富锗闪锌矿氧压酸浸过程中锗的行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为稀散金属,锗因其独特而优良的物理、化学及力学性能,广泛应用于高科技领域,成为重要的战略物资。目前,国内大部分的锗资源是作为富锗闪锌矿冶炼的副产品而得到的。但在常规流程中,流程繁杂,锗的回收率(仅为60%左右)等技术指标很不理想。为此,本课题围绕富锗闪锌矿氧压酸浸过程中锗的行为进行了小型实验室试验研究,试图为氧压酸浸工艺处理富锗闪锌矿的产业化提供理论依据。本课题在查阅了大量国内外文献的基础上进行的,试验工作主要在云南冶金集团总公司技术中心进行,分六大部分:第一部分“富锗闪锌矿氧压酸浸的工艺研究”,第二部分“富锗闪锌矿浸出的机理研究”,第三部分“锌锗浸出差异性的研究”,第四部分“氧压酸浸中锗的浸出动力学研究”,第五部分“银(铁锰)离子对富锗闪锌矿氧压酸浸的、催化作用研究”和第六部分“富锗闪锌矿氧压酸浸液的处理工艺研究”。前五部分是本课题的主体,而第六部分是对前五部分研究的补充。分析化验工作主要由云南省有色金属及制品质量监督检验站完成
     在第一部分“富锗闪锌矿氧压酸浸的工艺研究”中。利用2升的高压釜对天然的富锗闪锌矿精矿进行了氧压酸浸的正交试验和单因素条件研究,考察了浸出温度、浸出时间、氧压、精矿粒度、酸锌摩尔比和搅拌速度对锗浸出率的影响。在第二部分“富锗闪锌矿浸出的机理研究中,通过预浸出得到比较纯净的(杂质较少)闪锌矿,之后对该矿进行氧压酸浸,实验分添加可溶铁和不添加可溶铁两部分,试图找出富锗闪锌矿浸出的机理。在第三部分“锌锗浸出差异性的研究”中,针对富锗闪锌矿氧压酸浸过程中锗锌浸出率总是存在差异(即锗的浸出率总比锌的低)这一事实,从锗的水解,和硅共沉淀、和铁共沉淀三方面对锌锗浸出差异性进行了的研究。在第四部分“富锗闪锌矿氧压酸浸液的后处理工艺研究”中,人工合成了含锗硫化锌晶体。从添加和不添加疏硫剂(木质素磺酸钠)两部分对此晶体进行了氧压酸浸动力学的研究,试图找出天然富·锗闪锌矿氧化酸浸的动力学模型。在第五部分“银(铁、锰)离子对富锗闪锌矿氧压酸浸的催化作用研究”中,对银铁锰三种离子对富锗闪锌矿氧压酸浸的催化作用进行了研究。铁是以中浸渣的形式添加的。考察了温度等各种因素对催化作用的影响。在第六部分“富锗闪锌矿氧压酸浸液的处理工艺研究”,研究了氧压酸浸后含锗浸出液的处理工艺,包括两部分:一部分是用氢氧化铁沉淀锗的工艺,考察了温度等各种因素对锗共沉淀的影响;另一部分是丹宁沉锗工艺,考察了现存工艺中丹宁锗渣品位低的原因,并研究了如何充分提高丹宁的利用效率
     在第一部分“富锗闪锌矿氧压酸浸工艺”中,研究了富锗闪锌矿浸出的各种影响‘因素的作用。通过正交试验考察了.6个影响浸出的因素(浸出时间、浸出温度、精矿粒度、酸锌摩尔比、氧压、搅拌速度)对锗浸出的影响,结果表明各因素对锗浸出的影响顺序为:浸出温度>氧压>精矿粒度>搅拌速度>酸锌摩尔比>浸出时间,其中浸出温度和氧压对锗浸出率的影响较大。根据正交试验及单因素试验结果可知,要使锌和锗达到理想的浸出率,较适合的氧压酸浸条件为:浸出温度150℃,氧压1.2MPa,精矿粒度-320目占98.2%(磨矿时间为9min),搅拌速度700rpm,酸锌摩尔比1.5。在此条件下,锌的浸出率在99%以上,锗的浸出率在90%以上元素硫的转化率将近80%,所获得的浸出液终酸的浓度在20g/L左右,铁离子浓度在5g/L左右。在第二部分“富锗闪锌矿氧压酸浸的机理”中使用一种新方法试图找到富锗闪锌矿氧压酸浸的浸出机理。在一定条件下的闪锌矿氧压酸浸中,随着可溶铁的加入量增加,闪锌矿浸出速度加快。经研究表明,在中温(120-160℃)下,硫化氢作为中间产物的机理比较恰当。在第三部分“氧压酸浸过程锗锌浸出的差异”中,从锗的水解、与硅共沉淀和与铁共沉淀三方面考察锗锌在氧压酸浸中浸出率差异的问题。从目前情况来看,和硅的共沉淀是影响最大的因素,其次是和铁的共沉淀,最后是冷却过程中的锗的水解,分别占9%,5%和2%。相对而言,在三种铁沉淀中,黄钾铁矾形式的铁沉淀会造成最大的锗损失,其次是针铁矿,最后是赤铁矿。在第四部分“氧压酸浸中锗的浸出动力学’中,试图找出氧压酸浸中锗的浸出动力学模型。在不添加木质素磺酸钠的情况下,锗的浸出符合“有多孔固体生成的液固反应模型”,该模型的表达式为:在添加木质素磺酸钠的情况下,化学反应是整个含锗硫化锌晶体氧压酸浸过程的控制步骤,该模型的表达式为从拟合结果来看,含锗硫化锌晶体颗粒主要是近似球型或近似立方形,近似圆柱形次之。在第五部分“变价金属离子对富锗闪锌矿的催化作用研究”中,考虑了银、铁、锰三种催化剂对氧压酸浸的催化作用。在特定的条件下,银能促进闪锌矿中锗的浸出。在(闪锌矿+中浸渣)联合氧压酸浸中,它们相互促进浸出。二价锰离子能明显加速闪锌矿的浸出,且催化作用比铁强。在第六部分“富锗闪锌矿氧压酸浸液的处理工艺研究”中,对利用氢氧化铁共沉淀锗、丹宁沉锗工艺做了简单探索。有利于锗铁共沉淀的条件为:高的锗初始浓度高的铁锗摩尔比,高的溶液终点pH,以及低的离子强度,低的中和温度不需要太苛刻的条件便可获取较高的锗沉淀率,这表明利用铁沉淀来达到锌锗分离在工艺上是可行的,具备较好的应用潜力。丹宁几乎和所有的金属具有络合作用。多次使用丹宁能提高丹宁的利用效率,使用过滤的方法能缩短络合时间,提高丹宁的利用效率。
     本课题的试验结果表明,使用氧压酸浸工艺处理富锗闪锌矿从技术上是可行的。使用该工艺,能获得比常规流程高得多的锗回收率(90%以上),且环境友好,适应性强。为了提高锗的回收率,应加强原料的浸出前处理,严格控制浸出条件和后处理的条件;为了加速浸出过程,可以强化浸出的各种影响因素,使用锰离子作为催化剂加速浸出,必须保证疏硫剂的用量并保护其不被氧化。
As a rare metal, germanium is very important material because of its good physic-chemical characteristics, used in high-tech field. The behavior of germanium in acid pressure oxidative leaching of germanium-bearing sphalerite was investigated for the sake of the later industrial application, and to further understanding of pressure leaching.
     After review of plenty of literature home and abroad, most of experiments were carried out in Technology Center of Yunnan Metallurgy Group Co., Ltd, Kunming. The experiment was constituted of six partS。(1) study on acid pressure oxidative leaching of germanium-bearing sphalerite; (2) study on mechanism of acid pressure oxidative of germanium sphalerite; (3) study on difference of leaching kinetics of germanium and zinc in pressure leaching; (4) leaching kinetics of germanium in acid pressure oxidative leaching of germanium-bearing; (5) catalytic role of silver, iron and manganese in pressure leaching of germanium-rich sphalerite; (6) study on the process to deal with pressure leaching liquor of germanium-bearing sphalerite. The former five parts was the main body, and the latter one part is a supplement. Analysis and determination was done by Yunnan Non-Ferrous Metals & Products Quality Supervision and Analysis Center.
     In the first part, Lab-scale Orthogonal experiment of autoclave oxidation of germanium-bearing sphalerite concentrate was carried out in a 2-L autoclave to investigate the variables such as leaching temperature, leaching duration, oxygen pressure, granularity, molar ratio of acid to zinc and stirring rate on the dissolution of germanium. In the second part, artificial zinc sulfide crystal was prepared via pre-leaching of nature bearing-sphalerite. Such relatively "pure" sphalerite concentrate was leached in a pressure autoclave, with or without iron ion added. In the third part, the difference in dissolution between germanium and zinc during oxidative pressure leaching of germanium-bearing sphalerite was evaluated in laboratory-scale experiments. The effect of temperature and time on germanium hydrolysis, co-precipitation with silica, and co-precipitation with iron oxides was investigated. In the fourth part, Germanium-bearing zinc sulfide crystal was synthesized; it's acid pressure oxidative leaching kinetics was investigated under condition with and without sulfur dispersion agent (sodium lignosulfonate) addition. In the fifth part, Catalytic role of dissolved silver, iron and manganese in acid pressure oxidative leaching of germanium-bearing sphalerite was studied. Factors affecting it were investigated. In the sixth part, two processes to deal with pressure leach liquor were studied. One is germanium co-precipitation with ferric hydroxides, factors were investigated. The other is how to scale tannins'utilization.
     In the first part study on acid pressure oxidative leaching of germanium-bearing sphalerite, variables affecting germanium-bearing sphalerite were investigated such as leaching temperature, leaching duration, oxygen pressure, granularity, molar ratio of acid to zinc and rotation speed on the dissolution of germanium. Orthogonal experiment results showed that leaching temperature and oxygen pressure are major factors affecting the dissolution of germanium, followed by granularity, rotation speed, and molar ratio of acid to ore and leaching duration. The most reasonable conditions were:leaching temperate,150℃, oxygen pressure,1.2MPa, granularity-320mess,98.2%(grind time,9min), stirring rate,700rpm, acid-to-ore ratio,1.5。under such condition, zinc and germanium dissolution yield was above 99%and 90%above, respectively; 80%above sulfur was conversed to elemental sulfur; the final acidity is about 20g/L; iron concentration was about 5g/L. in the second part Study on mechanism of acid pressure oxidative leaching of germanium-bearing sphalerite, a new method was used to investigate the mechanism. Experimental result obtained showed dissolution of sphalerite increased with increased dissolved iron addition, and at medium temperature, the mechanism of hydrogen sulfide is the medium was fitted to experimental result well. In the third part Study on difference of leaching kinetics of germanium and zinc in pressure leaching, the difference of dissolution yield of zinc and germanium was investigated in term of germanium hydrolysis, co-precipitation with silicon, co-precipitation with iron. Experimental results obtained showed the most important factor is co-precipitation with silica, followed by co-precipitation with iron, the finally germanium hydrolysis, and containing 9%,5%and 2%of germanium loss respectively. In the three iron precipitation, jarosite is the most important factor, followed by goethite and hematite. In the forth part leaching kinetics of germanium in acid pressure oxidative leaching of germanium-bearing, attempt to find the kinetics model was tried. When without sodium lignosulphonate addition, diffusion in sulfur lay is the rate-controlling step, and dissolution of germanium is fitted to the model "ash diffusion control-dense-constant size-spherical particles", the equation is When with sodium lignosulphonate addition, chemical reaction is the rate-controlling step, fit the model "chemical reaction control-dense-constant size or shrinking spherical particles" well, the equation From the fitting resuls, most germanium-bearing sphalerite is spherical particles, maybe some are cylindrical particles. In the fifth part catalytic role of silver, iron and manganese in pressure leaching of germanium-rich sphalerite, catalytic role of silver, iron and manganese was investigated. In a given condition, silver ion can accelerate the leaching of sphalerite. In simultaneous leaching of sphalerite and neutral leach residue, they can accelerate each other. Divalent manganese can accelerate the manganese rapidly, and catalytic effect is stronger than iron. In the sixth Study on the process to deal with pressure leaching liquor of germanium-bearing sphalerite, the process of co-precipitation of ferric hydrolysis, germanium precipitation with tannins was investigated. The favor to Ge/Fe co-precipitation conditions are:high initial germanium concentration, high Fe/Ge molar ratio, high final solution pH, and low iron strength, low neutralization temperature. High germanium precipitation yield was achieved in an easy-go condition, which indicated the process has good industrial applicative potential. Tannins can complex with nearly all metal ions. Re-use and multi-use of tannins can scale tannins'utilization.
     It is technologically feasible to deal with geranium-bearing sphalerite with acid pressure oxidative leaching of sphalerite. Using the process friendlily to environment, higher germanium/zinc can be achieved. To increase germanium recovery yield, it was recommend that pre-treatment, rigid operation condition was done. To shorten the leaching of germanium-bearing sphalerite, manganese and sulfur sphere agency should be added, and guard sulfur sphere agency from being oxidized.
引文
[1]伍敬峰;刘侦德;邓卫.凡口铅锌矿选矿过程中锗、镓行为走向探讨.矿业研究与开发,2001,21(2):35-37
    [2]邓卫,刘侦德,邓卫等.凡口铅锌矿锗和镓资源与回收.有色金属,2002,54(1):54-57
    [3]邓卫,伍敬锋.凡口铅锌矿稀散金属的选矿研究与综合评述.有色金属,2000,52(4):45·49
    [4]刘侦德,谢雪飞等.凡口铅锌矿稀散金属选矿回收实践.有色金属(选矿部分),2002,58(2):9-12
    [5]崔毅琦,童雄,周庆华等.我国伴生稀散金属锗镓的选矿回收研究概况.中国工程科学,2005,(04):12-16
    [6]阳海燕,胡岳华.稀散金属镓锗在选冶回收过程中的富集行为分析.湖南有色金属,2003,45(06):7-11
    [7]颜美凤.韶冶锗综合回收技术的发展:有色冶炼,2002,52(03):24-26
    [8]陈春祥,车文婷.株冶铟、锗、镓的综合回收.稀有金属与硬质合金,1987,41(03):25-29
    [9]周少强,戴晶平.凡口铅锌矿深部矿体工艺矿物学研究.南方冶金学院学报,1997,24(3):4-8
    [10]李光辉,黄柱成,郭宇峰等.从湿法炼锌渣中回收镓和锗的研究(上)--浸锌渣的还原分选.金属矿山,2004,11(06):34-38
    [11]黄柱成,杨永斌,蔡江松等.浸锌渣综合利用新工艺及镓的富集行为,中南工业大学学报(自然科学版),2002,45(02):41-48
    [12]易飞鸿,奚长生.国内外稀散元素镓铟锗的提取技术.广东化工,2003,61(02):24-28
    [13]黄柱成,蔡江松,杨永斌等.浸锌渣中有价元素的综合利用。矿产综合利用,2002,25(03):41-47
    [14]李和平,王昭云.锗在硫化锌焙烧矿及铅银渣中的赋存状态研究.云南冶金,2003,(S1):14-19
    [15]黄碧芳,王海峰,张元福.含锗锌氧粉氯化焙烧热力学分析.贵州工业大学学报(自然科学版),2001,26(05):19-28
    [16]周国军.从含锗锌精矿中用硫化物挥发法富集锗.中国有色冶金,1972,12(5): 52-56
    [17]刘华英.含锗渣浸出锗的研究.有色金属(冶炼部分),2005,49(06):42-48
    [18]陈世民,程东凯,李裕后等.高砷次氧化锌综合回收试验研究.有色矿冶,2001,(05):25-29
    [19]刘华英.含锗渣浸出锗的研究.有色金属(冶炼部分),2005,89(6):27-28
    [20]吕伯康,刘洋.锌渣浸出渣高温挥发富集铟锗试验研究.南方金属2007,88(3):7-9
    [21]梁杰,郑东升,韦丽萍.锗烟尘中氧化锌浸出过程动力学研究.贵州工业大学学报(自然科学版),2004,54(04):19-22
    [221 王洪江,罗恒.火湿‘法联合工艺处理锗蒸馏残渣·广东有色金属学报,2002,(S1):11-13
    [23]梁杰,郑东升,韦丽萍.锗烟尘中氧化锌浸出过程动力学研究.贵州工业大学学报(自然科学版),2004,48(04):5-8
    [24]肖靖泉,朱国才.锌冶炼烟尘中锗的富集及锌的回收.金属矿山,2004,(05):15-18
    [25]王洪江,罗恒.火湿法联合工艺处理锗蒸馏残渣.广东有色金属学报2002,(S1):14-18
    [26]徐兵.酸洗净化丹宁锗制取高品位锗精矿的技术探讨.中国金属通报2003,19(3):31-32
    [27]张凡,马启坤,刘韬.中浸渣的机械活化浸出工艺研究·云南冶金,2002,44(04):23-26
    [28]李琛;韩翌;黄凯等.韶冶真空炉富锗渣回收锗研究.矿冶工程,2003,25(06):18-22
    [29]肖靖泉,朱国才.锌冶炼烟尘中锗的富集及锌的回收.金属矿山,2004,44(05):31-33
    [30]蓝宗营.从真空炉渣中综合回收锗、铟、银.有色金属(冶炼部分),2003,48(05):24-26
    [31]吴成春.在密闭鼓风炉熔炼过程中锗铟的富集及综合回收.广东有色金 属学报,2002,(S1):15-18
    [32]刘中清,唐谟堂,鲁君乐等。湿法炼锌中性浸出过程中锗的行为研究.湿法冶金,2000,(02):15-19
    [33]张元福,陈家蓉,黄光裕等.含锗氧化锌烟尘的流态化浸出研究.稀有金属,1999,15(02):29-33
    [34]梁杰.锗烟尘浸出过程热力学分析.贵州工业大学学报(自然科学版),2004,-42(02):14-16
    [35]周敬元.用预中和法提高铟锗镓的浸出率.有色金属(冶炼部分),1980,54(06):7-9
    [36]刘宝棻.铀锗溶液中锗的沉淀和萃取锗的探索.铀矿冶,1985,44(01):14-18
    [37]杜红.高锗锌原料湿法冶炼的实践.中国有色冶金,2006,35(6):36-38
    [38]蔡江松,杨永斌,张亚平等.从锌浸渣中回收镓和锗的研究及实践.矿产保护与利用,2002,34(05):15-18
    [39]郑顺德,陈世民,林兴铭等.从锌渣浸渣中综合回收铟锗铅银的试验研究.有色冶炼,2001,47(02):14-16
    [40]张乐华,庄海兴,谷万成,黄伦光,芦乃珠.从煤灰的浸出浆体中萃取铀与从萃余浆体中沉淀锗.铀矿冶,1982,(03)
    [41]梁杰,胡福田,郑东升,衷水平.锗烟尘Zn-Ge分离新工艺研究.中国稀土学报,2003,(S1):14-17
    [42]梁杰.锗烟尘浸出过程热力学分析.贵州工业大学学报(自然科学版),2004,22(02):18-20
    [43]肖靖泉,朱国才.锌冶炼烟尘中锗的富集及锌的回收.金属矿山,2004,38(05):23-25
    [44]黄和明,赵立奎.高硅含锗物料中锗的提取工艺探讨.广东有.色金属学报,2002,(S1):23-26
    [45]阎江峰,王吉坤,杨大锦,陈加希.长周期电积锌工艺研究.有色金属(冶炼部分),2006,25(2):24-27
    [46]李衍林;王吉坤;杨大锦.高锗硫酸锌溶液深度净化工业实践.云南冶金,2006,44(4):2-4
    [47]陈阳. 湿法炼锌中铁的行为、 作用及控制.湖南有色金属 2006,58(3):22-24
    [48]毛祖永.湿法炼锌系统砷、锑、锗开路量的研究与实践.四川有色金属,2006,24(03):2-4
    [49]刘中清;潘方杰.硫化锌精矿还原浸出高浸渣中锗的研究.有色金属(冶炼部分),2004,57(4):23-24
    [50]邓志明.株冶锌浸出Ⅰ系统除锗的生产实践及措施.湖南有色金属,2003,18(05):31-33
    [51]李冰,王德全,杨宝刚等.中和沉淀法除锗的研究.有色矿冶,1999,42(05):19-22
    [52]李冰,王德全,肖碧君等.喷射氧化法除锗的研究.有色金属(冶炼部分),1999,(03):14-17
    [53]王斌.锗铁渣在含锗烟尘中性浸出时富集锗的研究·有色金属(冶炼部分),2002,44(04):6-9
    [54]何静,鲁君乐,刘中清等.热酸浸出-铁矾法炼锌工艺中富集锗的研究.广东有色金属学报,2002,(S1):9-11
    [55]刘中清,唐谟堂,范启明.热酸浸出-铁钒法炼锌工艺中锗的富集·矿冶工程,2000,54(01):14-18
    [56]许绍权,李素清.湿法炼锌工艺中稀散金属的回收.稀有金属,1981,18(04):18-21
    [57]黄和明,杭清涛.从含锗浸出渣中回收锗的工艺方法探讨.江苏冶金2000,29(02):3-4
    [58]邓孟俐谢冰.锌冶炼工艺过程中铟、锗的综合回收.稀有金属与硬质合金,2007,35(2):21-24
    [59]李光辉,董海刚,黄柱成.从湿法炼锌渣中回收镓和锗的研究(下)--锈蚀法从铁粉提取镓与锗.金属矿山,2004,44(8):69-72
    [60]刘宝棻;卢乃珠.癸基异羟肟酸和三脂肪胺萃取锗的研究.铀矿冶,1988,32(2):15-17
    [61]凌克奇,刘一宁.长链烷基羟肟酸离心萃锗试验.有色金属(冶炼部分),1998,45(05):14-16
    [62]李晓,张诠.萃取分离-苯芴酮分光光度法测定茶叶中锗的含量.广东微量元素科学,1998,48(03):22-24
    [63]胡福田,梁杰,郑东升.全萃法从锗烟尘浸出液中分离锗的研究.贵州工业大学学报(自然科学版),200 1,97(06):4-8
    [64]周强.从硫酸锌溶液中萃取锗.矿冶工程,2000,24(01):19-20
    [65]王福泉,赵康,邢维满等.烟道灰浸出液和模拟液萃取锗工艺研究.天津大学学报(自然科学与工程技术版),2001,78(06):1 5-18
    [66]肖华利.株冶从铟锗置换渣中提取锗的技术进步.稀有金属,2000,56(04):11-13
    [67]邢曼钰.微量锗的萃取光度测定.冶金分析,1983,41(03):12-15
    [68]温彬宇,张锦柱.微量锗分析测定的研究进展.云南冶金,2004,65(04):18-22
    [69]夏玉宇,张完白,李赛君.水中微量锗的测定.环境化学,1986,(06):15-19
    [70]吴太白.CPB-PVA混合离子表面活性剂-P.F多元络合物测定微量锗.江西冶金,1988,75(04):11-14
    [71]王业服.化探样品中微量锗的测定.冶金分析,1985,32(04):25-27
    [72]胡云楚.用苯芴酮萃取分光法测定微量锗.中南林学院学报,1994,19(02):15-18
    [73]蔡孟礼,黄桂芳,黄艳.高灵敏高选择测定微量锗的研究及其应用-Ge-SAF-CTMAB分光光度法.岩矿测试,1987,42(01):19-22
    [74]温彬宇,张锦柱.微量锗分析测定的研究进展.稀有金属,2004,16(02):25-28
    [75]李淑珍,田润苍,陈兴龙. “P204+YW 100分段协萃锗、镓”的工业试验及其述评.稀有金属,1988,21(03):23-25
    [76]周令治,田润苍,邹家炎.全萃法从锌浸出渣中回收铟、锗、镓的研究.稀有金属,1981,35(06):9-14
    [77]李世平.关于N235—酒石酸体系萃取分离锗锌的研究.稀有金属,1996,22(05):23-24
    [78]陈世明,李学全,黄华堂等.从硫酸锌溶液中萃取提锗.云南冶金,2002,65(03): 15-18
    [79]包福毅,方军,朱大和等.从硫化矿高酸浸出的硫酸锌溶液中萃取提锗全流程研究.中国工程科学,2001,21(12):23-24
    [80]王纪,郭朋成,马民理等.用萃取法从锌浸液中回收锗.有色金属,2000, 19(02):25-27
    [81]谢访友,王纪,马民理等.用萃取法从锌浸出液中回收锗.铀矿冶,2000,66(02): 10-12
    [82]陈青川,杨惠芬.锗的分析近况.稀有金属,1995,61(01):22-24
    [83]汤淑芳,周春山,蒋新宇.锗的氧肟酸HGS98萃取分离研究.稀有金属,2000,35(04):31-32
    [84]朱云,胡汉,苏云生.微生物从煤中浸出锗的基础热力学.云南冶金,2002,42(03):24-25
    [85]刘宝桑.铀锗溶液中锗的沉淀和萃取锗的探索.铀矿冶, 1985,22(01):19-23
    [86]王海北,林江顺,王春等.新型镓锗萃取剂G315的应用研究.广东有色金属学报,2005,35(01):21-24
    [87]陈兴龙,田润苍,李淑珍.萃取法回收锗的新工艺.中国有色冶金,1990,22(05):8-14
    [88]林琳,刘一真,韩华云等.正丁醇萃取石墨炉原子吸收法测定微量锗.光谱实验室,1994,23(03):12-15
    [89]刘军, 吕冬,武侠等.涂钨石墨管石墨炉原子吸收测定锗的方法.华南农业大学学报,1994,22(03):7-8
    [90]魏玉芝,宋全厚,刘立.石墨炉原子吸收法测定食品中的锗含量.食品与发酵工业,1994,27(03):15-18
    [91]王立,王广德,吴凤山.分光光度法测定土壤中微量锗·松辽学刊(自然科学版),2002,19(01):24-26
    [92]蒋红进.石墨炉原子吸收光谱法测定有机锗饮品中锗.理化检验.化学分册,2002,46(09):9-12
    [93]黄玉安,周方钦.磷酸三丁酯萃取火焰原子吸收法间接测定植物和煤灰中的痕量锗.分析科学学报,2004,33(04):22-24
    [94]马强,刘军,苏星光.石墨炉原子吸收光谱法测定中药中微量金属元素.吉林大学学报(理学版),2004,35(04):9-12
    [95]吴成春.在密闭鼓风炉熔炼过程中锗铟的富集及综合回收.广东有色金属学报,2002,(S1):31-32
    [96]余煜棉,莫胜钧.间接原子吸收光谱法对中药和食品中微量锗的测定.光 谱学与光谱分析,1 996,38(03):14-15
    [97]李德安,孙崇延,冯杰等. “东北水三七”,中化学元素的分析.广东微量元素科学,1994,24(03):1 8-19
    [98]金贞淑,赵晔,刘宗瑞等.蒙药“草布—25”中微量锗的测定.光谱实验室,1994,24(05):14-1 7
    [99]黄卫平.食品中微量元素锗的测定方法概述.广东微量元素科学,1998,23(11):9-12
    [100]鲍长利,连洪洲,陈博等.石墨炉原子吸收光谱法测定生物样品中微量锗理化检验.化学分册,2001,28(12):14-18
    [101]魏玉芝,宋全厚,刘立.石墨炉原子吸收法测定食品中的锗含量.食品与发酵工业,1994,62(03):24-25
    [102]马玉平,韩益青,阿依古丽.流动注射-氢化物-石墨炉原子吸收光谱法应用研究Ⅲ.痕量锗的测定.分析化学,1994,34(06):14-16
    [103]林琳,刘一真,韩华云等.正丁醇萃取石墨炉原子吸收法测定微量锗.光谱实验室,1994,37(03):13-15
    [104]唐宝英,杨秀环,詹星耀.石墨炉原子吸收法测定饮料和中成药中锗.光谱实验室,1994,39(06):9-12
    [105]董银根,苏志蔚,沈惠君等.火焰原子吸收光谱测定微量锗的研究.光谱学与光谱分析,1994,25(02):24-27
    [106]陈维辛,胡月茜,营佳等有机锗保健茶中锗的测定.中国生化药物杂志,1995,28(01):19-20
    [107]营佳,王听林.有机锗营养保健品中锗的测定.微量元素与健康研究,1995,47(02):26-28
    [108]李清湘,彭容秋.高砷含锗氧化锌烟尘处理工艺的研究.有色金属(冶炼部分),1990,24(06):3-4
    [109]肖华利.从湿法炼锌中回收锗的生产实践.稀有金属与硬质合金,1993,39(02):17-19
    [110]秦冰冰,蒋贵发,黄文景等.香菇中微量锗的胶束增溶分光光度法测定.分析测试学报,2002,28(02):3-7
    [111]王立,王广德,吴凤山.分光光度法测定土壤中微量锗.松辽学刊(自然科学版),2002,19(01):4-8
    [112]武兴德,苑秋妍.湿法消化荧光法测定蔬菜中的微量锗.光谱学与光谱分析,1998,26(01):18-19
    [113]钟惠民,袁瑾,李凤起.人参中锗的分光光度法测定.光谱实验室,2002,28(06):17-21
    [114]钟惠民,许泳吉,杨波,袁瑾.分光光度法测定银杏中有机锗.光谱实验室,2003,36(01):19-20
    [115]李国强,唐旭利.黄芩中锗的分光光度研究.光谱实验室,2002,29(05):17-18
    [116]陈莉华,杨建斌.极谱络合吸附波测定微量锗.吉首大学学报(自然科学版),1993,25(01):21-23
    [117]陈齐,戴春雷,王宇新.分光光度法测定富锗人参细胞中锗的含量.中国药科大学学报,1996,46(03):10-12
    [118]李晓,张诠.萃取分离-苯芴酮分光光度法测定茶叶中锗的含量.广东微量元素科学,1998,25(03):16-17
    [119]方益华,杨玉爱.微量元素锗的研究进展.广东微量元素科学,1998,27(01):16-18
    [120]仇必茂,陈瑞龄,潘教麦.新最色剂5’-硝基水杨基荧光酮快速测定锗.理化检验.化学分册,1996,19(02):21-22
    [121]卢巽珍.锗与茜素S-络合物吸附波的探讨及其在矿石中的应用.岩矿测试,1983,23(04):19-22
    [122]梁云生,许林,易宪武.萃取法从硫酸锌溶液中提取锗的探讨.稀有金属,1985,23(01):7-9
    [123]李样生,刘蓓,李璠等.二酰异羟肟酸萃取法从粉煤灰中提取锗.现代化工2000,56(08):14-18
    [124]谢访友,王纪,刘恒玉等.从株洲冶铁厂氧化锌浸出液中萃取分离锗.有色金属(冶炼部分),1997,44(03):23-25
    [125]时文中,朱国才.氯化铵氯化-二酰异羟肟酸萃取法从粉煤灰中提取锗的研究.河南大学学报:自然科学版,2007,37(2):147-151
    [126]王安亭,潘吉平.用仲辛醇萃取锗的研究.中国测试技术,2007,33(1):82-83
    [127]王静 母小明 周国强.仲辛醇萃取锗的研究.洛阳大学学报,2006, 21(4):75-77
    [128]陶慧林.水杨基荧光酮-石蜡相分光光度法测定植物中痕量锗.2006,25(2):140-142
    [129]梁云生 刘维理.锗在冶金分析中几个问题的探讨.冶金分析,2005,25(2):88-90
    [130]杨飞罗泽安黄文孝.从锗氯化蒸馏残液中回收有价金属的工艺.南方冶金学院学报,2003,24(5):95-97
    [131]肖华利 夏永生.溶剂萃取锗过程中的乳化及其消除.有色冶炼,1999,28(4):18-19
    [132]肖金娥范元俊.我厂铟锗回收工艺的改进.株冶科技,1999,27(2):4-7
    [133]董彦杰.N,N-二辛基甘氨酸萃取锗的机理.化工冶金.1997,18(3):266-268
    [134]肖华利.用B试剂反萃锗的工业试验.湖南冶金,1993,33(5):7-9
    [135]杨跃新,黄健斌.湿法炼锌中锗“烧板”及控制.湖南有色金属,2001,33(06):18-20
    [136]赵效如,何学斌.论锌电解阴、阳极间短、断路及阳极板质量与直流电单耗.有色金属(冶炼部分),1999,44(05):6-8
    [137]谭振华.锌电积过程烧板原因探讨.有色金属(冶炼部分),1996,45(06):16-18
    [138]梁力群.我厂锌电积大面积锑“烧板”及扭转.有色金属(冶炼部分),1997,44(06):14-18
    [139]阴代祥.锌电积过程中锗的危害及预防措施.有色冶炼, 1999,56(02):16-18
    [140]韩永刚.锌电解阳极腐蚀电解“烧板”关系探讨.有色金属设计,2003,(S1):25-28
    [141]付运康.锌电积电流效率低的原因与对策.有色金属(冶炼部分),2002,47(05):21-24
    [142]刘振亚.湿法炼锌发展中的几个问题.有色金属(冶炼部分),1979,18(03):5-7
    [143]陈新峰.锌电积过程中杂质行为研究.湖南有色金属,2006,22(2):24-25
    [144]Fritz Hilbert,朱水波.炼锌过程中锗作为副产品回收--锗循环液对电解锌生产的影响及其消除方法.中国有色冶金,1983,44(09):19-20
    [145]王李娟.凡口锌精矿氧压酸浸新工艺研究.矿产保护与利用,2006,18(2):42-44.
    [146]Arauco, H. and Doyle, F. M. Hydrometallurgical Reactor Design and Kinetics. Warrendale PA:The Metallurgical Society, Inc.,2002
    [147]Peters, E. Advances in Mineral Processing. Colorado:Society of Mining Engineers, Inc., Littleton,1986
    [148]Nys, T. d. and Terwinghe, F. Lead-Zinc'90, Proceedings of a World Symposium on Metallurgy and Environmental Control at the 119th TMS Annual Meeting. Warrendale, Pennsylvania:The Minerals, Metals and Materials Society (TMS),1990
    [149]Monhemius, A. J. Critical Reports on Applied Chemistry. London, England: Society of Chemical Industry and Blackwell Scientific Publications,1980
    [150]A.R. Burkin.Chemical Hydrometallurgy.London:Imperial College Press,2001
    [151]Haung, H. H. and Bernal, J. E. Electrochemistry in mineral and metal processing. Pennington, NJ:The Electrochemical Society Inc.,1984
    [152]Peters, E. Direct leaching of sulfides:chemistry and applications. Metallurgical Transactions B,1976,17(2):34-29
    [153]DONATI E.R., SAND W. Microbial processing of metal sulfides. New work:Layoisier pubication,2007
    [154]Arauco, H. and Doyle, F. M. "Hydrolysis and precipitation of iron during pressure leaching of zinc sulfide materials." Hydrometallurgical Reactor Design and Kinetics. The Metallurgical Society, Inc., Warrendale PA,2002, 135(4):187-207
    [155]Harvey, T. J., Yen, W. T., and Paterson, J. G. "A kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate." Minerals Engineering,1993,6(8-10):949-967
    [156]Dixon, D. G. The extractive metallurgy of zinc.2008. (Unpublished Work)
    [157]Chmielewski, T. and Charewicz, W. A. "The oxidation of iron(Ⅱ) in aqueous sulfuric acid under oxygen pressure." Hydrometallurgy,1984,12(1),21-30.
    [158]Dreisinger, D. B., Peters, E., Talaba, M., et al. Lead-Zinc'90; Proceedings of a World Symposium on Metallurgy and Environmental Control. Warrendale, Pa:The Minerals, Metals, and.Materials Society,2004
    [159]Harvey, T. J., Yen, W. T., and Paterson, J. G. "A kinetic investigation into the pressure oxidation of sphalerite from a complex concentrate." Minerals Engineering,1993,6(8-10):949-967.
    [160]有色金属提取冶金委员会.有色金属提取冶金手册(锌镉铅).北京:冶金工业出版社,1992
    [161]D. D. Harbuck, Gallium and Germanium Recovery from Domestic Sources, Rep. Invest. US Bur. Mines, no.9419,1992,26pp
    [162]James E Hoffmann. Advances in the extractive metallurgy of selected rare and precious metals.JOM,1991(4):18-23
    [163]Taili zhou, Xiang zhong, Longao Zhong. Recovering In,Ga and Ge from Zinc residues. JOM.1987(7):23-36.
    [164]蔡江松,杨永斌,张亚平,等.从锌浸渣中回收镓和锗的研究及实践.矿产保护与利用,2002(5):1996(5):34-36
    [165]李江娇,李洪桂.湿法炼锌浸出渣的处理.中南工业大学学报,1996(6);671-675
    [166]何少华,等.实验设计与数据处理.长沙:国防科技大学出版社,2002
    [167]王昭云,李和平.会泽铅锌矿的硫化锌精矿、焙烧矿、中浸渣、铅银渣物相及锗赋存状态研究.内部资料,云南省选冶新技术重点实验室.2001年10月30日
    [168]何少华,等.实验设计与数据处理.长沙:国防科技大学出版社,2002
    [169]中国科学院数学研究所统计组编.常用数理统计方法.北京:科学出版社.1979
    [170]梁英教.物理化学.北京:冶金工业出版社,1995
    [171]梅光贵,王德润,周敬元,王辉.湿法炼锌学.长沙:中南大学出版社.2001,106-107
    [172]Lochmann J, Pedlik M. Kinetic anomalies of dissolution of sphalerite in ferric solution.Hydrometallurgy,1995,37(1):89-96
    [173]Emsley, P., and Cowtan, K. Sect. D Biol. Crystallogr. Acta Crystallogr, 2004,60(4):126-2132
    [174]C. Torrisi. Leaching of fluorine bearing minerals from lead and zinc concentrates. Minerals Engineering,2001,14(12):1637-1648
    [175]Brian Hart, Mark Biesinger and Roger St.C. Smart. Improved statistical methods applied to surface chemistry in minerals flotation. Minerals Engineering,2006,19(6-8):790-798
    [176]G. L. Small, S. R. Grano, J. Ralston et al. Methods to increase fine mineral recovery in the Mount Isa Mines lead/zinc concentrator. Minerals Engineering,1997,10(1):1-15
    [177]S. R. Grano, N. W. Johnson and J. Ralston. Control of the solution interaction of metabisulphite and ethyl xanthate in the flotation of the Hilton ore of Mount Isa Mines Limited, Australia. Minerals Engineering, 1997,10(1):17-39
    [178]徐采栋.锌冶金物理化学.,上海:上海科学技术出版社,1979
    [179]傅崇说.有色冶金原理[M].北京:冶金工业出版社
    [180]徐志峰,王海北,邱定蕃.闪锌矿酸性氧化浸出过程的电化学行为.有色金属,2005,57(4):12-15
    [181]张磊,蒋开喜,王海北。黄铜矿酸性氧化浸出过程的电化学行为研究。有色金属(冶炼部分),2006,45(1):24-26
    [182]Holmes P.R.; Crundwell F.K.The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen:an electrochemical study-Experimental oxidation of pyrite.Geochimica et Cosmochimica Acta,2000,64(2):263-274
    [183]M. M. Aghamirian and W. T. Yen. A study of gold anodic behavior in the presence of various ions and sulfide minerals in cyanide solution. Minerals Engineering,2005,18(1):89-102
    [184]R. Cruz, R.M. Luna-Sanchez, G.T. Lapidus, I. Gonzalez and M. Monroy. An experimental strategy to determine galvanic interactions affecting the reactivity of sulfide mineral concentrates. Hydrometallurgy,2005, 78(3-4):198-208
    [185]Gomez C.l; Figueroa M.; Munoz J.; Blazquez M.L.; Ballester A. Electrochemistry of chalcopyrite. Hydrometallurgy,1996,13(1): 331.344(14)
    [186]Naoki Hiroyoshi, Shigeto Kuroiwa, Hajime Miki, Masami Tsunekawa and Tsuyoshi Hirajima. Synergistic effect of cupric and ferrous ions on active passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions. Hydrometallurgy,2004,74(1-2):103-116
    [187]黄怀国.湿法冶金中的电化学.黄金科学技术,2003,25(2):24-27
    [188]Jari Aromaa, Petteri Pesonen. Leaching mechanisms and kinetics of complex low-grade sulfidic copper ores. physicochemical problems of mineral processing,2007,41 (2):313-322
    [189]R.G. McDonald and D.M. Muir. Pressure oxidation leaching of chalcopyrite. Part Ⅰ. Comparison of high and low temperature reaction kinetics and products.. Hydrometallurgy,2007,86 (3-4):191-205
    [190]K.R. Buban, M.J. Collins, and I.M. Masters. Iron Control in Zinc Pressure Leach Processes. JOM.1999,51 (12):23-25
    [191]Emsley, P., and Cowtan, K. Sect. D Biol. Crystallogr. Acta Crystallogr, 2004,60(5-6):126-2132
    [192]C. Torrisi. Leaching of fluorine bearing minerals from lead and zinc concentrates. Minerals Engineering,2001,14(12):1637-1648
    [193]Brian Hart, Mark Biesinger and Roger St.C. Smart. Improved statistical methods applied to surface chemistry in minerals flotation. Minerals Engineering,2006,19(6-8):790-798
    [194]G. L. Small, S. R. Grano, J. Ralston and N. W. Johnson. Methods to increase fine mineral recovery in the Mount Isa Mines lead/zinc concentrator. Minerals Engineering,1997,10(1):1-15
    [195]S. R. Grano, N. W. Johnson and J. Ralston. Control of the solution interaction of metabisulphite and ethyl xanthate in the flotation of the Hilton ore of Mount Isa Mines Limited, Australia. Minerals Engineering, 1997,10(1):.17-39
    [196]Ladislav Kido, Matthias Muller and Christian Riissel. Redox reactions during temperature change in soda-lime-silicate melts doped with copper and iron or copper and manganese. Journal of Non-Crystalline Solids,2006, 352(28-29):4062-4068
    [197]Doris Ehrt. Redox behaviour of polyvalent ions in the ppm range. Journal of Non-Crystalline Solids,1996,196(25-26):304-308
    [198]Ke-qiang XIE, Xian-wan YANG, Ji-kun WANG, et al. Kinetic study on pressure leaching of high iron sphalerite concentrate. Transactions of Nonferrous Metals Society of China,2007,17(1):187-194
    [199]Shao-yuan Shi, Zhao-heng Fang and Jin-ren Ni. Comparative study on the bioleaching of zinc sulphides. Process Biochemistry,2006,41(2):438-446
    [200]Peng Peng, Huiqin Xie and Lizhu Lu. Leaching of a sphalerite concentrate with H2SO4-HNO3 solutions in the presence of C2C14. Hydrometallurgy, 2005,80(4):265-271
    [201]S. Aydogan, A. Aras and M. Canbazoglu. Dissolution kinetics of sphalerite in acidic ferric chloride leaching. Chemical Engineering Journal,2005, 114(1-3):67-72
    [202]Simon Piche and Faical Larachi. Dynamics of pH on the oxidation of HS-with iron (Ⅲ) chelates in anoxic conditions. Chemical Engineering Science, 2006,61(23):7673-7683
    [203]Simon Piche and Faical Larachi. Kinetic effect of electrolytes on the oligomerization of hydrosulfide into polysulfides and colloidal sulfur with iron (Ⅲ) trans-1,2-diaminocyclohexanetetraacetic acid in anoxic aqueous solutions. Chemical Engineering Science,2006,61(21):7171-7176
    [204]Emad A. Khudaish and Ashraf T. Al-Hinai. The catalytic activity of vanadium pentoxide film modified electrode on the electrochemical oxidation of hydrogen sulfide in alkaline solutions. Journal of Electroanalytical Chemistry,2006,587(1):108-114
    [205]R.G. Mc Donald and D.M. Muir. Pressure oxidation leaching of chalcopyrite. Part Ⅰ. Comparison of high and low temperature reaction kinetics and-products. Hydrometallurgy,2007,86(3-4):191-205
    [206]John Komlos, Ravi K. Kukkadapu, John M. Zachara et al. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides:Effect of redox cycling on Fe (Ⅲ) bioreduction. Water Research, In Press, Corrected Proof, Available online 27 April 2007
    [207]Barak Morgan and Ori Lahav. The effect of pH on the kinetics of spontaneous Fe (Ⅱ) oxidation by O2 in aqueous solution-basic principles and a simple heuristic description. Chemosphere,2007,127(3-4):458-467
    [208]Zbynek Vencelides, Ondra Sracek and Henning Prommer. Modelling of iron cycling and its impact on the electron balance at a petroleum hydrocarbon contaminated site in Hnevice, Czech Republic. Journal of Contaminant Hydrology,2007,89(3-4):270-294
    [209]Palmer C. Sweet and William F. Giannini. cadmium, gallium, and germanium resources in virginia. august 1995, http://www.dmme.virginia.gov/dmr3/dmrpdfs/vamin/vamin_vo141_no03.pdf
    [210]Jacob papise. Occurrence of germanium in topaz. Science,1928, 68(1763):350-351
    [211]肖仪武.会泽铅锌矿深部矿体稀贵金属的赋存状态.矿冶,2003,12(2):30-32
    [212]趟(山仑)山.锗的结晶化学特征及其地球化学行为.地质学报,1963,43(4):410-414
    [213]李和平,王昭云.锗在硫化锌焙烧矿及铅银渣中的赋存状态研究.云南冶金,2003,32(B10):175-180
    [214]杨光明.赤铁矿型锗矿石中锗的赋存状态研究. 地质与勘探,1980,24(7):35-40
    [215]阮鸿兴.东风岭铜矿石中银和锗的赋存状态研究.云南冶金,1982,28(2)24-26
    [216]傅贻谟.凡口铅锌矿选矿厂生产流程的工艺矿物学评价.矿冶,2002,11(4):32-38
    [217]谈树成.个旧锡-多金属矿床成矿系列研究.昆明:昆明理工大学,博士论文2004
    [218]周宗芳,沈曾明,李幼民.浏阳县七宝山黑土型矿床中有用元素赋存状态研究.湖南地质,1985,4(2):1-6
    [219]李发源.MVT铅锌矿床中分散元素赋存状态和富集机理研究--以四川天宝山、大梁子铅锌矿床为例.成都:成都理工大学,博士论文,2003
    [220]江望主.铁锰黑土矿多金属元素的综合回收.有色金属(冶炼部分),1982,56(5)12-15
    [221]楚之潮.新桥铜硫铁金矿床金银的赋存状态及分布规律初步研究.地质与勘探,1982,44(11):8-14
    [222]付绍洪,顾雪祥,王乾等。扬子地块西南缘铅锌矿床Cd、Ge与Ga富集规律初步研究.矿物岩石,地球化学通报,2004,23(02):7-7
    [223]付绍洪;扬子地块西南缘铅锌成矿作用与分散元素镉镓锗富集规律成都:成都理工大学,博士论文,2004
    [224]章明.云南会泽铅锌锗镉矿床地球化学特征及锗镉富集机制.成都:成都理工大学,博士论文,2003
    [225]胡瑞忠,苏文超,戚华文等.锗的地球化学、赋存状态和成矿作用.矿物岩石地球化学通报,2000,19(4):215-217
    [226]黄玉安.稀散元素的分离富集行为及其原子吸收光谱法测定的研究.湘潭:湘潭大学硕士学位论文,2003
    [227]Johan, Z. Indium and germanium in the structure of. sphalerite:an example of coupled substitution with copper. Mineral. Petrol.1988,39(2):211-229
    [228]M. Pimminger, M. Grasserbauer, E. Schroll and I. Cerny. Trace element distribution in sphalerites from Pb-Zn-ore occurrences of the Eastern Alps. Mineralogy and Petrology,2001,34(2):131-141
    [229]Jorge Silva Bettencourt, Caetano Juliani. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrosia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais, Brazil. Ore Geology Reviews,2006,28(5-6):201-234
    [230]David L. Huston, Soey H. Sie, Gary F. Suter, David R. Cooke, and Ross A. Both. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part Ⅰ, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part Ⅱ, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology; August 1995,90(5):1167-1196
    [231]Efremov V.A., Potolokov V.N., Nikolashin S.V. et al.Chemical Equilibria in Hydrolysis of Germanium Tetrachloride and Arsenic Trichloride, Inorganic Materials,2002,38(8):847-853
    [232]Harbuck, D. D. Increasing germanium extraction from hydrometallurgical zinc residues. Minerals and Metallurgical Processing,1993,10(1):1-4
    [233]Pokrovsky, O.S., Pokrovski, G.S., Schott, J. et al. Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide:X-ray absorption fine structure and macroscopic characterization, Geochimica et Cosmochimica. Acta, 2006,70(13):3325-3341
    [234]Dutrizac, J.E., Chen, T.T., Longton, R.J. The mineralogical deportment of germanium in the Clarksville electrolytic zinc plant of Savage Zinc Inc, Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1996,27(4):567-576
    [235]Langova, S., Riplova, J. and Vallova, S. Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution, Hydrometallurgy,2007,87(2):157-162
    [236]Pokrovsky, O.S., Pokrovski, G.S., Schott, J. and Galy, A. Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide:X-ray absorption fine structure and macroscopic characterization, Geochimica et Cosmochimica Acta,2006, 70(13):3325-3341
    [237]L. D. Schmidt, "The Engineering of Chemical Reactions," Oxford:Oxford press,1998
    [238]XIE Ke-qiang,YANG Xian-wan,WANG Ji-kun, YAN Jiang-feng,SHEN Qing-feng. Kinetic study on pressure leaching of high iron sphalerite concentrate. Trans. Nonferrous Met. Soc. China,2007,17(2):187-194
    [239]徐志峰,邱定蕃,王海北.铁闪锌矿氧压酸浸动力学.过程工程学报,2008,8(1):28-34
    [240]Fillippou D, Kondurn R, Demopoulos G P. A kinetic study on the acid pressure leaching of pyrrhotite. Hydrometallurgy,1997,47(1):1-18.
    [241]肖兴国.冶金反应工程学.沈阳:东北工学院出版社,1989
    [242]华一新.冶金动力学导论.北京:冶金工业出版社,2004
    [243]Sohn H Y, Wadsworth M E.提取冶金速率方程.郑蒂基,译.北京:冶金工业出 版社,1984
    [244]朱炳辰.化学反应工程(第三版),北京:化学工业出版社,2001
    [245]郭汉贤.应用化工动力学,北京:化学工业出版社,2003:30
    [246]毛在砂,陈家镛.化学反应工程学基础.北京:科学出版社,2005
    [247](美)史密斯.化工动力学,北京:化学工业出版社,1988
    [248](美)塞克利J.气-固反应.北京:中国建筑工业出版社,1986
    [249]O. Levenspiel, "Chemical Reaction Engineering," 3rd ed. Nework:John Wiley,1999
    [250]沈峰满,施月循.高炉内气固反应动力学.北京:冶金工业出版社,1996
    [251]H. Scott Folger, "Elements of Chemical Reaction Engineering," London:Prentice-Hall,1999
    [252]J.M. Smith, "Chemical Engineering Kinetics," 3rd ed., Toronto:McGraw Hill,1981
    [253]G. D. Ulrich, "A Guide to Chemical Engineering Reactor Design and Kinetics". Los Angeles:University of New Hampshire,1993
    [254]F. HABASHI. Extractive Metallurgy. New York:New York Science Publishers,1969
    [255]Habashi. Habashi, Kinetics of Metallurgical Processes (2nd ed.). Quebec, Canada:Metallurgies Extractive Quebec,1999
    [256]T. A. Fowler and F. K. Crundwell. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans:Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions..Appl Environ Microbiol,1999,65(12):5285-5292.
    [257]Z. Y. Lu, M. I. Jeffrey, Y. Zhu et al. Studies of pentlandite leaching in mixed oxygenated acidic chloride-sulfate solutions.. Hydrometallurgy, 2000,56(1):63-74
    [258]WU Bo-zeng, LAN Zhuo-yue, QIN Wen-qing, QIU Guan-zhou. Bioleaching of marmatite in high concentration of iron. Transactions of Nonferrous Metals Society of China,2002,24(6):24-28
    [259]J. E. Dutrizac and T. T. Chen. The effect of the elemental sulfur reaction product on the leaching of galena in ferric chloride media. Metallurgical and Materials Transactions B,1990,21 (6):935-943
    [260]Gretel Kristen Parker. Spectroelectrochemical investigation of chalcopyrite leaching. Toronto:Griffith University, doctoral dissertation,2005
    [261]Y.P.M. Driessens, T.A. Fowler and F.K. Crundwell. A comparison of the bacterial and chemical leaching of sphalerite at the same solution conditions. Process Metallurgy,1999,9(1):201-208
    [262]Christopher G. Weisener, Roger St. C. Smart and Andrea R. Gerson. A comparison of the kinetics and mechanism of acid leaching of sphalerite containing low and high concentrations of iron. International Journal of Mineral Processing,2004,74(1-4):239-249
    [263]J. Vinals, G. Fuentes, M.C. Hernandez et al. Transformation of sphalerite particles into copper sulfide particles by hydrothermal treatment with Cu(Ⅱ) ions. Hydrometallurgy,2004,75(1-4):177-187
    [264]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987
    [265]韩其勇.冶金过程动力学.北京:冶金工业出版社,1983
    [266]李启兴等.“化学反应工程学基础.数学模拟法”.北京:人民教育出版社,1981
    [267]LIANG Duoqiang, WANG Jikun, WANG Yunhua et al. Color of Oxidative Pressure Leaching Liquor:A Case of Sphalerite. SME, in review
    [268]Crundwell F K. Effect of iron impurity in zinc sulfide concentrates on the rate of dissolution. AIChE Journal,1998,34(7):1128-1134
    [269]S. Aydogan, A. Aras and M. Canbazoglu. Dissolution kinetics of sphalerite in acidic ferric chloride leaching. Chemical Engineering Journal,2005, 114(1-3):67-72
    [270]Hiroyoshi N. Miki H. Hirajima T. et al.. A model for ferrous-promoted chalcopyrite leaching. Hydrometallurgy,2000,57(1):31-38
    [271]Naoki Hiroyoshi, Hajime Miki, Tsuyoshi Hirajima et al. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy,2001,60()Volume 60, Issue 3, May 2001, Pages 185-197
    [272]R.G. McDonald and D.M. Muir, Pressure oxidation leaching of chalcopyrite. Part Ⅰ. Comparison of high and low temperature reaction kinetics and products. Hydrometallurgy,2007,86(3-4):191-205.
    [273]J. E. Dutrizac, The leaching of sulphide minerals in chloride media. Hydrometallurgy,1992,29(1-3):1-45.
    [274]Ke-qiang XIE, Xian-wan YANG, Ji-kun WANG, Jiang-feng YAN and Qing-feng SHEN, Kinetic study on pressure leaching of high iron sphalerite concentrate. Transactions of Nonferrous Metals Society of China,2007, 17(1):187-194.
    [275]Hu Yuehua, Qiu Guanzhou, Wang Jun and Wang Dianzuo, The effect of silver-bearing catalysts on bioleaching of chalcopyrite. Hydrometallurgy,2002,64(2):81-88.
    [276]J. Narciso, C. Garci'a-cordovilla and E. Louis, Pressure infiltration in a reactive system:Packed SiC particulates infiltrated by pure silver with dissolved oxygen. Acta Materialia,1997,45(12):5111-5118.
    [277]Milton E. Wadsworth and Ximeng Zhu, Kinetics of enhanced gold dissolution:activation by dissolved silver. International Journal of Mineral Processing,2003,72(1-4):301-310.
    [278]S. A. Bolorunduro, D. B. Dreisinger and G. Van Weert, Fundamental study of silver deportment during the pressure oxidation of sulphide ores and concentrate. Minerals Engineering,2003,16(8):695-708
    [279]Adrian M.L. Smith, Karen A. Hudson-Edwards, William E. Dubbin and Kate Wright, Dissolution of jarosite[KFe3(SO4)2(OH)6] at pH 2 and 8:Insights from batch experiments and computational modeling. Geochimica et Cosmochimica Acta,2006,70(3):608-621.
    [280]J. M. Combes, A. Manceau, G. Calas and J. Y. Bottero, Formation of ferric oxides from aqueous solutions:A polyhedral approach by X-ray absorption spectroscdpy:Ⅰ. Hydrolysis and formation of ferric gels. Geochimica et Cosmochimica Acta,1989,53(3):583-594.
    [281]Sai Wei Lani, Ken Chiang, Tuti Mariana Lim, Rose Amal and Gary K.-C. Low, Low. The role of ferric ion in the photochemical and photocatalytic oxidation of resorcinol. Journal of Catalysis,2005,234(2):292-299.
    [282]A. de Schepper. Liquid-liquid extraction of germanium by LIX 63, Hydrometallurgy,1976,1(3):291-298
    [283]V. I. Lakshmanan and G.J. Lawson. Extraction of cobalt by kelex 100 and kelex 100/versatic 911 mixtures, Journal of Inorganic and Nuclear Chemistry,1973,35(12):4285-4294,
    [284]Gupta, Bina; Mudhar, Niti, Extraction and Separation of Germanium Using Cyanex 301/Cyanex 923. It's Recovery from Transistor Waste, Separation Science and Technology,2006,41(3):549-572(24)
    [285]Hemingway, Richard W. Practical polyphenolics:from structure to molecular recognition and physiological action, by Edwin Haslam. Journal of Natural Products,2004,61 (11):1454-1455.
    [286]Arumugam Gnanamani, Ganesan Sekaran, Mary Babu. Removal of tannin from cross-linked and open chain polymeric tannin substrates using heme peroxidases of Phanerochaete chrysosporium. Bioprocess and Biosystems Engineering,2005,24(4):211-217
    [287]Nelida Gonzalez De Colmenares, Jose R Ramirez-Martinez, Jose O Aldana, et al. Analysis of proanthocyanidins in coffee pulp. Journal of the Science of Food and Agriculture,2007,65(2):157-162
    [288]Cruz-Hernandez M, Contreras-Esquivel JC, Lara F, Rodriguez R, et al. Isolation and evaluation of tannin-degrading fungal strains from the Mexican desert.Z Naturforsch.2005,60(11-12):844-8
    [289]Pokrovsky O.S., Pokrovski G.S., Schott J. Experimental study of germanium adsorption on goethite and germanium co-precipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization. Geochimica et Cosmochimica Acta,2006,70(13), pp:3325-3341
    [290]S. Musi and R. H. H. Wolf. Sorption of microamounts of gallium(Ⅲ) on Fe(OH)3and Fe2O3 precipitates. Microchimica Acta,2007,71(1-2):87-94
    [291]Kraal P., Jansen B., Klaas G.J. Nierop and Jacobus M. Verstraten. Copper complexation by tannic acid in aqueous solution. Chemosphere, 2006,65(11):2193-2198
    [292]Taddei P., Monti P., Freddi G., et al. Binding of Co(Ⅱ) and Cu(Ⅱ) cations to chemically modified wool fibres:an IR investigation. Journal of Molecular Structure,2003, 650(1-3):105-113
    [293]Cruz H. B., Jose Manuel Diaz-Cruz, Cristina Arino et al. Multivariate curve resolution of polarographic data applied to the study of the copper-binding ability of tannic acid. Analytica Chimica Acta,2000,424(2):203-209
    [294]Kim Y., Ogata T., and Nakano Y. Kinetic analysis of palladium(Ⅱ) adsorption process on condensed-tannins gel based on redox reaction models. Water Research,2007,41 (14):3043-3050
    [295]Tan Z and Chen S. Ion-Mediated Nucleic Acid Helix-Helix Interactions. Biophysical Journal,2006,91(2):518-536
    [296]V. D. Ignatiev. Sizes of atoms and ions and covalency of bonding in molecules and crystals.. Journal of Structural Chemistry,2005,46(4): 744-751
    [297]Rahim A. A., Rocca E. J., Steinmetz, M. J. et al. Mangrove tannins and their flavanoid monomers as alternative steel corrosion inhibitors in acidic medium. Corrosion Science,2006,49(2):402-417

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700