-386.
    [33]Chu N. B., Wang J. Q., Zhang Y, Yang J. H., Lu J. M., Yin D. H., Nestlike Hollow Hierarchical MCM-22 Microspheres:Synthesis and Exceptional Catalytic Properties[J]. Chemistry of Materials,2010,22 (8):2442-2450.
    [34]Tseng T. K., Choi J. H., Jung D. W., Davidson M., Holloway P. H., Three-Dimensional Self-Assembled Hierarchical Architectures of Gamma-Phase Flowerlike Bismuth Oxide[J]. ACS Applied Materials & Interfaces,2010,2 (4):957-960.
    [35]Deng C. Y., Chen J. H., Nie L. H., Nie Z., Yao S. Z., Sensitive Bifunctional Aptamer-Based Electrochemical Biosensor for Small Molecules and Protein[J]. Analytical Chemistry,2009, 81(24):9972-9978.
    [36]Liu G. D., Mao X., Phillips J. A., Xu H., Tan W. H., Zeng L. W., Aptamer-Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells[J]. Analytical Chemistry,2009,81(24): 10013-10018.
    [37]Zhu A. W., Luo Y. P., Tian Y, Plasmon-Induced Enhancement in Analytical Performance Based on Gold Nanoparticles Deposited on TiO2 Film[J]. Analytical Chemistry,2009,81(17):7243-7247.
    [38]Wang H. C., Wang X. S., Zhang X. Q., Qin X., Zhao Z. X., Miao Z. Y., Huang N., Chen Q., A Novel Glucose Biosensor based on the Immobilization of Glucose Oxidase onto Gold Nanoparticles-Modified Pb Nanowires[J]. Biosensors and Bioelectronics,2009,25(1):142-146.
    [39]Kim Y S., Kim H. J., Kim W. B., Composited Hybrid Electrocatalysts of Pt-based Nanoparticles and Nanowires for Low Temperature Polymer Electrolyte Fuel Cells[J]. Electrochemistry Communications,2009,11(5):1026-1029.
    [40]Chen W. F., Wang J. P., Hsu C. H., Jhan J. Y., Teng H. S., Kuo P. L., Nanostructured Coral-like Carbon as Pt Support for Fuel Cells[J]. The Journal of Physical Chemistry C,2010,114(1): 672-677.
    [41]Tang L., Han B., Persson K., Friesen C., He T., Sieradzki K., Ceder G, Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments[J]. Journal of the American Chemical Society,2010,132(2):596-600.
    [42]Yang C. C., Li Y. J., Chen W. H., Electrochemical Hydrogen Storage Behavior of Single-Walled Carbon Nanotubes (SWCNTs) Coated with Ni Nanoparticles[J]. International Journal of Hydrogen Energy,2010,35(6):2336-2343.
    [43]Wang Z., Yang R. T., Enhanced Hydrogen Storage on Pt-Doped Carbon by Plasma Reduction[J]. The Journal of Physical Chemistry C,2010,114(13):5956-5963.
    [44]Zlotea C., Campesi R., Cuevas F., Leroy E., Dibandjo P., Volkringer C., Loiseau T., Ferey G., Latroche M., Pd Nanoparticles Embedded into a Metal-Organic Framework:Synthesis, Structural Characteristics, and Hydrogen Sorption Properties[J]. Journal of the American Chemical Society, 2010,132(9):2991-2997.
    [45]Liu R. L., Wu D. Q., Feng X. L., Mullen K., Nitrogen-Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Angewandte Chemie International Edition,2010,49(14):2565-2569.
    [46]Ou Y. W., Cui X. L., Zhang X. Y, Jiang Z. Y, Titanium Carbide Nanoparticles Supported Pt Catalysts for Methanol Electrooxidation in Acidic Media[J]. Journal of Power Sources,2010, 195(5):1365-1369.
    [47]Qiu J., Peng H., Liang R., Facile Preparation of Magnetic Core-Shell Fe3O4@Au Nanoparticle/Myoglobin Biofilm for Direct Electrochemistry[J]. Biosensors and Bioelectronics, 2010,25(6):1447-1453.
    [48]Kaushik A., Khan R., Solanki P. R., Iron Oxide Nanoparticles-Chitosan Composite Based Glucose Biosensor[J]. Biosensors and Bioelectronics,2008,24(4):676-683.
    [49]Baby T. T., Ramaprabhu S., SiO2 Coated Fe3O4 Magnetic Nanoparticle Dispersed Multiwalled Carbon Nanotubes Based Amperometric Glucose Biosensor[J]. Talanta,2010,80(5):2016-2022.
    [50]Wang Y, Chen X., Zhu J. Fabrication of a Novel Hydrogen Peroxide Biosensor Based on the AuNPs-C@SiO2 Composite[J]. Electrochemistry Communications,2009,11(2):323-326.
    [51]Zeng X., Li X., Liu X., A Third-Generation Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Immobilized on Dna Functionalized Carbon Nanotubes[J]. Biosensors and Bioelectronics,2009,25(4):896-900.
    [52]Zhao G., Lei Y., Zhang Y, Growth and Favorable Bioelectrocatalysis of Multishaped Nanocrystal Au in Vertically Aligned TiO2 Nanotubes for Hemoprotein[J]. The Journal of Physical Chemistry C,2008,112(38):14786-14795.
    [53]Ayewah D.O., Davis D.C., Krishnamoorti R., Lagoudas D.C., Sue H.-J., Willson M., A surfactant dispersed SWCNT-polystyrene composite characterized for electrical and mechanical properties[J]. Composites:Part A,2010,41:842-849.
    [54]Xia L., Wei Z. X., Wan M. X., Conducting polymer nanostructures and their application in biosensors[J]. Journal of Colloid and Interface Science,2010,341(1):1-11.
    [55]Jia L. J., Stevens M. M., Zhu Y. F., Gong Q. M., Wu J. J., Liang J., Preparation and properties of multi-walled carbon nanotube/carbon/polystyrene composites[J]. Carbon,2009,47:2733-2741.
    [56]Zhang B., Fu R. W., Zhang M. Q., Dong X. M., Lan P. L., Qiu J. S., Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene[J]. Sensors and Actuators B,2005,109:323-328.
    [57]Salimi A., Sharifi E., Noorbakhsh A., et al. Immobilization of Glucose Oxidase on Electrodeposited Nickel Oxide Nanoparticles:Direct Electron Transfer and Electrocatalytic Activity[J]. Biosensors & Bioelectronics,2007,22(12):3146-3153.
    [58]Geng R., Zhao G., Liu M., et al. A Sandwich Structured SiO2/Cytochrome c/SiO2 on a Boron-Doped Diamond Film Electrode as an Electrochemical Nitrite Biosensor[J].Biomaterials, 2008,29(18):2794-2801.
    [59]Zhu L., Zhou X., Zhang Y., A Bifunctional Structure for the Direct Electron Transfer of Cytochrome C[J]. Electrochimica Acta,2008,53(26):7726-7729.
    [60]Zhao G., Xu J. J., Chen H. Y., Fabrication, Characterization of Fe3O4 Multilayer Film and its Application in Promoting Direct Electron Transfer of Hemoglobin[J]. Electrochemistry Communications,2006,8(2):148-154.
    [61]Batchelor M. C., Du Y, G. Wildgoose G., Compton G. R. The Use of Copper(II) Oxide Nanorod Bundles for the Non-enzymatic Voltammetric Sensing of Carbohydrates and Hydrogen Peroxide[J]. Sensors and Actuators B:Chemical,2008,135(1):230-235.
    [62]Qi Y. L., Chen M., Liang S., Yang W., Zhao J., Micro-patterns of Au@SiO2 core-shell nanoparticles formed by electrostatic interactions[J]. Applied Surface Science,2008,254(6): 1684-1690.
    [63]Qi Y. L., Chen M., Liang S., Zhao J., Jing Zhao, Yang W., Hydrophobation and self-assembly of core-shell Au@SiO2 nanoparticles [J]. Colloids and Surfaces, A:Physicochemical and Engineering Aspects,2007,302(1-3):383-387.
    [64]Xu Q., Bian X. J., Li L. L., Hu X. Y., Sun M., Chen D., Wang Y., Myoglobin immobilized on Fe3O4@SiO2 magnetic nanoparticles:Direct electron transfer, enhanced thermostability and electroactivity[J]. Electrochemistry Communications,2008,10(7):995-999.
    [65]Yu Q. Z., Polyaniline/Au&Fe3O4@Au sub-microcables fabricated by electrospinning and electroless deposition, Materials Science and Engineering B,2010,167(1):26-30.
    [66]李建平,陈绪胄,基于Fe3O4/Au/GOx的新型磁性敏感膜葡萄糖传感器的研制,化学学报[J].2008,66(1):84-90.
    [67]Xiong S. X., Wang Q., Chen Y.H., Preparation of polyaniline/TiO2 hybrid microwires in the microchannels of a template, Materials Chemistry and Physics,2007,103(2-3):450-455.
    [68]Xiong S. X., Wang Q., Xia H. S., Template synthesis of polyaniline/TiO2 bilayer microtubes[J]. Synthetic Metals,2004,146(1):37-42.
    [69]Zheng Z. X., Xi Y. Y., Dong P., Huang H. G., Zhou J. Z., Wu L. L.,Lin Z. H.,The enhanced photoluminescence of zinc oxide and polyaniline coaxial nanowire arrays in anodic oxide aluminium membranes[J]. Physics and Chemistry Communications,2002,5(9):63-65.
    [70]Umar A., Rahman M. M., Al-Hajry A., Hahn Y. B., Enzymatic Glucose Biosensor based on Flower-Shaped Copper Oxide Nanostructures Composed of Thin Nanosheets[J]. Electrochemistry Communications,2009,11(2):278-281.
    [71]Luque G. L., Rodriguez M. C., Rivas G. A., Glucose Biosensors based on the Immobilization of Copper Oxide and Glucose Oxidase within a Carbon Paste Matrix[J]. Talanta,2005,66(2): 467-471.
    [72]Xiang C. L., Zou Y. J., Sun L. X., Xu F., Direct Electrochemistry and Enhanced Electrocatalysis of Horseradish Peroxidase based on Flower like ZnO-Gold Nanoparticle-Nafion Nanocomposite[J]. Sensors and Actuators B:Chemical,2009,136(1):158-162.
    [73]Liu J. P., Guo C. X., Li C. M., Li Y. Y, Chi Q. B., Huang X. T., Liao L., Yu T., Carbon-Decorated ZnO Nanowire Array:A Novel Platform for Direct Electrochemistry of Enzymes and Biosensing Applications[J]. Electrochemistry Communications,2009,11(1):202-205.
    [74]Qiao K., Hu N. F., Direct Electron Transfer and Electrocatalysis of Myoglobin Loaded in Layer-by-Layer Films Assembled with Nonionic Poly(ethylene glycol) and ZrO2 Nanoparticles[J]. Bioelectrochemistry,2009,75(1):71-76.
    [75]Milsom E. V., Dash H. A., Jenkins T. A., Opallo M., Marken F., The Effects of Conductivity and Electrochemical Doping on the Reduction of Methemoglobin Immobilized in Nanoparticulate TiO2 Films[J]. Bioelectrochemistry,2007,70(2):221-227.
    [76]Luo Y P., Tian Y., Zhu A. W., Rui Q., Liu H. Q., Direct Electron Transfer of Superoxide Dismutase Promoted by High Conductive TiO2 Nanoneedles[J]. Electrochemistry Communications 2009,11(1):174-176.
    [77]Sun W., Qin P., Gao H. W., Li G. C., Jiao K., Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence[J]. Biosensors and Bioelectronics,2010,25(6):1264-1270.
    [78]Tsiafoulis C. G., Florou A. B., Trikalitis P. N., Bakas T., Prodromidis M. I., Electrochemical Study of Ferrocene Intercalated Vanadium Pentoxide Xerogel/Polyvinyl Alcohol Composite Films: Application in the Development of Amperometric Biosensors[J]. Electrochemistry Communications,2005,7(7):781-788.
    [79]Diaconu M., Litescu S. C., Radu G L., Laccase-MWCNT-chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants [J]. Sensors and Actuators B, 2010,145:800-806.
    [80]Gao R. F., Zheng J. B., Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase[J].Electrochemistry Communications,2009,11:608-611.
    [81]Liu X. R., Li Y., Zheng J. B., Zhang J. C., Sheng Q. L., Carbon nanotube-enhanced electrochemical aptasensor for the detection of thrombin[J]. Talanta,2010,81:1619-1624.
    [82]Wightman R. M., Probing Cellular Chemistry in Biological Systems with Microelectrodes[J]. Science,2006,311(5767):1570-1574.
    [83]Sheng Q. L., Zheng J. B., Shangguan X. D., Lin W. H., Li Y. Y., Liu R. X., Direct electrochemistry and electrocatalysis of heme-proteins immobilized in porous carbon nanofiber/room-temperature ionic liquid composite film[J]. Electrochim Acta,2010,55:3185-3191.
    [84]Hermans A., Seipel A. T., Miller C. E., Wightman R. M., Carbon-Fiber Microelectrodes Modified with 4-Sulfobenzene have Increased Sensitivity and Selectivity for Brain Catecholamine[J]. Langmuir,2006,22(5):1964-1969.
    [85]Yang S. Y., Chang K. S., Lee Y. F., Chen-Chi M. Ma, Hu C.C., Constructing a hierarchical grapheme-carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters[J]. Electrochemistry Communications,2010,12:1206-1209.
    [86]Liu F., Choi J. Y., Seo T. S., Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer[J]. Biosensors and Bioelectronics,2010,25(10): 2361-2365.
    [87]Yin H. S., Zhou Y. L., Ma Q., Ai S. Y., Chen Q. P., Zhu L. S., Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination[J]. Talanta,2010,82(4):1193-1199.
    [88]Li K. T., Liu B., Zheng J. B., Sheng Q. L., Liu R. X., Direct Electrochemistry of Glucose Oxidase on Nail-like Carbon and Its Biosensing for Glucose[J]. Electroanalysis 2010,22(6):701-706.
    [89]Sheng Q. L., Yu H., Zheng J. B., Hydrogen peroxide determination by carbon ceramic electrodes modified with pyrocatechol violet [J]. Electrochimica Acta,2007,52(25):7300-7306.
    [90]Shi L. H., Liu X. Q., Niu W. X., Hydrogen Peroxide Biosensor Based on Direct Electrochemistry of Soybean Peroxidase Immobilized on Single-Walled Carbon Nanohorn Modified Electrode[J]. Biosensors & Bioelectronics,2009,24(5):1159-1163.
    [91]Ivnitski D., Artyushkova K., Rincon R. A., Entrapment of Enzymes and Carbon Nanotubes in Biologically Synthesized Silica:Glucose Oxidase-Catalyzed Direct Electron Transfer[J]. Small, 2008,4(3):357-364.
    [92]Zhao H. Y., Zheng W., Meng Z. X., Bioelectrochemistry of Hemoglobin Immobilized on a Sodium Alginate-Multiwall Carbon Nanotubes Composite Film[J]. Biosensors and Bioelectronics, 2009,24(8):2352-2357.
    [93]Zhao H., Sun J., Song J., Direct Electron Transfer and Conformational Change of Glucose Oxidase on Carbon Nanotube-Based Electrodes[J]. Carbon,2010,48(5):1508-1514.
    [94]Kang X., Wang J., Wu H., Glucose Oxidase-Graphene-Chitosan Modified Electrode for Direct Electrochemistry and Glucose Sensing[J]. Biosensors and Bioelectronics,2009,25(4):901-905.
    [95]Wu J., Xu M., Zhao G. Graphene-Based Modified Electrode for the Direct Electron Transfer of Cytochrome C and Biosensing[J], Electrochemistry Communications,2010,12(1):175-177.
    [96]Sheng Q. L., Zheng J.B., Shang-Guan X. D., Lin W. H., Li Y. Y, Liu R. X., Direct Electrochemistry and Electrocatalysis of Heme-Proteins Immobilized in Porous Carbon Nanofiber/Room-Temperature Ionic Liquid Composite Film[J]. Electrochimica Acta,2010,55(9): 3185-3191.
    [97]Akif K., Eva H., Andrew A., The influence of polymerization time and dopant concentration on the absorption of microwave radiation in conducting polypyrrole coated textiles[J]. Synthetic Metals,2009,159:1373-1380.
    [98]Yang L. Q., Ren X. L., Tang F. Q., Zhang L., A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film[J]. Biosensors and Bioelectronics,2009,25(4): 889-895.
    [99]李松林,崔建明.导电聚合物固定酶生物传感器研究进展[J].材料导报,2006,20(4):38-40.
    [100]Martis P., Dilimon V. S., Delhalle J., Mekhalif Z. Electro-generated nickel/carbon nanotube composites in ionic liquid[J]. Electrochimica Acta,2010,55(19):5407-5410.
    [101]Jayakumar M., Venkatesan K. A., Srinivasan P.G., Vasudeva Rao, Electrochemical behavior of ruthenium (Ⅲ), rhodium (Ⅲ) and palladium (Ⅱ) in 1-butyl-3-methylimidazolium chloride ionic liquid[J].Electrochimica Acta,2009,54(26):6747-6755.
    [102]Zhou K. F., Zhu Y. H., Yang X. L., Luo J., Li C.Z., Luan S. R., A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites[J]. Electrochimica Acta,2010, 55(9):3055-3060.
    [103]Safavi A., Maleki N., Tajabadi F., Farjami E., High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode[J]. Electrochemistry Communications,2007,9(8):1963-1968.
    [104]Xu J. M., Li W., Yin Q. F. Direct Electron Transfer and Bioelectrocatalysis of Hemoglobin on Nano-Structural Attapulgite Clay-Modified Glassy Carbon Electrode[J]. Journal of Colloid and Interface Science,2007,315(1):170-176.
    [105]Charradi K., Gondran C., Ben A., Amara H., Prevot V, Mousty C. H2O2 Determination at Iron-rich Clay Modified Electrodes[J].Electrochimica Acta.2009,54(17):4237-4244.
    [106]Fan Q., Shan D., Xue H. G., He Y. Y., Cosnier S., Amperometric Phenol Biosensor based on Laponite Clay-Chitosan Nanocomposite Matrix[J]. Biosensors and Bioelectronics,2007,22(6): 816-821.
    [107]Wang C. H., Yang C., Song Y. Y, Gao W., Xia X. H., Adsorption and Direct Electron Transfer from Hemoglobin into a Three-Dimensionally Ordered Macroporous Gold Film[J]. Advanced Functional Materials,2005,15(8):1267-1275.
    [108]Chen X. J., Wang Y. Y, Zhou J.J., Yan W., Li X. H., Zhu J. J., Electrochemical Impedance Immunosensor based on Three-Dimensionally Ordered Macroporous Gold Film[J]. Analytical Chemistry,2008,80(6):2133-2140.
    [109]Yang M. H., Qu F. L., Li Y. J., Direct Electrochemistry of Hemoglobin in Gold Nanowire Array [J]. Biosensors & Bioelectronics,2007,23(3):414-420.
    [110]You J., Ding W., Ding S., Direct Electrochemistry of Hemoglobin Immobilized on Colloidal Gold-Hydroxyapatite Nanocomposite for Electrocatalytic Detection of Hydrogen Peroxide[J]. Electroanalysis,2009,21(2):190-195.
    [111]Xu Y. X., Liang J. G., Hu C. G., A Hydrogen Peroxide Biosensor Based on the Direct Electrochemistry of Hemoglobin Modified with Quantum Dots[J]. Journal of Biological Inorganic Chemistry,2007,12(3):421-427.
    [112]Lu Q., Hu S. S., Pang D. W., Direct Electrochemistry and Electrocatalysis with Hemoglobin in Water—Soluble Quantum Dots Film on Glassy Carbon Electrode[J]. Chemical Communications, 2005,20:2584-2585.
    [113]Zhang Q., Zhang L., Liu B., Assembly of Quantum Dots-Mesoporous Silicate Hybrid Material for Protein Immobilization and Direct Electrochemistry[J]. Biosensors & Bioelectronics,2007,23(5): 695-700.
    [1]Du Y., Luo X. L., Xu J. J., Chen H. Y., A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor[J]. Bioelectrochemistry 2007,70(2): 342-347.
    [2]Qiu J. D., Wang R., Liang R. P., Xia X. H., Electrochemically deposited nanocomposite film of CS-Fc/Au NPs/GOx for glucose biosensor application[J]. Biosensors and Bioelectronics,2009, 24(4):2920-2925.
    [3]Bai Y. H., Zhang H., Xu J. J., Chen H.Y., Relationship between Nanostructure and Electrochemical/Biosensing Properties of MnO2 Nanomaterials for H2O2/Choline[J]. Journal of Physical Chemistry C,2008,112(48):18984-18990.
    [4]S. George, H.K. Lee, Direct Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/Carbon Nanochip Film on Glassy Carbon Electrode[J]. Journal of Physical Chemistry B, 2009,113(47):15445-15454.
    [5]Diaconu M., Litescu S.C., Radu G.L., Laccase-MWCNT-chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants[J]. Sensors and Actuators B,2010, 145:800-806.
    [6]Li F., Wang Z., Chen W., Zhang S. S., A simple strategy for one-step construction of bienzyme biosensor by in-situ formation of biocomposite film through electrodeposition[J]. Biosensors and Bioelectronics,2009,24(10):3030-3035.
    [7]Gong J. M., Wang L. Y., Zhao K., Song D. D., One-step fabrication of chitosan-hematite nanotubes composite film and its biosensing for hydrogen peroxide[J]. Electrochemistry Communications,2008,10(1):123-126.
    [8]Luo X. L., Xu J. J., Du Y., Chen H. Y., A glucose biosensor based on chitosan-glucose oxidase—gold nanoparticles biocomposite formed by one-step electrodeposition[J]. Analytical Biochemistry,2004,334(2):284-289.
    [9]Shan D., Wang S. X., Xue H. G., Cosnier S., Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles[J]. Electrochemistry Communications,2007,9:529-534.
    [10]Sun W., Gao R. F., Jiao K., Electrochemistry and Electrocatalysis of Hemoglobin in Nafion/nano-CaCO3 Film on a New Ionic Liquid BPPF6 Modified Carbon Paste Electrode[J]. J. Phys. Chem. B,2007,111:4560-4567.
    [11]Wang C. Y., He C. Y., Tong, Z., LiuX. X., Ren B. Y, Zeng F., Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery[J]. International Journal of Pharmaceutics,2006,308(1-2):160-167.
    [12]Cai W. Y, Xu Q., Zhao X, N., Zhu J. J., Chen H. Y, Porous gold-nanoparticle-CaCO3 hybrid material:Preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry[J]. Chemistry of Materials,2006,18:279-284.
    [13][1]Tsekova D. S., Escuder B., Miravet J. F., Solid-State Polymorphic Transition and Solvent-Free Self-Assembly in the Growth of Organic Crystalline Microfibers[J]. Crystal Growth & Design, 2008,8(1):11-13.
    [14]Dai Z., Bai H., Hong M., A Novel Nitrite Biosensor Based on the Direct Electron Transfer of Hemoglobin Immobilized on CdS Hollow Nanospheres[J]. Biosensors and Bioelectronics,2008, 23(12):1869-1873.
    [15]Feng J., Zhao G., Xu J., Direct Electrochemistry and Electrocatalysis of Heme Proteins Immobilized on Gold Nanoparticles Stabilized by Chitosan[J]. Analytical Biochemistry,2005, 342(2):280-286.
    [16]Wang L., Wang E. Direct Electron Transfer Between Cytochrome C and a Gold NanopartiCles Modified Electrode[J]. Electrochemistry Communications,2004,6(1):49-54.
    [17]Wang M. K., Shen Y., Liu Y., Direct Electrochemistry of Microperoxidase 11 Using Carbon Nanotube Modified Electrodes [J]. Journal of Electroanalytical Chemistry,2005,578(1):121-127.
    [18]Sun W., Gao R. F., Li X. Q., Wang D. D., Yang M. X., Jiao K., Fabrication and Electrochemical Behavior of Hemoglobin ModifiedCarbon Ionic Liquid Electrode[J]. Electroanalysis,2008, 20(10):1048-1054.
    [19]Shan D., Wang S. X., Xue H. G., Cosnier S., Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles[J]. Electrochemistry Communications,2007,9:529-534.
    [20]Zhang Y. H., Chen X., Yang W. S., Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film[J]. Sensors and Actuators, B:Chemical, 2008, B130(2):682-688.
    [21]Laviron E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,101(1):19-28.
    [22]Wen Y. L., Yang X. D., Hu G. H., Chen S. H., Jia N. Q., Direct electrochemistry and biocatalytic activity of hemoglobin entrapped into gellan gum and room temperature ionic liquid composite system[J]. Electrochimica Acta,2008,54(2):744-748.
    [23]Zhao, Y. D., Bi, Y. H., Zhang, W. D., Luo, Q. M., The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2[J]. Talanta,2005,65(2):489-494.
    [24]Ma H. Y. Hu N. F., Rusling J. F., Electroactive Myoglobin Films Grown Layer-by-Layer with Poly(styrenesulfonate) on Pyrolytic Graphite Electrodes [J]. Langmuir,2000,16(11):4969-4975.
    [25]Sun W., Gao, R. F., Jiao, K., Electrochemistry and electrocatalysis of a Nafion/nano-CaCO3/Hb film modified carbon ionic liquid electrode using BMIMPF6 as binder[J]. Electroanalysis,2007, 19(13):1368-1374.
    [26]Karyakin, A. A., Puganova, E. A., Budashov, I. A., Kurochkin, I. N., Karyakina, E. E., Levchenko, V. A., Matveyenko, V. N., Varfolomeyev, S. D., Prussian Blue Based Nanoelectrode Arrays for H2O2 Detection. Analytical Chemistry[J]. Analytical Chemistry 2004,76(2):474-478.
    [27]Moscone, D., D'Ottavi, D., Compagnone, D., Palleschi, G, Amine, A., Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors[J]. Analytical Chemistry,2001,73(11):2529-2535.
    [28]Karyakin A. A., Karyakina Elena E., Gorton Lo., Amperometric Biosensor for Glutamate Using Prussian Blue-Based "Artificial Peroxidase" as a Transducer for Hydrogen Peroxide[J]. Analytical Chemistry,2000,72(7):1720-1723.
    [29]Ricci F., Amine, A., Palleschi G., Moscone D., Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability[J]. Biosensors & Bioelectronics, 2003,18(2-3):165-174.
    [30]Kamin R. A., Wilson G. S., Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer[J]. Analytical Chemistry,1980,52(8): 1198-205.
    [31]Fan C. H., Wang H. Y., Sun S., Zhu D. X., Wagner G., Li G. X., Electron-Transfer Reactivity and Enzymatic Activity of Hemoglobin in a SP Sephadex Membrane[J]. Analytical Chemistry,2001, 73(13):2850-2854.
    [32]Feng J. J., Zhao G., Xu J. J., Chen, H.Y., Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan[J]. Analytical Biochemistry, 2005,342(2):280-286.
    [1]杨振,雷新荣,胡明安,熔融插层法制备聚合物/黏士纳米复合材料研究进展化工进展,2004,23(8):806-810.
    [2]Wang S. G., Zhang Q., Wang R. L., A Novel Multiwalled Carbon Nanotube Based Biosensor for Glucose Detection[J]. Biochemical and Biophysical Research Communications,2003,311(3): 572-576.
    [3]Okubo M., Ise E., Yamashita T., Production of micron-sized monodispersed polymer particles by seeded polymerization for the dispersion of highly monomer-swollen particles prepared with submicron-sized polymer seed particles utilizing the dynamic swelling method[J]. Journal of Polymer Science, Part A:Polymer Chemistry,1998,36(14):2513-2519.
    [4]Zhang H., Xu J. J., Chen H. Y., One-step biomimetic coprecipitation method to form calcium phosphate and hemoglobin composite nanoparticles for biosensing application[J]. Journal of Electroanalytical Chemistry,2008,624(1-2):79-83.
    [5]Sun W., Zhai Z., Wang D., Liu S., Jiao K., Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid eleetrode[J]. Bioelectrochemistry,2009,74(2): 295-300.
    [6]Lin, X. Q., Chen, J., Chen, Z. H., Amperometric biosensor for hydrogen peroxide based on immobilization of horseradish peroxidase on methylene blue modified graphite electrode [J]. Electroanalysis,2000,12(4):306-310.
    [7]Xu J. J., Zhou D. M., Chen H. Y., A reagentless hydrogen peroxide biosensor based on the coimmobilization of thionine and horseradish peroxidase by their crosslinking with glutaraldehyde on glassy carbon electrode[J]. Electroanalysis,1998,10(10):713-716.
    [8]Liu X. J., Huang Y. X., Shang L. B., Wang X. Y., Xiao H., Li G. X., Electron transfer reactivity and the catalytic activity of horseradish peroxidase incorporated in dipalmitoylphosphatidic acid films[J]. Bioelectrochemistry,2006,68(1):98-104.
    [9]Hong J., Ghourchian H., Moosavi-Movahedi A. A., Direct electron transfer of redox proteins on a Nafion-cysteine modified gold electrode[J]. Electrochemistry Communications,2006,8(10): 1572-1576.
    [10]Chen, X.; Ruan, C.; Kong, J.; Deng, J.. Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode[J]. Analytica Chimica Acta,2000,412(1-2):89-98.
    [11]Guo C., Hu F., Li C. M., Direct Electrochemistry of Hemoglobin on Carbonized Titania Nanotubes and its Application in a Sensitive Reagentless Hydrogen Peroxide Biosensor[J]. Biosensors and Bioelectronics,2008,24(4):819-824.
    [12]Sun W., Wang D., Gao R., Direct Electrochemistry and Electrocatalysis of Hemoglobin in Sodium Alginate Film on a BMIMPF6 Modified Carbon Paste Electrode[J]. Electrochemistry Communications,2007,9(5):1159-1164.
    [13]Xu Q., Mao C., Liu N. N., Zhu J. J., Shen J., Immobilization of horseradish peroxidase on O-carboxymethylated chitosan/sol-gel matrix[J]. Reactive & Functional Polymers,2006,66(8): 863-870.
    [14]Yin H. S., Ai S. Y., Shi W. J., Zhu L. S., A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase[J]. Sensors and Actuators, B: Chemical,2009,137(2):747-753.
    [15]Xu J. J., Zhou D. M., Chen H. Y., A reagentless hydrogen peroxide biosensor based on the coimmobilization of thionine and horseradish peroxidase by their crosslinking with glutaraldehyde on glassy carbon electrode[J]. Electroanalysis,1998,10(10):713-716.
    [16]Xiao, X. L., Luan, Q. F. Yao, X., Zhou, K. B., Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase[J]. Biosensors & Bioelectronics, 2009,24(8):2447-2451.
    [17]Liu Y., Lei J. P., Ju H. X., Amperometric sensor for hydrogen peroxide based on electric wire composed of horseradish peroxidase and toluidine blue-multiwalled carbon nanotubes nanocomposite[J]. Talanta,2008,74(4):965-970.
    [18]Chen, H. J., Dong, S. J., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived ceramic-carbon nanotube nanocomposite film[J]. Biosensors & Bioelectronics,2007,22(8):1811-1815.
    [19]Zhao X. J., Mai Z. B., Kang X. H., Zou X. Y., Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite[J]. Biosensors & Bioelectronics,2008,23(7):1032-1038.
    [20]Hong J., Moosavi-Movahedi A. A., Ghourchian H., Rad, Ahmad M., Rezaei-Zarchi S., Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode[J]. Electrochimica Acta,2007,52(21):6261-6267.
    [21]Yin, H. S., Ai, S. Y., Shi, W. J., Zhu, L. S., A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase[J]. Sensors and Actuators, B: Chemical,2009, B137(2):747-753.
    [22]Xu J. J., Peng R., Ran Q., Xian Y. Z., Tian Y., Jin L. T., A highly soluble poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)/Au nanocomposite for horseradish peroxidase immobilization and biosensing[J]. Talanta,2010,82(4):1511-1515.
    [23]Chen X., Li C. C., Liu Y. L., Du Z. F., Xu S. J., Li L. M., Zhang M., Wang T. H., Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide[J]. Talanta,2008,77(1):37-41.
    [24]Yin, H. S., Ai, S. Y., Shi, W. J., Zhu, L. S., A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase[J]. Sensors and Actuators, B: Chemical,2009, B137(2):747-753.
    [25]Ferapontova E. E., Direct peroxidase bioelectrocatalysis on a variety of electrode materials[J]. Electroanalysis,2004,16(13-14):1101-1112.
    [26]Ferri T., Poscia A., Santucci R., Direct electrochemistry of membrane-entrapped horseradish peroxidase. part Ⅱ:amperometric detection of hydrogen peroxide[J]. Bioelectrochemistry and Bioenergetics,1998,45(2):221-226.
    [27]Xiao Y., Ju H. X., Chen H. Y., Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cystamine monolayer[J]. Analytica Chimica Acta,1999,391(1):73-82.
    [28]胡乃非,曾泳淮,氧化还原蛋白质在模拟生物膜修饰电极上的直接电化学[J].化学通报,2001,64(3):152-157.
    [29]Massart R., Synthesis and mangeitc properties of managanese and cobalt ferrite ferrite ferrofluids[J]. IEEE Trans. Magn.,1981,17(2):1247-1248.
    [30]Werner S., Arthur F., Ernst B., Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69.
    [31]Stockton W. B., Rubner M. F., Molecular-Level Processing of Conjugated Polymers.4. Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions[J]. Macromolecules,1997,30 (9):2717-2725.
    [32]George P., Hanania G A., A Spectrophotometric Study of Ionizations in Methaemoglobin[J]. Journal of Biochemistry,1953,55(2):236-243.
    [33]Niwa, K.; Furukawa, M.; Niki, K., Infrared reflectance studies of electron transfer promoters for cytochrome c on a gold electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1988,245(1-2):275-285.
    [34]Gao R. F., Zheng J. B., Qiao L. F., Direct Electrochemistry of Hemoglobin in Layer-by-Layer Films Assembled with DNA and Room Temperature Ionic Liquid[J]. Electroanalysis,2010, 22(10):1084-1089.
    [35]Rutyna I., Korolczuk M., Catalytic Adsorptive Stripping Voltammetry of Cobalt in the Presence of Nitrite at an In Situ Plated Bismuth Film Electrode[J]. Electroanalysis,2011,23(3):637-641.
    [36]Peng H., Soeller C., Vigar N. A., Label-Free Detection of DNA Hybridization Based on a Novel Functionalized Conducting polymer[J]. Biosensors & Bioelectronics,2007,22(9-10):1868-1873.
    [37]Lasia A., Electrochemical Impedance Spectroscopy and its Applications, in:Conway B. E., Bockris J., White R. E. (Eds.), Modern Aspects of Electrochemistry[M]. Kluwer Academic/Plenum Publishers, New York,1999,143-248.
    [38]Liu X. J., Chen T., Liu L. F., Li G. X., Electrochemical characteristics of heme proteins in hydroxyethylcellulose film[J]. Sensors and Actuators, B:Chemical,2006, B113(1):106-111.
    [39]Gao R. F., Shangguan X. D., Qiao G. J., Zheng J. B., Direct Electrochemistry of Hemoglobin and Its Electrocatalysis Based on Hyaluronic Acid and Room Temperature Ionic Liquid[J]. Electroanalysis,2008,20(23):2537-2542.
    [40]Silva C. C., Rocha H. H. B., Freire F. N. A., Santos M. R. P., Saboia K. D. A., Goes J. C., Sombra A. S. B., Hydroxyapatite screen-printed thick films:optical and electrical properties[J]. Materials Chemistry and Physics,2005,92(1):260-268.
    [41]Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,101(1):19-28.
    [42]Zhang H., Xu J. J., Chen H. Y., One-step biomimetic coprecipitation method to form calcium phosphate and hemoglobin composite nanoparticles for biosensing application[J]. Journal of Electroanalytical Chemistry,2008,624(1-2):79-83.
    [43]Gu H. Y., Yu A. M., Chen H. Y., Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode[J]. Journal of Electroanalytical Chemistry,2001,516(1-2):119-126.
    [44]Zhao Y. D., Bi Y. H., Zhang W. D., Luo Q. M., The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2 [J]. Talanta,2005,65(2):489-494.
    [45]Zhang J.J., Liu Y.G., Jiang L.P., Zhu J.J., Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin[J]. Electrochemistry Communications,2008,10(3):355-358.
    [46]Yamazaki I., Araiso T., Hayashi Y., Yamada H., Makino R., Analysis of acid-base properties of peroxidase and myoglobin[J]. Advances in biophysics,1978,11:249-281.
    [47]Ma X., Liu X. J., Xiao H., Li G. X., Direct Electrochemistry and Electrocatalysis of Hemoglobin in Poly-3-Hydroxybutyrate Membrane[J]. Biosensors and Bioelectronics,2005,20(9):1836-1842
    [48]Yang M. H. Qu F. L., Li Y. J., He Y., Shen G.L., Yu R. Q., Direct electrochemistry of hemoglobin in gold nanowire array[J]. Biosensors & Bioelectronics,2007,23(3):414-420.
    [49]Lai G. S., Zhang H.Li., Han D. Y., A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode[J]. Sensors and Actuators, B: Chemical,2008, B 129(2):497-503.
    [50]Ding Y., Wang Y,. Li B. K., Lie Y., Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite[J]. Biosensors & Bioelectronics,2010,25(9): 2009-2015.
    [51]Wang Y., Qian W. P., Tan Y., Ding S. H., Zhang H. Q., Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells[J]. Talanta, 2007,72(3):1134-1140.
    [52]Chen L., Lu G. X., Novel amperometric biosensor based on composite film assembled by polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin[J]. Sensors and Actuators B,2007,121(2):423-429.
    [53]Guo, C. X., Hu, F. P., Li, C. M., Shen, P. K., Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor[J]. Biosensors & Bioelectronics,2008,24(4):819-824.
    [54]Zhang J. J., Liu Y. G., Jiang L. P., Zhu J. J., Synthesis, characterizations of silica-coated gold nanorods and its applications in electroanalysis of hemoglobin[J]. Electrochemistry Communications,2008,10(3):355-358.
    [55]Chen, S. H., Yuan, R., Chai, Y. Q. Zhang, L. Y., Wang, N., Li, X. L., Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles[J]. Biosensors & Bioelectronics, 2007,22(7),1268-1274.
    [56]Zhao Y. D., Bi Y. H., Zhang W. D., Luo Q. M., The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2[J]. Talanta,2005,65(2):489-494.
    [57]Chen L., Lu G. X., Novel amperometric biosensor based on composite film assembled by polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin[J]. Sensors and Actuators B,2007,121(2):423-429.
    [58]Gu, H. Y., Yu, A. M., Chen, H. Y., Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode[J].Journal of Electroanalytical Chemistry,2001,516(1-2):119-126.
    [59]Ma W., Tian D. B., Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix[J]. Bioelectrochemistry,2010,78(2): 106-112.
    [60]Zhao G., Xu J. J., Chen H. Y., Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin[J]. Electrochemistry Communications,2006,8(1):148-154.
    [61]Salimi A., Hallaj R., Soltanian S., Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles:Direct voltammetry and electrocatalytic activity[J]. Biophysical Chemistry,2007, 130(3):122-131.
    [62]Zhang J. D., Oyama M., A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode[J]. Electrochimica Acta, 2004,50(1):85-90.
    [63]Sun W., Li X. Q., Wang Y., Zhao R. J. Jiao K., Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier[J]. Electrochimica Acta,2009,54(17):4141-4148.
    [64]Safavi A., Maleki N., Moradlou O., Sorouri M., Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode[J]. Electrochemistry Communications,2008,10(3):420-423.
    [65]Zhang H., Zou X., Han D., Hydrogen peroxide sensor based on hemoglobin immobilized on glassy carbon electrode with SiO2 nanoparticles/chitosan film as immobilization matrix[J]. Analytical Letters,2007,40(4):661-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700