配体对[2Fe2S]模型配合物结构与性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中微生物体内的铁铁氢化酶能够可逆催化质子还原产氢,蛋白质晶体研究结果表明其活性中心具有双八面体的蝶状几何构型,与金属有机配合物[Fe_2(μ-SR)_2(CO)_(6-n)L_n]非常相似。简单的结构组成和高催化性能引起了合成化学家的极大兴趣,人们期望对铁铁氢化酶活性中心结构进行化学模拟,揭示其催化产氢机理,并最终制得廉价高效的制氢催化剂。本论文主要研究了配体取代对[2Fe2S]模型配合物结构和性能的影响。
     以丙烷桥连接的六羰基二铁二硫配合物[(μ-pdt)Fe_2(CO)_6](pdt=propane-1,3-dithiolato)为母体,通过分步的膦配体取代反应,合成了一系列非对称双膦配体取代[2Fe2S]模型配合物,[(μ-pdt){Fe(CO)_2L~1}{Fe(CO)_2L~2}][L~1=PMe_3,L~2=PMe_2Ph,4;L~1=PMe_3,L~2=PPh_3,5;L~1=PMe_3,L~2=PCy_3,6;L~1=PMe_3,L~2=P(OEt)_3,7;L~1=PMe_2Ph,L~2=PPh_3,8;L~1=PMe_2Ph,L~2=P(OEt)_3,9;L~1=P(OEt)_3,L~2=PPh_3,10;L~1=P(OEt)_3,L~2=PCy_3,11],并以同样的方法合成了与配合物5类似的乙烷桥连接的配合物[(μ-edt){Fe(CO)_2(PMe_3)}{Fe(CO)_2(PPh_3)}](edt=ethane-1,2-dithiolato,12)。X光单晶衍射表明在此类非对称双膦取代[2Fe2S]模型配合物中体积较大的膦配体倾向于占据顶位的位置,而体积相对较小的配体处于基位;当两个配体体积均较大时,如配合物10中的PPh_3和P(OEt)_3,此时两个配体均在顶位。电化学测试结果表明,在非对称双膦配体取代的[2Fe2S]模型配合物中,不同膦配体对氧化还原电位的调变能力相差约200 mV。
     通过配体取代将水溶性三羟甲基膦(THP)引入到[2Fe2S]模型配合物中,合成了单取代配合物[(μ-pdt)Fe_2(CO)_5(THP)](13)和双取代配合物[(μ-pdt){Fe(CO)_2(THP)}_2](14)。配合物14虽水溶性较好,但在空气中不稳定。配合物13在纯水中溶解度很小,却能够较好地溶于乙腈/水混合溶剂。醋酸存在条件下,配合物13在乙腈/水(1:1,v/v)中电催化质子还原活性远高于在纯乙腈溶液中的催化活性。配合物13的晶体结构表明其在空间上呈无限延伸的FeS/OH/FeS的夹心结构,并且通过分子内和分子间O-H…O氢键构成波浪状无限延伸的二维网络结构,其中的左旋和右旋O-H…O-H螺旋链交替分布。
     通过膦配体取代将吡啶环作为分子内碱性基团引入到[2Fe2S]模型配合物中,设计合成了配合物[(μ-pdt)Fe_2(CO)_5L](L=Ph_2PCH_2Py,15;Ph_2PPy,16)。在三氟甲磺酸作用下,循环伏安法测定其第一还原电位分别向正方向移动360和490 mV,推测是由于吡啶氮原子发生质子化。分离得到配合物15和16的质子化产物19和20,并通过X光单晶衍射确定了配合物19和20空间结构。为了增加此类含吡啶基团二铁二硫配合物中Fe-Fe键的碱性,以利于俘获质子,论文设计合成了双取代配合物[(μ-pdt){Fe(CO)_2(PMe_3)}{Fe(CO)_2L}](L=Ph_2CH_2Py,17;Ph_2PPy,18),通过低温核磁(-55℃)滴定和原位红外光谱(-10℃)跟踪了配合物18在三氟甲磺酸存在下的质子化过程。研究表明,配合物18在三氟甲磺酸的作用下首先发生在Fe-Fe键之间,最终生成双质子化物种[18HyH]~(2+),该双质子化物种只能在低温下检测到;在室温下不稳定,容易分解。
     通过Fe_2(CO)_9与过硫酯(?)或(?)在四氢呋喃中室温反应将含吸电性基团(C=O)的刚性共轭桥连结构引入到[2Fe2S]模型配合物中,设计合成了配合物[μ-SC_6H_4-2-(CO)S-μ]Fe_2(CO)_6(21)和[μ-2-SC_5H_3N-3-(CO)S-μ]Fe_2(CO)_6(22)。电化学研究表明含吸电性基团(C=O)刚性共轭桥连结构能够降低[2Fe2S]模型配合物的还原电位,其中配合物22的第一还原电位为-1.18 V(vs.Fc/Fc~+),比配合物21低100 mV。
     所有合成的[2Fe2S]模型配合物均通过红外光谱、核磁、质谱和元素分析的表征。其中配合物4-6、8-10、12和15-22通过X光单晶衍射测定了空间结构。
[FeFe] Hydrogenases in microorgamisms can reversibly catalyze the proton reduction for hydrogen evolution. Studies on the crystal structures of the enzymes show that the active site of [FeFe] hydrogenases features a square-pyramidal butterfly coordination geometry, which is quite similar to that of the reported organometallic complexes formulated as [Fe_2(μ-SR)_2(CO)_(6-n)L_n]. The simple structure and the high efficiency attract the great interest of synthesis researchers. They try to explore the catalytic mechanism for proton reduction and eventually find cheap and efficient catalysts for hydrogen production by mimicking the structure of the active site. In this thesis, the effect of ligand exchange on the structure and property of the diiron dithiolate complexes were studied.
     A series of unsymetrically diphosphine substituted [2Fe2S] model complexes, [(μ-pdt){Fe(CO)_2L~1}{Fe(CO)_2L~2}] [pdt = propane-1,3-dithiolato; L~1 = PMe_3, L~2 = PMe_2Ph, 4; L~1 = PMe_3, L~2 = PPh_3, 5; L~1 = PMe_3, L~2 = PCy_3,6; L~1 = PMe_3, L~2 = P(OEt)_3, 7; L~1 = PMe_2Ph, L~2 = PPh_3, 8; L~1 = PMe_2Ph, L~2 = P(OEt)_3, 9; L~1 = P(OEt)_3, L~2 = PPh_3,10; L~1= P(OEt)_3, L~2 = PCy_3, 11] and [(μ-edt){Fe(CO)_2(PMe_3)}{Fe(CO)_2(PPh_3)}] (edt = ethane-1,2-dithiolato, 12) were successfully synthesized by stepwise phosphine ligand replacement. X-ray single crystal diffraction reveals that bulky phosphine ligand prefers the apical site, while the smaller one coordinates at the basal site. When two phosphine ligands, i.e., PPh_3 and P(OEt)_3 in complex 10, are both bulky ligands, an apical/apical coordination conformation is preferred. Electrochemistry results indicated that different phosphine ligands led to ca. 200 mV difference for the redox potentials of the unsymetrically diphosphine substituted complexes.
     Mono- and disubstituted complexes, [(μ-pdt)Fe_2(CO)_5(THP)] (13) and [(μ-pdt){Fe(CO)_2(THP)}_2] (14), were synthesized for the purpose of introduction of a water soluble phosphine ligand, tris(hydroxymethyl)phosphine (THP), to the [2Fe2S] model complex. Disubstituted complex 14 possesses good water solubility in water and bad stability in air atmosphere. Complex 13 has poor solubility in pure water while it can be dissolved in CH_3CN/H_2O mixed solution. The catalytic activity for proton reduction of complex 13 in CH_3CN/H_2O (1:1, v/v) is higher than that in pure CH_3CN in the presence of HOAc. Indefinitely extended sandwich FeS/OH/FeS packing mode is found in the packing diagram of complex 13. Wavily assembled two dimensional networks are constructed by intra- and intermolecular O-H…O hydrogen bonds. Right- and left-handed O-H…O-H helical chains are alternately arranged in the extended network.
     Phosphine ligands featuring an internal base of pyridine ring were introduced to the [2Fe2S] model by synthesis of complexes [(μ-pdt)Fe_2(CO)_5L] (L = Ph_2PCH_2Py, 15; Ph_2PPy, 16). Potential shifts of 360 and 490 mV to positive direction were found for the first reductions of complexes 15 and 16, respectively, in the presence of HOTf. It is proposed that the anodic shifts are caused by the protonation of the pyridyl-N atoms in Ph_2PCH_2Py and Ph_2PPy. Protonated species [(μ-pdt)Fe_2(CO)_5L][OTf] (L = [Ph_2PCH_2PyH]~+, 19; [Ph_2PPyH]~+, 20) were isolated and characterized by X-ray crystal diffraction. Complexes [(μ-pdt){Fe(CO)_2(PMe_3)}{Fe(CO)_2L}] (L = Ph_2CH_2Py, 17; Ph_2PPy, 18) were synthesized for the enhancement on the protophilicity of the Fe-Fe bonds while remaining the pyridine ring as an internal base in the same molecular. Low temperature NMR (-55℃) techniques and in situ IR (-10℃) spectroscopy were used to trace the protonation process of complex 18 in the presence of strong acid (HOTf). The results showed that complex 18 was protonated first on the Fe-Fe bond. The doubly protonated species [18HyH]~(2+) was formed and detected at low temperature while it would decomposed at room temperature.
     In order to tune the reduction potential of the [2Fe2S] complex, the rigid and conjugated bridge containing the electron withdrawing group (C=O) was introduced to the [2Fe2S] model. Complexes [μ-SC_6H_4-2-(CO)S-μ]Fe_2(CO)_6 (21) and [μ-2-SC_5H_3N-3-(CO)S-μ]Fe_2(CO)_6 (22)were prepared by the reactions of Fe_2(CO)_9 and (?) or (?) in THF at room temperature, respectively. X-ray crystal diffraction confirms the plane structure of the bridge in complexes 21 and 22. The results of electrochemistry indicate that the rigid and conjugated bridge indeed results in the positive shift of the reduction potentials. The first reduction event of complex 22 appears at -1.18 V (vs. Fc/Fc~+), which is 100 mV positive than that of complex 21.
     All synthesized diiron dithiolate complexes were characterized by IR, NMR, MS and elemental analysis. Structures of complexes 4-6, 8-10, 12, and 15-22 were determined by X-ray single crystal diffraction.
引文
[1] Peters J W, Lanzilotta W N, Lemon B J et al. X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science, 1998,282: 1853-1858.
    
    [2] Nicolet Y, Piras C, Legrand P et al. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure, 1999,7:13-23.
    
    [3] Peters J W. Structure and mechanism of iron-only hydrogenases. Curr. Opin. Stru. Biol., 1999, 9(6): 670-676.
    
    [4] Spek T M, Arendsen A F, Happe R P et al. Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy. Eur. J. Biochem., 1996, 237: 629-634.
    
    [5] DeLacey A L, Stadler C, Cavazza C et al. FTIR Characterization of the Active Site of the Fe-hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc., 2000, 122: 11232-11233.
    
    [6] Nicolet Y, Lacey A de, Vernede X et al. Crystallographic and FTIR Spectroscopic Evidence of Changes in Fe Coordination Upon Reduction of the Active Site of the Fe-Only Hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc, 2001,123: 1596-1601.
    
    [7] Fan H J, Hall M B. A Capable Bridging Ligand for Fe-Only Hydrogenase: Density Functional Calculations of a Low-Energy Route for Heterolytic Cleavage and Formation of Dihydrogen. J. Am. Chem. Soc, 2001,123: 3828-3829.
    
    [8] Lemon B, Peters J W. Binding of Exogenously Added Carbon Monoxide at the Active Site of the Iron-Only Hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry, 1999, 38: 12969-12973.
    
    [9] Nicolet Y, Cavazza C, Fontecilla-Camps J C. Fe-only Hydrogenases: structure, function and evolution. J. Inorg. Biochem., 2002,91:1-8.
    
    [10] Royke C, Vlugt J, Rauchfuss T B et al. Diferrous cyanides as models for the Fe-only hydrogenases. J. Am. Chem. Soc, 2005,127(31): 11010-11018.
    
    [11] Adams M W. The structure and mechanism of iron-hydrogenases. Biochim. Biophys. Acta, 1990, 1020:115-145.
    
    [12] Frey M. Hydrogenases: Hydrogen-Activating Enzymes. ChemBioChem., 2002,3: 153-160.
    
    [13] Nicolet Y, Lemon B J, Fontecilla-Camps J C et al. A novel FeS cluster in Fe-only Hydrogenases. Trends Biochem. Sci, 2000,25: 138—143.
    
    [14] Chen Z, Lemon B J, Huang S et al. Infrared Studies of the CO-Inhibited Form of the Fe-Only Hydrogenase from Clostridium pasteurianum I: Examination of Its Light Sensitivity at Cryogenic Temperatures. Biochemistry, 2002,41:2036-2043.
    
    [15] Popescu C V, Munck E. Electronic Structure of the H Cluster in [Fe]-Hydrogenases. J. Am. Chem. Soc, 1999,121:7877-7884.
    
    [16] Pereira A S, Tavares P, Moura I et al. Mossbauer Characterization of the Iron-Sulfur Clusters in Desulfovibrio vulgaris Hydrogenase. J. Am. Chem. Soc, 2001,123:2771-2782.
    
    [17] Darensbourg M Y, Lyon E J, Zhao X et al. Bioinorganic chemistry special feature: The organometallic active site of [Fe] hydrogenase: Models and entatic states. Proc Natl. Acad. Sci. U.S.A., 2003, 100: 3683-3688.
    [18] Reihlen H, Gruhl A, Hessling G V. Uber den photochemischen und oxydativen Abbau von Carbonylen. Lebigs Ann. Chem., 1929,472: 268-287.
    
    [19] Song L-C. Investigations of butterfly Fe/S cluster S-centered anions (μ-S~-)_2Fe_2(CO)_6, ( μ-S~-)(μ-RS)Fe_2 (CO)_6, and related species. Acc. Chem. Res., 2005, 38: 21-28.
    
    [20] Lyon E J, Georgakaki I P, Reibenspies J H et al. Carbon Monoxide and Cyanide Ligands in a Classical Organometallic Complex Model for Fe-Only Hydrogenase. Angew. Chem. In. Ed. Engl., 1999, 38: 3178-3180.
    
    [21] Schmidt M, Contakes S M, Rauchfuss T B. First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe_2(μ-SR)_2(CO)_4(CN)_2~(2-). J. Am. Chem. Soc., 1999, 121: 9736-9737.
    
    [22] Cloirec A L, Best S P, Borg S et al. A di-iron dithiolate possessing structural elements of the carbonyl/cyanide sub-site of the H-cluster of Fe-only hydrogenase. Chem. Commun., 1999: 2285-2286.
    
    [23] Lyon E J, Georgakaki I P, Reibenspies J H et al. Coordination Sphere Flexibility of Active-Site for Fe-only Hydrogenase: Studies in Intra- and Intermolecular Diatomic Ligand Exchange. J. Am. Chem. Soc, 2001, 123: 3268-3278.
    
    [24] Georgakaki I P, Thomson L M, Lyon E J et al. Fundamental properties of small molecule models of Fe-only hydrogenase: computations relative to the definition of an entatic state in the active site. Coord. Chem. Rev., 2003, 238-239:255-266.
    
    [25] Gloaguen F, Lawrence J D, Schmidt M et al. Synthetic and Structrual Studies on [Fe_2(SR)_2(CN)_x (CO)_(6_X)]~(x-) as Active site Models for Fe-only hydrogenases. J. Am. Chem. Soc, 2001, 123: 12518-12527.
    
    [26] Zhao X, Georgakaki I P, Miller M L et al. H/D Exchange Reactions in Dinuclear Iron Thiolates as Activity Assay Models of Fe-H_2ase. J. Am. Chem. Soc, 2001, 123: 9710-9711.
    
    [27] Mejia-Rodriguez R, Chong D, Reibenspies J H et al. The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H_2 Production Electrocatalysts: Iron Hydrogenase Model Complexes. J. Am. Chem. Soc, 2004, 126: 12004-12014.
    
    [28] Hou J, Peng X, Zhou Z et al. Tris(N-pyrrolidinyl)phosphine substituted diiron dithiolate related to iron-only hydrogenase active site: Synthesis, characterization and electrochemical properties. J. Organomet. Chem., 2006,691:4633-4640.
    
    [29] Lawrence J D, Rauchfuss T B, Wilson S R. New Class of Diiron Dithiolates Related to the Fe-Only Hydrogenase Active Site: Synthesis and Characterization of [Fe_2(SR)-2(CNMe)_7]~(2+). Inorg. Chem., 2002, 41: 6193-6195.
    
    [30] Nehring J L, Heinekey D M. Dinuclear Iron Isonitrile Complexes: Models for the Iron Hydrogenase Active Site . Inorg. Chem., 2003,42:4288-4292.
    
    [31] Hou J, Peng X, Liu J et al. A Binuclear Isocyanide Azadithiolatoiron Complex Relevant to the Active Site of Fe-Only Hydrogenases: Synthesis, Structrue and Electrochemical Propeties. Eur. J. Inorg. Chem., 2006:4679-4686.
    
    [32] Tye J W, Lee J, Wang H-W et al. Dual Electron Uptake by Simultaneous Iron and Ligand Reduction in an N-Heterocyclic Carbene Substituted [FeFe] Hydrogenase Model. Inorg. Chem., 2005, 44: 5550-5552.
    
    [33] Capon J-F, Hassnaoui S, Talarmin J et al. N-heterocyclic carbene ligands as cyanide mimics in diiron models of the all-iron hydrogenase active site. Organometallics, 2005, 24: 2020-2022.
    
    
    [34] Na Y, Wang M, Jin K et al. An approach to water-soluble hydrogenase active site models: Synthesisand electrochemistry of diiron dithiolate complexes with 3,7-diactyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane ligand(s). J. Organomet. Chem., 2006,691: 5045-5051.
    
    [35] Schwartz L, Ekstr(?)m J, Lomoth R et al. Dynamic ligation at the first amine-coordinated ironhydrogenase active site mimic. Chem. Commun., 2006:4206-4208.
    
    [36] Duan L, Wang M, Li P et al. Carbene-pyridine chelating 2Fe2S hydrogenase model complexes ashighly active catalysts for the electrochemical reduction of protons from weak acid (HOAc). Dalton Trans.,2007: 1277-1283.
    
    [37] Gao W, Liu J, Akermark B et al. Bidentate Phosphine Ligand Based Fe_2S_2-ContainingMacromolecules: Synthesis, Characterization, and Catalytic Electrochemical Hydrogen Production. Inorg.Chem., 2006,45: 9169-9171.
    
    [38] Ezzaher S, Capon J-F, Gloaguen F et al. Evidence for the formation of terminal hydrides byprotonation of an asymmetric iron hydrogenase active site mimic. Inorg. Chem., 2007,46: 3426-3428.
    
    [39] Justice A K, Zampella G, Gioia L D et al. Chelate Control of Diiron(I) Dithiolates Relevant to the[Fe-Fe]-Hydrogenase Active Site. Inorg. Chem., 2007,46:1655-1664.
    
    [40] Adam F I, Hogarth G, Richards I et al. Models of the iron-only hydrogenase: Structural studies ofchelating diphosphine complexes [Fe_2(CO)_4(μ-pdt(κ~2P,P'-diphosphine)]. Dalton Trans., 2007: 2495-2498.
    
    [41] Morvan D, Capon J-F, Gloaguen F et al. N-Heterocyclic Carbene Ligands in Nonsymmetric DiironModels of Hydrogenase Active Sites. Organometallics, 2007,26:2042-2052.
    
    [42] Orain P-Y, Capon J-F, Kervarec N et al. Use of 1, 10-phenanthroline in diiron dithiolate derivativesrelated to the [Fe-Fe] hydrogenase active site. Dalton Trans., 2007:3754-3756.
    
    [43] Justice A K, Zampella G, Gioia L D et al. Lewis vs. Br(?)nsted-basicities of diiron dithiolates:spectroscopic detection of the "rotated structrue" and remarkable effects of ethane vs. propanedithilate.Chem. Commun., 2007: 2019-2021.
    
    [44] Justice A K, Linck R C, Rauchfuss T B et al. Dihydrogen Activation by a Diruthenium Analogue ofthe Fe-Only Hydrogenase Active Site. J. Am. Chem. Soc., 2004,126:13214-13215.
    
    [45] Boyke C A, Rauchfuss T B, Wilson S R et al. [Fe_2(SR)_2(μ-CO)(CNMe)_6]~(2+) and Analogues: A NewClass of Diiron Dithiolates as Structural Models for the H_(ox)~(Air) State of the Fe-Only Hydrogenase. J. Am.Chem. Soc, 2004,126: 15151-15160.
    
    [46] Vlugt J I, Rauchfuss T B, Wilson S R. Electron-Rich Diferrous-Phosphane-Thiolates Relevant toFe-only Hydrogenase: Is Cyanide "Nature's Trimethylphosphane"?. Chem. Eur. J., 2006,12: 90-98.
    
    [47] Vlugt J I, Rauchfuss T B, Whaley C M et al. Characterization of a Diferrous Terminal HydrideMechanistically Relevant to the Fe-Only Hydrogenases. J. Am. Chem. Soc., 2005,127: 16012-16013.
    
    [48] Razavet M, Davies S C, Hughes D L et al. {2Fe3S} clusters related to the di-iron sub-site of theH-centre of all-iron hydrogenases. Chem. Commun., 2001: 847-848.
    
    [49] Razavet M, Borg S J, George S J et al. Transient FTIR spectroelectrochemical and stopped-flowdetection of a mixed valence {Fe(Ⅰ)-Fe(Ⅱ)} bridging carbonyl intermediate with structural elements andspectroscopic characteristics of the di-iron sub-site of all-iron hydrogenase. Chem. Commun., 2002:700-701.
    [50] George S J, Cui Z, Razavet M et al. The Di-Iron Subsite of All-Iron Hydrogenase: Mechanism of Cyanation of a Synthetic {2Fe3S}-Carbonyl Assembly. Chem. Eur. J. 2002, 8,4037-4046.
    
    [51] Razavet M, Davies S C, Hughes D L et al. All-iron hydrogenase: synthesis, structure and properties of {2Fe3S}-assemblies related to the di-iron sub-site of the H-cluster. Dalton Trans., 2003: 586-595.
    
    [52] Evans D J, Pickett C J. Chemistry and the Hydrogenases. Chem. Soc. Rev., 2003, 32: 268-275.
    
    [53] Zampella G, Bruschi M, Fantucci P et al. Dissecting the Intimate Mechanism of Cyanation of {2Fe3S} Complexes Related to the Active Site of All-Iron Hydrogenases by DFT Analysis of Energetics, Transition States, Intermediates and Products in the Carbonyl Substitution Pathway. Chem. Eur. J., 2005, 11: 509-520.
    
    [54] Lawrence J D, Li H, Rauchfuss T B. Beyond Fe-Only hydrogenases: N-Functionalized 2-aza-l,3- dithiolates Fe_2[(SCH_2)_2NR](CO)_x (x = 5,6). Chem. Commun., 2001: 1482-1483.
    
    [55] Liu Z-P and Hu P. A Density Functional Theory Study on the Active Center of Fe-Only Hydrogenase: Characterization and Electronic Structure of the Redox States. J. Am. Chem. Soc, 2002, 124: 5175-5182.
    
    [56] Bruschi M, Zampella G, Fantucci P et al. DFT investigations of models related to the active site of [NiFe] and [Fe] hydrogenases. Coord. Chem. Rev., 2005,249: 1620-1640.
    
    [57] Liu X M, Ibrahim S K, Tard C et al. Iron-only hydrogenase: Synthetic, structural and reactivity studies of model compounds. Coord. Chem. Rev., 2005,249: 1641-1652.
    
    [58] Lawrence J D, Li H, Rauchfuss T B et al. Diiron Azadithiolates as Models for the Iron-Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics. Angew. Chem. Int. Ed. Engl., 2001, 40:1768-1771.
    
    [59] Li H, Rauchfuss T B. Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J. Am. Chem. Soc, 2002, 124: 726-727.
    
    [60] Rauchfuss T B. Research on Soluble Metal Sulfides: From Polysulfido Complexes to Functional Models for the Hydrogenases. Inorg. Chem., 2004,43: 14-26.
    
    [61] Schwartz L, Eilers G, Eriksson L A et al. Iron hydrogenase active site mimic holding a proton and a hydride. Chem. Commun., 2006: 520-522.
    
    [62] Ott S, Kritikos M, Akermark B et al. A Biomimetic Pathway for Hydrogen Evolution from a Model of the Iron Hydrogenase Active Site. Angew. Chem. Int. Ed., 2004,43: 1006-1009.
    
    [63] Liu T, Wang M, Shi Z et al. Synthesis, Structures and Electrochemical Properties of Nitro- and Amino-Functionalized Diiron Azadithiolates as Active Site Models of Fe-only Hydrogenases. Chem. Eur. J., 2004, 10: 4474-4479.
    
    [64] Wang F, Wang M, Liu X et al. Spectroscopic and crystallographic evidence for the N-protonated Fe~IFe~I azadithiolate complex related to the active site of Fe-only hydrogenases, Chem. Commun., 2005: 3221-3223.
    
    [65] Jiang S, Liu J, Sun L. A furan-containing diiron azadithiolate hexacarbonyl complex with unusal lower catalytic proton reduction potential. Inorg. Chem. Commun., 2006, 9: 290-292.
    
    [66] Jiang S, Liu J, Shi Y. Fe-S complexes containing five-membered heterocyles: novel models for the active site of hydrogenases with unusal low reduction potential. Dalton Trans., 2007: 896-902.
    
    [67] Si G, Wu L-Z, Wang W-G et al. Synthesis, structure and electrochemical property of diphenylacetypene-substituted diiron azadithiolates as active site of Fe-only hydrogenase. Tetrahedron Letters, 2007, 48: 4775-4779.
    [68] Wang F, Wang M, Liu X et al. Protonation, electrochemical properties and molecular structures of halogen-functionalized diiron azadithiolate complexes related to the active site of iron-only hydrogenases. Dalton Trans., 2007: 3812-3819.
    
    [69] Dong W, Wang M, Liu X et al. An insight into the protonation property of a diiron azadithiolate complex pertinent to the active site of Fe-only hydrogenases. Chem. Commun., 2006: 305-307.
    
    [70] Song L-C, Yang Z-Y, Bian H-Z et al. Novel Single and Double Diiron Oxadithiolates as Models for the Active Site of [Fe]-Only Hydrogenases. Organometallics, 2004,23, (13): 3082-3084.
    
    [71] Song L-C, Yang Z-Y, Hua Y-J et al. Diiron Thiadithiolates as Active Site Model for the Iron-only Hydrogenases: Synthesis, Structrues, and Catalytic H_2 Production. Organometallics, 2007,26: 2106-2110.
    
    [72] Tard C, Liu X M, Ibrahim S K et al. Synthesis of the H-cluster framework of iron-only hydrogenase. Nature, 2005,433: 610-613.
    
    [73] He C, Wang M, Zhang X et al. An Unusual Cyclization in a Bis(Cysteinylthiolate) Diiron Complex Related to the Active Site of Fe-Only Hydrogenases. Angew. Chem. Int. Ed., 2004,43,3571-3574.
    
    [74] Song L-C, Ge J-H, Yan J et al. Iron-only Hydrogenase Active Site Models Containing a Cysteiny Group Coordinated through Its Sulfur Atom to One Iron Atom of the Diiron Subsite. Eur. J. Inorg. Chem., 2008: 164-171.
    
    [75] Liu T, Darensbourg M Y. A mixed-Valent, Fe(II)Fe(I), Diiron Complex Reproduces the Unique Rotated State of the [FeFe]Hydrogenase Active Site. J. Am. Chem. Soc, 2007,129: 7008-7009.
    
    [76] Justice A K, Rauchfuss T B, Wilson S R. Unsaturated, Mixed-Valence Diiron Dithiolate Model for the H_(ox) State of the [FeFe] Hydrogenase. Angew. Chem. Int. Ed., 2007,46: 6152-6154.
    
    [77] Gloaguen F, Lawrence J D, Rauchfuss T B. Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate. J. Am. Chem. Soc, 2001,123: 9476-9477.
    
    [78] Gloaguen F, Lawrence J D, Rauchfuss T B et al. Bimetallic Carbonyl Thiolates as Functional Models for Fe-Only Hydrogenases. Inorg. Chem., 2002,41: 6573-6582.
    
    [79] Izutsu K. Acid-Base Dissociation Constants in Dipolar Aprotic Solvents, Blackwell Scientific Publications, Oxford, 1990.
    
    [80] Chong D, Georgakaki I P, Mejia-Rodriguez R et al. Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Trans., 2003: 4158-4163.
    
    [81] Capon J-F, Gloaguen F, Schollhammer P et al. Electrochemical proton reduction by thiolate-bridged hexacarbonyldiiron clusters. J. Electroanal. Chem., 2004,566: 241-247.
    
    [82] Capon J-F, Gloaguen F, Schollhammer P et al.Catalysis of the electrochemical H_2 evolution by di-iron sub-site models. Coord. Chem. Rev., 2005,249: 1664-1676.
    
    [83] Capon J-F, Gloaguen F, Schollhammer P et al. Activation of proton by the two-electron reduction of a di-iron organometallic complex. J. Electroanal. Chem., 2006, 595:47-52.
    
    [84] Gloaguen F, Morvan D, Capon J-F et al. Eletrochemical proton reduction at mild potentials by monosubstituted diiron organometallic complexes bearing a benzenedithiolate bridge. J. Electroanal. Chem., 2007,603: 15-20.
    
    [85] Borg S J, Behrsing T, Best S P et al. Electron Transfer at a Dithiolate-Bridged Diiron Assembly: Electrocatalytic Hydrogen Evolution. J. Am. Chem. Soc., 2004,126: 16988-16999.
    [86] Cheah M H, Borg S J, Bondin M I et al. Electrocatalytic Proton Reduction by Phosphido-Bridged Diiron Carbonyl Compounds: Distant Relations to the H-Cluster? Inorg. Chem., 2004,43: 5635-5644.
    
    [87] Best S P. Spectroelectrochemistry of hydrogenase enzymes and related compounds. Coord. Chem. Rev., 2005, 249: 1536-1554.
    
    [88] Borg S J, Tye J W, Hall M B et al. Assignment of Molecular Structures to the Electrochemical Reduction Products of Diiron Compounds Related to [Fe-Fe] Hydrogenase: A Combined Experimental and Density Functional Theory Study. Inorg. Chem., 2007,46: 384-394.
    
    [89] Cheah M H, Tard C, Borg S J et al. Modeling [Fe-Fe] Hydrogenase: Evidence for Bridging Carbonyl and Distal Iron Coordination Vacancy in an Electrocatalytically Competent Proton Reduction by an Iron Thiolate Assembly That Operates through Fe(0)-Fe(II) Levels. J. Am. Chem. Soc, 2007, 129: 11085-11092.
    
    [90] Tard C, Liu X, Hughes D L et al. A novel {Fe~I-Fe~II-Fe~II-Fe~I} iron thiolate carbonyl assembly which electrocatalyses hydrogen evolution. Chem. Commun., 2005: 133-135.
    
    [91] Felton G A N, Glass R S, Lichtenberger D L et al. Iron-Only Hydrogenase Mimics. Thermodynamic Aspects of the Use of Electrochemistry to Evaluate Catalytic Efficiency for Hydrogen Generation. Inorg. Chem., 2006,45: 9181-9184.
    
    [92] Thomas C M, Rudiger O, Liu T. Synthesis of Carboxylic Acid-Modified [FeFe]-Hydrogenase Model Complexes Amenable to Surface Immobilization. Organometallics, 2007, 26: 3976-3984.
    
    [93] Felton G A N, Vannucci A K, Chen J. Hydrogen Generation from Weak Acids: Electrochemical and Computational Studies of a Diiron Hydrogenase Mimic. J. Am. Chem. Soc, 2007, 129: 12521-12530.
    
    [94] Sun L C, Akermark B, Ott S. Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord. Chem. Rev., 2005,249: 1653-1663.
    
    [95] Salyi S, Kritikos M, Akermark B et al. Synthesis of an Amino-Functionalized Model of the Fe-Only Hydrogenase Active Site. Chem. Eur. J., 2003, 9: 557-560.
    
    [96] Wolpher H, Borgstrom M , Hammarstrom L et al. Synthesis and properties of an iron hydrogenase active site model linked to a ruthenium tris-bipyridine photosensitizer. Inorg. Chem. commun., 2003, 6: 989-991.
    
    [97] Ott S, Kritikos M, Akermark B et al. Synthesis and Structure of a Biomimetic Model of the Iron Hydrogenase Active Site Covalently Linked to a Ruthenium Photosensitizer. Angew. Chem. Int. Ed., 2003, 42: 3285-3288.
    
    [98] Ott S, Kritikos M, Akermark B et al. Model of the Iron Hydrogenase Active Site Covalently Linked to a Ruthenium Photosensitizer: Synthesis and Photophysical Properties. Inorg. Chem., 2004, 43: 4683-4692.
    
    [99] Ekstrfim J, Abrahamssson M, Olson C et al. Bio-inspired, side-on attachment of a ruthenium photosensitizer to an iron hydrogenase active site model. Dalton Trans., 2006: 4599-4606.
    
    [100] Song L-C, Tang M-Y, Su F-H et al. A Biomimetic Model for the Active Site of Iron-only Hydrogenase Covalently Bonded to a Porphyrin Photosensitizer. Angew. Chem. Int. Ed., 2006, 45: 1130-1133.
    
    [101] Song L-C, Tang M-Y, Mei S-Z et al. The Active Site Model for Iron-Only Hydrogenases Coordinatively Bonded to a Metalloporphyrin Photosensitizer. Organometallics, 2007,26: 1575-1577.
    
    
    [102] Na Y, Pan J, Wang M et al. Intermolecular Electron Transfer from Photogenerated Ru(bpy)_3~+ to[2Fe2S] Model Complexes of the Iron-Only Hydrogenase Active Site. Inorg. Chem., 2007,46: 3813-3815.
    
    [103] Na Y, Wang M, Pan J et al. Visible Light-Driven Electron Transfer and Hydrogen GenerationCatalyzed by Bioinspired [2Fe2S] Complexes. Inorg. Chem., 2008,47: 2805-2810.
    
    [104] Razavet M, Artero V, Fontecave M. Proton Electroreduction Catalyzed by Cobaloximes: FunctionalModels for Hydrogenases. Inorg. Chem., 2005,44:4786-4795.
    
    [105] Hu X, Cossairt B M, Brunschwig B S et al. Electrocatalytic hydrogen evolution by cobaltdifluoroboryl-diglyoximate complexes. Chem. Commun., 2005:4723-4725.
    
    [106] Artero V, Fontecave M. Some general principle for designing electrocatalysts with hydrogenaseactivity. Coord. Chem. Rev., 2005,249:1518-1535.
    
    [107] Pantani O, Anxolabéhère-Mallart E, Aukauloo A et al. Electroactivity of cobalt and nickel glyoximeswith regard to the electro-reduction of protons into molecular hydrogen in acidic media. Electrochem.Commun., 2007,9: 54-58.
    
    [108] Baffert C, Artero V, Fontecave M. Cobaloximes as Functional Models for Hydrogenases. 2. ProtonElectroredution Catalyzed by DifluoroboryIbis(dimethylglyoximato)cobalt(II) Complexes in OrganicMedia. Inorg. Chem., 2007,46: 1817-1824.
    
    [109] Fihri A, Artero V, Razavet M et al. Cobaloxime-Based Photocatalytic Devices for HydrogenProduction. Angew. Chem. Int. Ed., 2008,47: 564-567.
    
    [110] Zhao X, Georgakaki I P, Miller M L et al. Catalysis of H_2/D_2 Scrambling and Other H/D ExchangeProcess by [Fe]-Hydrogenase Model Complexes. Inorg. Chem., 2002,41: 3917-3928.
    
    [111]陈小明,蔡继文.单晶结构分析-原理与实践.北京:科学出版社,2003.
    
    [112] Software packages SMART and SAINT, Siemens Energy & Automation Inc., Madison, Wisconsin,1996.
    
    [113] Sheldrick G M. SADABS Absorption Correction Program, University of GSttingen, Germany, 1996.
    
    [114] Sheldrick G M. SHELXTL97 Program for the Refinement of Crystal Structure, University ofGottingen, Germany, 1997.
    
    [115] Wang Z, Liu J, He C et al. Diiron azadithiolates with hydrophilic phosphatriazaadamantane ligand asiron-only hydrogenase active site models: Synthesis, structure, and electrochemical study. Inorg. Chim.Acta, 2007, 360: 2411-2419.
    
    [116] Ellis J W, Harrison K N, Hoye P A T et al. Water-Soluble Tris(hydroxymethl)phosphine Complexeswith Nickel, Palladium, and Platinum. Crystal Structrue of [Pd{P(CH_2OH)_3}_4·CH_3OH]. Inorg. Chem., 1992,31:3026-3033.
    
    [117] Fukuoka A, Kosugi W, Morishita F et al. Water-soluble indium and rhodium complexes withtris(hydroxymethyl)phosphine and their catalysis in biphasic hydrogenation and hydroformylation. Chem.Commum., 1999: 489-490.
    
    [118] Cadierno V, Crochet P, Garcia-Garrido S E et al. Water-soluble ruthenium(II) catalysts[RuCl_2(η~6-arene){P(CH_2OH)_3}] for isomerization of allylic alcohols and alkyne hydroation. Dalton Trans.,2004:3635-3641.
    
    [119] Marzano C, Pellei M, Colavito D et al. Synthesis, Characterization, and in Vitro Antitumor Properties of Tris(hydroxymethyl)phosphine Copper(I) Complexes Containing the New Bis(1,2,4-triazol-1-yl)acetate Ligand. J. Med. Chem., 2006,49; 7317-7324.
    
    [120]计亮年,黄锦汪,莫庭焕等编著.生物无机化学导论,第二版,广州:中山大学出版社,2001.
    
    [121] Berning D E, Katti K V, Barnes C L. Chemistry in environmentally benign media. Part 8.Hydroxymethyl-functinalized phosphines as building blocks to new water-soluble gold (I) complexes.Synthesis, characterization, and X-ray structures of novel tetrahedral [Au{P(CH_2OH)_3}_4]~+ and trigonalplanar [Au(Ph_2PCH_2OH)_3]~+ gold(I) complexes. Chem. Ber., 1997, 130: 907-911.
    
    [122] Lee H, Powell A K, Whittlesey M K. Formation and X-ray structure of a novel water-solubletertiary-secondary phosphine complex of ruthenium(II): [Ru{P(CH_2OH)_3}_2{P(CH_2OH)_2H}_2Cl_2]. Chem.Commun., 1998: 1107-1108.
    
    [123] Berning D E, Katti K V, Barbour L J. Multifaceted Reaction of P(CH_2OH)_3 with Rhenium(V)Precursors. Synthesis, Characterization, and X-ray Structrual Studies oftrans,trans,trans-[ReO_2{P(CH_2OH)_3}_2](py)_2]Cl, trans,,cis,cis-[ReO_2{P(CH_2OH)_3}_2(py)_2]Cl, and NovelAlkoxide [Re(O)(μ-O)(P{CH_2OH}_3)(μ-η~2-P{CH_2OH}_2CH_2O)]_4. Inorg. Chem., 1998,37: 334-339.
    
    [124] Bharathi D S, Sridhar M A, Prasad J S. The first copper(I) complex of tris(hydroxymethyl)phosphine.Inorg. Chem. Commun., 2001,4: 490-492.
    
    [125] Langford S J, Woodward C P. Supramolecular self-assembly of dihydroxy tin(IV) porphyrinstabilized helical water chains. CrystEngComm, 2007, 9:218-221.
    
    [126] Ellis J W, Harrison K N, Hoye P A T et al. Water-Soluble Tris(hydroxymethyl)phosphine Complexeswith Nickel, Palladium, and Platinum. Crystal Strutrue of [Pd{P(CH_2OH)_3}_4]·CH_3OH. Inorg. Chem., 1992,31:3026-3033.
    
    [127]王福军.具有铁铁氢化酶活性中心结构特征的Fe/S配合物的合成与质子化:(博士学位论文).大连:大连理工大学,2007.
    
    [128] Eilers G, Schwartz L, Stein M et al. Ligand versus Metal Protonation o an Iron Hydrogenase ActiveSite Mimic. Chem. Eur. J., 2007, 13: 7075-7084.
    
    [129] Akermark B, Krakerberger B, Hansson S et al. Ligand Effects and Nucleophilic Addition to (η~3-Allyl)palladium Complexes. A Carbon-13 Magnetic Resonance Study. Organometallics, 1987, 6: 620-628.
    
    [130] Barder T J, Cotton F A, Powell G L et al. Reactivity of 2-(Diphenylphosphino)pyridine towardComplexes Containing the Quadruply Bonded Re_2~(6+) Core: Ortho Metalation and Redox Chemistry. J. Am.Chem. Soc, 1984, 106: 1323-1332.
    
    [131] Mathur P, Singh V K, Singh A K et al. Photochemical reactions of Fe(CO)_5 with FcC≡CH in thepresence of S-powder and CS_2: Synthesis and characterization of [{μ-SC(H)=C(Fc)S}(CO)_6Fe_2],[{μ-SC(O)C(H)=C(Fc)S}(CO)_6Fe_2]; cis-[μ-η~1:η~2:η~1:η~1-{C(Fc)=C(H)CS_2C(H)=C(Fc)}(CO)_6Fe_2] andtrans-[μ-η~1:η~2:η~1:η~1-{C(Fc)=C(H)CS_2C(Fc)=C(H)}(CO)_6Fe_2]. J. Organomet. Chem., 2006, 691:3336-3342.
    
    [132] Seyferth D, Kiwan A M. Preparation of S-bonded iron carbonyl derivatives of monothiocarboxylicacids. J. Organomet. Chem., 1985,286: 219-223.
    
    [133] Peter H B, Upali S, Alan S et al. An unusual bonding mode for a dithiocarboxylate ligand: a tetradentate interaction; X-ray crystal structure of the product of the reaction of nonacarbonyldiiron with 1,2-benzodithiole-3-thione. J. Chem. Soc. Chem. Commun., 1981: 513-514.
    
    [134] Cabeza J A, Martinez-Garcia M A, Riera V et al. Binuclear Iron(I), Ruthenium(I), and Osmium(I) Hexacarbonyl Complexes Containing a Bridging Benzene- 1,2-dithiolate Ligand. Synthesis, X-ray Structures, Protonation Reactions, and EHMO Calculations. Organometallics, 1998,17:1471-1477.
    
    [135]何成江.化学模拟唯铁氢化酶活性中心:(博士学位论文).大连:大连理工大学,2004.
    
    [136] Felton G A N, Vannucci A K, Chen J et al. Hydrogen Generation from Weak Acid: Electrochemical and Computational Studies of a Diiron Hydrogenase Mimic. J. Am. Chem. Soc, 2007,129:12521-12530.
    
    [137] Baggaley K H, Jennings L J A, Tyrrell A W R. Synthesis of 2-substituted isothiazolopyridin-3-ones. J. Heterocyclic Chem., 1982,19: 1393-1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700