金川海绵铜处理工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金川公司海绵铜是镍电解过程中的净化渣,由于含有一定数量的铜、镍硫化物,用常规的方法不易经济处理。本文综述了大量硝酸在冶金中应用的文献,并在金川公司前期试验的基础上,针对其铜的组成主要为金属铜和硫化铜的特点,提出了一种全新的处理工艺——氧气低压催化氧化法。该法在密闭体系条件下,采用低压氧气(0~400mmHg)和硝酸催化氧化浸出海绵铜生产优质硫酸铜。该工艺在金川公司进行了半工业试验,结果表明:铜浸出率为99.36-99.94%,镍的浸出率94.73-99.85%;金属铜,尤其是硫化态铜,浸出完全,金属损失少;硫大部分以元素硫的形态析出,滤渣含硫70.28%,部分硫转化为硫酸。作为催化剂的硝酸回用率可达到70%以上;产出的硫酸铜达到工业一级硫酸铜标准;浸出成本明显较硫酸化焙烧-浸出工艺低。前者的吨硫酸铜直接加工成本为166.10元,后者达到1302.17元。
     本文在对过程进行理论分析的基础上,对工艺进行了机理和工艺的改进研究。
     铜的氧化研究采用旋转铜圆盘法,发现铜的氧化溶解分为两种情况,钝化氧化和活化氧化;在钝化氧化溶解时,钝化与溶液酸度、硝酸根浓度、温度、搅拌速度等相关;氢离子浓度小于4mol/l时,铜的溶解具有明显的钝化特性,如在0.1M时,溶解速率为:2.262mg/(l·min);硝酸根离子的变化对铜溶解影响很小,铜的浓度变化与硝酸根离子浓度近似呈线性关系,斜率为:1.916mg/mol;随温度的增高,钝化速度加快,在90℃时,30min即到钝化态;在钝化氧化溶解阶段,增加转速并不能加快溶解,只能使其快速达到钝化阶段;实验证实硝酸氧化过程中,亚硝酸起到关键作用;此时氯离子的加入有利于铜的氧化。对于铜的活化氧化溶解,本文提出了硝酸氧化的自催化反应历程,经实验结果验证,理论与实验符合较好;依据反应历程得到了反应初期和转移期的反应方程式;在转速为300rpm时,测得了铜氧化溶解的表观活化能E_a=23.221kJ/mol,介于典型的外扩散控制(8~16kJ/mol)与化学反应控制(40~200kJ/mol)之间,反应为混合控制。在此基础上得出铜氧化浸出的较佳工艺条件为:溶液硫酸浓度为8mol/l,硝酸1.5mol/l,温度80℃,搅拌强度300转/分。
     在一氧化氮吸收的研究中发现:高温下吸收有利于溶液中形成硝酸,但是不利于动力学上NO的氧化,而后者为氮氧化物吸收过程的主要控制步骤。因此应在
    
    昆明理工人学硕十学位论文
    摘要
    低温下进行氮氧化物的吸收,在高温下进行亚硝酸的转化:高酸度有利于硝酸的
    生成;常温常压下吸收达到合理的终点时,硝酸浓度达到4.79m。l/l(26%wt),
    完全可以回用。
     铜氧化与吸收的联合试验表明:铜氧化和氮氧化物吸收可以有效联合进行,
    不存在操作性问题;过程中氮氧化物的吸收完全可以满足要求,大量的硝酸在反
    应器内部就得以再生,大量的减少了硝酸用量:同时,硝酸的再生分布可以调节
    气体循环速度加以人为控制。
     对于硫酸铜的精制,试验找到一个较高生产效率和较低能耗的方法。粗硫酸
    铜经过洗涤、重溶、重结晶,粗硫酸铜中游离酸的脱除率在98%之上;产品质量:
    CuS。,,SHZo)98%:比50。蕊0.1%;水不溶物〔0.1%,达到国家优等品的指标。
     通过对硝酸在铜氧化过程中的作用、氮氧化物的吸收的研究,以及实验室试
    验和半工业试验,为处理金川公司海绵铜渣工业化生产提供了一条经济合理的途
    径,并可望为硝酸在冶金及相关工业中的应用提供一个基础。
The sponge copper is a kind of purring scraps which is produced in the nickel electrolyzing in Jinchuan Non-ferrous Metal Company(JNMC). Present on the application of nitric acid on metallurgy in recent years at home and abroad are reviewed on base of studying a lot of papers and books. A new hydrometallurgical process for conversion of the sponge copper derived copper and copper sulfide into bluestone crystal is provided basing on the previous experiments carried out by both JNMC and. Kunming University of Science and Technology. The process comprises: oxidation of copper, absorption of nitric oxide, refining of copper sulfate. Oxygen and nitric acid are used as oxidation and catalyst, respectively. During the leaching process,the pressure of vessel is less than 400mmHg. The results of the plant scale test are showed below: the leaching ratio of copper is 99.3-99.94%, nickel 94.73-99.85%; The contain of sulfur in the residue is 70.28%, and the result means most of sulfur in sulfide is oxygenated into elemen
    tal sulfur; The product of copper sulfate accords with the China top industrial standard; Oxygen is utilized to oxidize gaseous NOx to regenerate nitric acid, and more than 70% of nitric acid is recoverable. Economic analysis showed that the process had a lower operation cost ( 166.10 per ton copper sulfate), as compared to the Sulfuric Acid Roast Leaching processes ( 1302.17 per ton). Process and mechanism were been researched after the plant test. Oxidation of copper is researched by the rotating disk method. The oxidation of copper includes the passivation oxidation and the activation oxidation. The effects of oxidation time, temperature, agitation speed, concentration of nitric acid and sulfuric acid, chlorine ion, nitrous acid in the leaching solution are discussed. In addition, the mechanism of activation oxidation is suggested. The reaction rate is calculated, and the formula is accorded with the data of experiments. The oxidation of copper is a self-catalyzed reaction. The nitrous acid is active mid-
    product. All the phenomena occurring in the plant scale can be explained with the mechanism. The apparent activation energy for activation oxidation of copper is determined as 23.22KJ/mol at 300 rpm. It means a mixture controlling procedure. The optimal condition for oxidation of copper are: sulfuric acid 392g/l, nitric acid 1.5mol/l,
    
    
    
    
    temperature 80 C, agitation speed 300rpm. Absorption of nitric oxide is studied in a experimental device which simulates the reactor in the plant scale test. It is founded that high temperature is of advantage to form nitric acid, but that is disadvantageous to the oxidation of nitric oxide in dynamics. However, the latter is the determination step of the absorption process. So nitric oxide should be absorbed in low temperature. The higher the acidity of the absorption solution, the higher ratio of nitric acid forms. The concentration of nitric acid in absorption solution can reach 4.79mol/l, which is high enough to be reused as oxidant. Combining experiment of oxidation and absorption proves that the oxidation of copper and absorption of nitric oxide can be carried out at the same time effectively. The distribution of nitrate between oxidation and absorption reactor can be controlled by the circulating speed of gas. An excellent refining method for bluestone is given. It can save more water and energy than
    the traditional evaporation method. Through washing, re-dissolving, re-crystal, the removal rate of dissociation sulfuric acid is more than 98%. Quality of the product: CuSO4-5H2O 98%;H2SO4 0.1%; un-dissolved substance 0.1%, reaches the China top industrial standard. During the lab and plant scale test, a powerful and regenerable oxidant, nitric acid, is utilized to completely ( 99%) leach copper and nickel from the copper sponge. The result of this paper is significant not only to JNMC, but also to be utilized in some metallurgy processes using nitric acid.
引文
[1] 陈顺方 等,铜矿石制备硫酸铜工艺研究进展,云南化工,1999,3,34-36:
    [2] 王犇 等,硝酸与金属铜反应制备硝酸铜新工艺研究,无机盐工业,2002,34,3,30-31:
    [3] 朱祖泽,贺家齐,现代铜冶金,北京,科学出版社,2003,1;
    [4] 林宝启,陈玉风,肖立伟,空气氧化分步浸出海绵铜制备硫酸铜.无机盐工业,1999,
    [5] 满瑞林,甘源,余嘉耕等.五水硫酸铜的催化氧化制备.湖南化工,1998,28,4,31-32:
    [6] 陈曙生,周德红.空气湿法氧化法生产硫酸铜工艺.江西冶金,1999,19,4,29-31:
    [7] 张玲玲,硫酸铜生产工艺分析,化工时刊,12(5),1998,34-36:
    [8] 高灿柱,姜力夫等,硝酸催化法制取硫酸铜,化学世界,1995,3,125-126;
    [9] 郭瑞九.硝酸催化法制取硫酸铜工艺条件的确定.轻工·化工,1999,6,-19,-41;
    [10] 汤青云,硝酸法处理废钨铜合金回收钨和铜新方法,中南林学院学报,1997,17,2,88~92;
    [11] 黄宗明,硝酸催化氧化法制备氯化亚铜的研究,2003,35,2,40-41;
    [12] 黄健芳等,广西化工,1989,4,2-5
    [13] 李入林,石昌等,从硫化铜矿制取硫酸铜的工艺研究,南阳师范学院学宝(自然科学版),2002,1(2)72-74;
    [14] 李冬莲 等,硫化铜精矿制取硫酸铜工艺研究,无机盐工业,1999,4,25-56;
    [15] 刘学山.氧化硫化混合铜矿浸出新工艺.有色金属(冶炼部分),1997,,6,10-19;
    [16] 烟伟,蔡万玲,张红专,等.混合铜矿混酸浸出工艺研究.湿法冶金,1999,2,41-44;
    [17] 烟伟,蔡万玲.从混合铜矿混酸浸出液中去除Ca和Fe结晶、重结晶制备CuSO_4·5_2O工艺研究.湿法冶金,2000,19,1,16-20;
    [18] Herreros, Osvaldo O.;Quiroz, Roberto T.; Iribarren, Nelson A.; Saldes, Nicolas M, Leaching of copper blended ores, sulphate ores and
    
    floatation tailings with chlorine. Innovation 2001,13(1).25-33;
    [19] O' Brien, Robert Na, Canada Patents Alert , 5484579, 903;
    [20] H.M. Brenecke, et al, Nitric-Sulfuric Leach Process for Recovery of Copper From Concentrate, Mining Engineering, 1981, 1259-1266;
    [21] D.S. Davies, R.E. Lueders et al, Nitric-Sulfuric Leach Process Improvements, Mining Engineering, 1981, 1252-1258;
    [22] Dutrizac J E. Elemental Sulphur Formation During The Ferric Chloride Leaching Of Chalcopyrite. Hydrometallurgy, 1990, 23,53;
    [23] Habashi F. Action Of Nitric Acid On Chalcopyrite. Trans. Metall. Soc. AIME, 1973, 254: 228-230;
    [24] Prater J D, Queneau P B, Hudson. Nitric Acid Route To Processing Copper Concentrates. AIME, 1973, 254:117-122;
    [25] Peters E. Hydrometallurgical Process Innovation. Hydrometallurgy, 1992, 29:431-459.
    [26] Parker, A. J et al, Recover Of Copper Power From Copper Concentrated And From Solution Of Copper(Ⅱ)Sulfates Using Dioxide And Aqueous Acetonitrile, Hydrometallurgy, 1981,6,239-260;
    [27] 张旭,低压氧气催化氧化处理海绵铜生产硫酸铜半工业试验报告,金川公司内部资料,2003,4:
    [28] PHILIP H. RIEGER, Electrochemistry, Prentice-Hall, Inc., New Jersey, USA, 1987.
    [29] 刘芳 等,中国专利,CN 1990:1046145.
    [30] F.M. El-Cheikh, S.A. Khalil, M.A. El-Manguch, A.O. Hadi, Ann. Chim. 1983, 73, 75;
    [31] D. Tromans, J.C. Silva, Behavior of Copper in Acidic Sulfate Solution: Comparison with Acidic Chlorife, Corrosion, 1997,53,171-178;
    [32] R.N. Singh, N. Verma, W.R. Singh, Influence of Minor Additions of La, Ce, and Nd on the Mechanical and Corrosion Behavior of Aluminum Bronze in HNO_3 Solution, Corrosion, 1989, 45,222-229;
    [33] M. Georgiadon, R. Alkire, Anisotropic Chemical Etching of Copper Foil(Ⅰ), J. Electrochem. Soc. 1993, 140, 1340-1347;
    [34] M. Georgiadon, R. Alkire, Anisotropic Chemical Etching of Copper
    
    Foil(Ⅱ), J. Electrochem. Soc. 1993, 140, 1348-1355;
    [35] S.L.F.A. Da Costa, S.M.L.Agstinho, Electrochemical Behavior of Copper in 0.5M H_2SO_4 Solutions in the Absence and Presence of Fe(Ⅲ) and Benzortrizole, Corrosion, 1989,45,472-477;
    [36] Herbert H. Uhlic, R. Winston Revie, Corrosion and corrosion control, A wiley-Interscience Publication, Robert Winston, USA, 1985.
    [37] S.A. Khalil, M.A. El-Manguch, F.M. El-Cheikh, The Libyan J. Sci 198,12,1;
    [38] F.M. El-Cheikh, S.A. Khalil, H.A. Omar, The Libyan J. Sci 1985,14,15;
    [39] H.P. Leckie, J. Electrochem. Soc. 1970, 1170, 1478-1483;
    [40] Bjoring, G, Kolta. G.A, Oxidizing leach of sulphide concentrates and other materials catalyzed by nitric acid. Ⅶ Int. Mineral Processing Congr., Part Ⅲ. Gordon and Breach Sci. Publ., New York, 1964.
    [41] Van Weert et al, The NITROX process for treating gold bearing arsenopyrites, 116th Annu. TMS/AIME Meet. Denver, Colo.,Feb. 22-26, 1986;
    [42] David J.Droppert, Yuxing Shang, The leaching behavior of nickferous pyrrhotite concentrate in hot nitric acid, Hydrometallurgy, 1995, 39, 169-182;
    [43] Peters, E and Vizsolyi, Anew hydrometallurgical process for lead recovery, 100th AIME Annu. Meet. New York, 1971;
    [44] Weert G V, Fair K J, Schneider J C. Prochem's NITROX Process. CIM Bulletin, 1986, 79(895): 84-85.
    [45] 张兴让.处理难选砷金矿石的一种新工艺—阿兴诺低压氧化浸出法.黄金,1988,9(5):37.
    [46] 夏光祥.关于硝化法预处理含砷难冶金矿石的进展情况.黄金,1989,10(7):20-25.
    [47] Beattie M J V, Arnaldo Ismay. Appling the Redox Process to Arsenical Concentrates. JOM, 1990, (1):31.
    [48] Raudseep, E. Peters and Morris J. V. Beattie US 4,647,307, (1987).
    [49] Ris J. Beattis, Graham Balderson and Kevin Foo. Perth International Gold Conference in Australia, (1988);
    
    
    [50] Demopoulos G P, Papanagelakis V G. Recent advances in refractory gold processing. CIM Bulettin, 1989, 82(931):85.
    [51] Eung Ha Cho et al. A kinetic study of leaching of coal pyrite with nitric acid. Metallurgical Transactions, 1983, 14B:317.
    [52] Richard T L. Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 1982, 82(5): 461.
    [53] Martin M T, Jankola W A. Cominco's trail zinc pressure leach operation. CIM Bulletin, 1985, 876:77.
    [54] Adams R W et al.锌精矿常压浸出.株冶科技,1990,18(3-4):120-128.
    [55] Corriou J P et al. The aqueous oxidation elemental sulphur and different chemical properities of the allotropic forms S and S. J Inorg Nucl Chem, 1981, 43:9.
    [56] Dutrizac J E. Elemental sulphur formation during the ferric chloride leaching of chalcopyrite. Hydrometallurgy, 1990, 23:153.
    [57] Wladysiawa Mulak. Kinetics of dissolution of synthetic heazlewoodite(NiS) in nitric acid solutions. Hydrometallurgy, 1985, 14:67-81.
    [58] Wladysiawa Mulak. The catalytic action of cupric and ferric ions is nitric acid leaching of NiS. Hydrometallurgy, 1987, 17:201-214.
    [59] 夏光祥.催化氧化酸浸—预处理难冶金精矿的新方法.有色金属(冶炼部分),1989,(4):17-20.
    [60] 夏光祥,余桃枝.催化氧化酸浸预处理黄铁矿型金精矿的研究.化工冶金,1989,10(3):23.
    [61] 夏光祥,余桃枝.催化氧化酸浸预处理团结沟金精矿的扩大实验研究.黄金,1989,10(12):33.
    [62] 夏光祥等.催化氧化酸浸FeS_2的研究.见:第一届全国湿法冶金学术会议论文集.长沙:中南工业大学,1991.145-153.]
    [63] 夏光祥,石伟,方兆珩.铜阳极泥全湿法处理工艺研究.有色金属(冶炼部分),2002,(1):29-33.
    [64] 何运昭,曾念兰.锌精矿常压酸氧化浸取中硝酸的作用.有色金属(冶炼部分),1997,(1):25-27.
    [65] 林春绵,计伟荣,章渊昶.硫化锌矿常压氧化浸出过程的研究.浙江工业
    
    大学学报,1995,23(2):100-105.
    [66] 刘志宏等,硝酸催化分解黄铁矿的动力学研究,中南矿冶学院学报,1993(24),6,760-765:
    [67] 杨长江,张旭等,铅阳极泥贵金属元素提取预处理工艺研究,昆明理工大学学报,2002,V(27),增刊,128-130:
    [68] 沈庆峰,张旭等.铅阳极泥处理工艺的概述及探索.昆明理工大学学报,2002,Vol.27增刊.107-110.
    [69] 沈庆峰,低压催化氧化处理铅阳极泥工艺研究,昆明理工大学硕士论文,2003,6:
    [70] 沈庆峰,低压催化氧化处理铅阳极泥工艺研究,昆明理工大学硕士学位论文,2003,6:
    [71] 项斯芬等.无机化学丛书(第四卷).北京:科学出版社,1995.1(1998.10第二次印刷);
    [72] Herbert H. Uhlic, R. Winston Revie, Corrosion and. corrosion control, A wiley-Interscience Publication, Robert Winston, USA, 1985.
    [73] 阿托罗申科等著,周家骝译.硝酸工学.北京:高等教育出版社,1957
    [74] 韩德刚 高盘良 著,化学动力学基础,北京,北京大学出版社,1987,11
    [75] 卡尔金等著,傅宪谟译.硝酸生产.北京:化学工业出版社,1957.
    [76] H. Komiyama, H. inoue, Absorption of nitrogen oxidesinto water, Chem. Eng. Sci, Vol. 35,1980, 154-161;
    [77] D. J. Millen, D. Watson, The ionization of dinitrogen tetroxide in Nitric acid, J. Chem. Soc., 1957,33,1369-1372;
    [78] M.M. Wendel, R.L. Pigford, Kinetics of nitrogen Tetroxide absorption in water, A.I. CH.E. Journal, Vol. 4, No. 3,1958,9,249-256;
    [79] C. Gutierrez et al, Industrial nitrogen oxides absorption simulation, Computer Chem. Engng, Vol. 13, No. 9,1989,985-1002;
    [80] Hiroshi Komiyama et al, Reaction and transport of nitrogen oxides in nitrous acid solutions, J. Chem. Japan, Vol. 11, No.1,1978,25-32;
    [81] W.A. Dekker et al, The rate of absorption of NO_2 in water, Chem. Eng. Sci. Vol.11,1959,81-71;
    [82] H. Kramers et al Absorption of nitrogen tetroxide by water jets, Chem.
    
    Eng. Sci.,Vol. 14, 1961,115-125;
    [83] Frank H. Verhoek et al The dissociation constants of nitrogen tetroxide and of nitrogen trioxide, Journal. Am. Chem. Soc.,Vol. 53, 1931, 1250-1263;
    [84] Giorgio Carta, Role of HNO_2 in the absorption of nitrogen oxides in alkaline solutions, Ind. Eng. Chem. Fundam. Vol. 23, 1984,260-264;
    [85] Robert M. Counce et al, A mathematical model for nitrogen oxide absorption in a sieve-plate column, Ind. Eng. Process Des. Dev. Vol.19,1980,426-431;
    [86] J.B. Lefers et al, The oxidation and absorption of nitrogen oxides in nitric acid in relation to the tail gas problem of nitric acid plants, Chem. Eng. Sci.,Vol. 35,145-43;
    [87] Bernard L et al, Mass transfer in the absorption of nitrogen oxides in alkaline solutions, AIChE journal, V.34, No. 7,1988, 1190-1199;
    [88] Naresh J. Suchak et al, Absorption of nitrogen oxides in alkaline solution, Ind. Eng. Chem. Res. Vol. 29, 1990, 1492-1502;
    [89] E. Sada et al, Absorption of NO aqueous solutions of KMnO_4, Chem. Eng. Sci.,Vol, 32, 1977,1171-1175;
    [90] R.M. Counce et al, Scrubbing of gaseous nitrogen oxides in packed towers, AIChE Journal, VoL. 29, No. 1 1983, 26-32;
    [91] Yohji Kameoka et al, absorption of nitrogen dioxide into water, sulfuric acid, sodium hydroxide, and alkaline sodium sulfite aqueous solutions, Ind. Eng. Chem.,Fundam.,Vol. 16, No. 1,1977,163-169;
    [92] J.J. Carberry, Some remarks on chemical equilibrium and kinetics in the nitrogen oxides-water system, Chem. Eng. Sci. Vol. 9, No. 4,1959,189-194;
    [93] E. W. Kaiser C.H. Wu, A kinetic study of the gas phase formation and decomposition reactions of nitrous acid, The J. Physical Chemistry, Vol. 81, No. 18, 1977,1701-1706;
    [94] E.J. Koval M.S. Peters, Reaction of aqueous nitrogen dioxide, Ind. Eng. Chem., Vol. 52, No. 12, 1960,1011-1014;
    [95] Glorglo Carta et al, Absorption of nitric oxide in nitric acid and water,
    
    Ind. Eng. Chem. Fundam. Vol. 22, No. 3,1983,329-335;
    [96] Charles L. Burdick et al, The equilibrium between nitric oxide, nitrogen peroxide and aqueous solution of nitric acid, J. Am. Chem. Soc. Vol. 43,1921,518-530;
    [97] I. C. Hisatsune, Theremodynamic properties of some oxides of nitrogen, J. Phys. Chem., Vol. 65, 1961,2249-2253;
    [98] J. B. Lefers et al, Absorption of NO_2/N_2O_4 into diluted and concentrated nitric acid, The Chem. Eng. Journal, Vol. 23, 1982,211-221;
    [99] Christopher England et al, The rate and mechanism of the air oxidation of parts-per-million concentrations of nitric oxide in the presence of water vapor, Ind. Eng. Chem.,Fundam.,Vol. 14, No.1,1975,55-63;
    [100] N. J. Suchak et al, Modeling and simulation of NO_x absorption in pilot-scale packed columns, AIChE Journal, Vol. 37, No. 3, 1991,323-329;
    [101] Lowell G. Wayne et al, Kinetics of the rapid gas phase reaction between NO, NO_2, and H_2O, The Journal of Chemical Physics, Vol. 19, No. 1,1951, 41-47;
    [102] 重有色金属冶炼设计手册编委会.重有色金属冶炼设计手册(铜镍卷).北京:冶金工业出版社,1996.-321
    [103] 杨长江 等,硫化铜浸出液及类似溶液中硝酸根离子的定量分析研究(英文),昆明理工大学学报,2003,V(28),增刊,121-124
    [104] 周伟舫,电化学测量,上海,科学技术出版社,1985,4;
    [105] 金川公司铜材厂编,铜材厂质检室分析方法标准及技术操作规程,1998,8;
    [106] 韩伟,金川公司第三冶炼厂—主要产品成本计算表,,36(1),98,12;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700