含砷难处理金矿细菌浸出基础理论及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
难处理金矿是我国急待开发利用的宝贵资源。本文以广西金牙含砷难处理
    金矿为研究对象,开展了难处理金矿细菌氧化的基础理论及工艺研究,其主要
    内容如下:
     系统研究了Fe~(2+)离子氧化与细菌生长的规律。考察了各种因素对细菌氧化
    Fe~(2+)离子的影响,建立了Fe~(2+)离子浓度变化响应细菌生长的动力学模型:
    该模型确立了Fe~(2+)离子浓度变化与细菌生长动力学参数μ_m、K、ρ_b~0/Y之间的
    关系。根据实验中Fe~(2+)离子浓度ρ随时间t变化,用计算机编程拟合,能快速
    确定细菌生长动力学参数;另一方面,通过改变细菌生长的动力学参数,可以
    从理论上预示细菌生长过程中Fe~(2+)离子的氧化规律。
     根据细菌浸出过程的特点,绘制了FeAsS-H_2O系、FeS_2-H_2O系电位-pH
    图。将此图与细菌活动电位-pH图进行有机结合,详细分析了细菌浸出过程中
    毒砂、黄铁矿溶解及产物生成的热力学。细菌生长环境正好处于矿物氧化溶解
    的范围,这表明细菌浸出毒砂、黄铁矿在热力学上是可能的。而毒砂、黄铁矿
    的浸出易于生成元素硫;一旦元素硫生成,由于其进一步氧化存在较高的势垒,
    如果没有细菌对其直接分解作用,三价铁离子不足以使它进一步氧化。此外,
    在毒砂、黄铁矿的浸出过程中,可能形成砷酸铁和黄钾铁矾两种沉淀产物。
     采用新型矿物粉末微电极及稳态极化、循环伏安现代电化学测试手段,研
    究了毒砂、黄铁矿的电化学行为。考察了毒砂、黄铁矿的溶解规律。比较了细
    菌、三价铁离子及浸出过程中表面产物层对毒砂、黄铁矿浸出的影响,细菌的
    作用降低了黄铁矿的静电位,改变了黄铁矿表面物理化学状态,加快了黄铁矿
    的氧化;而细菌对毒砂的作用相对较小。在含三价铁的介质中,黄铁矿具有较
    强的反应惰性。
     研究了黄铁矿、毒砂细菌浸出过程中主要参数(相关离子浓度、溶液pH
    值、电位、细菌浓度)变化的不同特点。黄铁矿细菌浸出过程中,溶液pH值
    显著下降,细菌大量吸附在黄铁矿表面,对于毒砂,溶液pH值下降平缓,表
    面吸附细菌较少。采用现代微区检测技术(SEM、EDS、XRD)详细分析了
    
    
     中币大学瞩士学位论文 中文拘要
     黄铁矿、毒砂浸出过程中表面性质的变化及最终产物的组成。黄铁矿表面形貌
     呈现明显的选择性腐蚀特征,且硫优先溶出,浸出后主要产物为黄钾铁矾类物
     质;而毒砂的腐蚀则在整个表面发生,表现出均匀腐蚀的特点,砷优先溶出,
     浸出产物为元素硫、砷酸铁和黄钾铁矾。黄铁矿、毒砂细菌浸出过程特性的研
     究发现黄铁矿、毒砂的氧化分别以细菌的直接作用和间接作用为主。这澄清了
     许多文献报道的有关矿物细菌浸出的直接机理和间接机理的混乱之争。在此基
     础上,通过建立黄铁矿、毒砂细菌浸出的能带模型,进一步阐明了细菌浸出的
     机理。毒砂的腐蚀与三价铁离子产生的空穴注入价带有关:而黄铁矿的腐蚀则
     主要通过吸附在表面的细菌将山溶解氧产生的空穴注入价带引起。
     自行设计并组装了实验室规模的细菌半连续浸出新型流态化床反应器。研
     究了广西金牙含砷浮选金矿细菌预氧化脱砷-氰化工艺,获得了理想的结果。
     在叫值 2乃、三价铁离子浓度 6.sg/L、矿浆浓度 10%、浸出时间 4天的条件
     下,批式流态化细菌浸出的脱砷率为82.5%,后续金的氰化浸出率为90%。用
     3个串联的流态化生物反应器对金精矿进行半连续试验,浸出过程中各槽参数
     表现了较好的稳定性,56天内砷的脱除率为 gi%,浸出 3一天也可脱除掉 82%
     的砷,后续的氰化浸金实验中金的浸出率分别可以达到 92%和 87.5%。研究结
     果可为含砷难处理金矿细菌浸出的工业实践提供重要依据。
Fundamental and technological studies on bioleaching of arsenic-bearing refractory gold concentrates by 77 ferrooxidans were carried on, with GuanXi JinYa gold concentrates being the developed objective of this research. The main subjects in this dissertation are as follow抯:
    
     The relationship between the oxidation of ferrous ion and 77 ferrooxidans growth has been studied systematically. Factors affecting biooxidation of ferrous ion were discussed, a response model for bacterial growth in the substrate containing ferrous ion was also built. It can be expressed as,
     p梉(p~IY)+p01 + K _______________
    
    
    
    p0梉(p~/Y)+p0] (p~/Y)+p0 p{p0梉(p~/Y)+p0]}
    
    The model shows the variation of ferrous ions concentration with the kinetics parameters of bacterial growth such as Li m ,K and P b/1~ Via the computer simulation to the concentration of ferrous ion during Tferrooxidans growth, the kinetic parameters of the bacterial growth were determined. The model, furthermore, can predict the influences of these parameters on the biooxidation of ferrous ion, with changing the parameter values
    
     According to the aspect of bioleaching process, the potential ?pH diagrams for arsenopyrite-water and pyrite-water systems were drawn, with which was combined the potential-pH diagram for TJ鑢rooxidans activity. A thermodynamic behavior for the bioleaching of pyrite and arsenopyrite has been examined. Tferrooxidans is active in the regions for dissolving pyrite and arsenopyrite, so pyrite and arsenopyrite is possible to be bioleached thermodynamically. It is easy to form element sulfur during the leaching of pyrite and arsenopyrite. If there is no direct action of Tferrooxidans on the formed sulfur, it is impossible for ferric ion to dissolve the element sulfur because of existing a high-energy obstacle in the further
    
    
    VI
    
    
    
    continues way, by which a process for biooxidation ?cyanidation of Guangxi Jinya refractory gold arsenical concentrate was studied. An arsenic extraction rate reaches 82.5% after 4-day batch biooxidation of the concentrate under the optimized condition of pH 2.0, ferric ion concentration 6.5 gIL and pulp density 10%. And leaching rate of gold in the following gold cyanidation is over 90%. The parameters of three series fluid-bed reactors exhibit stability during the semi-continues bioleaching of the concentrate. Arsenic in the concentrate can be got rid of 91% after 6-day leaching. Even after 4 days, 82% of arsenic extraction rate was still obtained. The recovery rates of gold are 92% and 87.5% respectively in cyaniding the above bioleached sludges. The results will provide a base for further commercial production of gold development.
引文
1.A.R. Colmer, M. E. Hinkle, The role of microorganisms in acid mining drainage, a preliminary report, Science, 1947, (106): 253-256
    2.G.I. Karavako, G. Rossi, A. D. Agate et al (Eds.), Biogeotechnology of Metals Manual, Moscow, 1988:13
    3.L. Brieriey, Bacterial oxidation, Engineering and Mining Journal. 1995,196 (5):42-44
    4.P.C. VanAswegen et al, Developments and innovations in bacterial oxidation of refractory ores, Minerals and Metallurgical processing, 1991,8 (4): 188-191
    5.A.R.G. Brown, W. Irvine, and P. A. R. Odd, Bioleaching-Wiluna operating experience, Biomine, 1994,9
    6.P.C. 范.阿斯韦根,难浸金矿的生物氧化——Genmin的经验,国外金属矿选矿,1996,1:40-47
    7.W. Slabbert, D. W. Dew, M. W. Godfrey, D. M. Miller and P. C. VanAswegen, Commission of a BIOX. Module at Sao Bento Mineracal, Randol gold forum, Vancouver, 1992
    8.中国科学院黄金科技工作领导小组办公室,中国金矿研究新进展(黄金提取与开发)第三卷,冶金工业出版社,1996
    9.李培铮,吴延之编著,黄金生产加工技术大全,中南工业大学出版社,1995
    10.刘汉钊,难处理金矿石难浸的原因及预处理方法,黄金,1997,18(9):44-47
    11.黄孔宣,国外难处理金矿石处理工艺评述,国外黄金参考,1992,(3):1-7
    12.任炽刚,周世俊等,刚扫描质子微探针研究包裹金和微细粒金的赋存状态,核技术,1993,16(8):479-482
    13.张振儒,扬思学等,某些矿物中次显微金及品格金的研究,地质找矿论丛,1987,2(4):70-76
    14.吴敏杰,白春根,碳质金矿中碳质物的物质组成及其与金的相互作用,黄金,1994,15(6):29-35
    15.刘建军,梁经冬,王忠梅,某含多金属硫化物金精矿浸金工艺研究,黄金,1992,13(11):28-31
    16.J. J. Robinson, The extraction of gold from sulphidic concentrates by roasting and cyanidation. Journal of South African I. M. M., 1988(8).
    17.J.G. Dunn and A. C. Chamberlain, The recovery of gold from refractory arsenopyrite concentrates by pyrolysis oxidation, Minerals Engineering, 1997,10 (9): 919-928
    
    
    18.夏光祥著,难浸金矿提金新技术,冶金工业出版社,1995
    19.肖松文,梁经冬,难浸金矿焙烧处理的新进展,黄金,1993,14(6)
    20. K. S. Fraser, R.H Walton and. J. A. Wells, Processing of refractory gold ores, Mineral Engineering, 1991(4):1029-1041
    21. Y.G. Papangelakis and G. P. Demopoulos, Acid pressure oxidation of arsenopyrite: Part 1, Reaction chemistry, Canadian Metallurgical Quarterly, 1990,29 (1): 1-12
    22. T. Koslides and V. S. T. Ciminelli, Pressure oxidation of arsenopyrite and pyrite in alkaline solutions, Hydrometallurgy, 1992, (30):87-106
    23. Y.G. Papangelakis and G. P. Demopoulos, Acid pressure oxidation of arsenopyrite part Ⅱ, reaction kinetics, Canadian Metallurgical Quarterly, 1990,29(1): 13-20.
    24. G. Van weert., K. J Fair and J. C. Schneider, Prochems Nitrox process, CIM Bulletin, 1986, 79 (895):84-85
    25. I. J. Corrans et al., US. Pat. 5232491,1993
    26.夏光祥,涂桃枝,催化氧化酸浸法预处理团结沟金精矿的扩大实验研究,黄金,1989,10(12):33-37
    27. Chem. Freeport, US. Pat. 4738718,1988
    28.夏光祥,石伟,吴林荣等,碱性催化氧化含砷难处理金矿石的理论及工艺研究,黄金,1996,17(2):27-33
    29.石伟,夏光祥,涂桃枝,方兆珩,氨性催化氧化—氰化法处理含砷难漫金矿的研究,化工冶金,1996,(1)
    30.赵天从,龙炳清等,湿法常压催化分解毒砂和黄铁矿的研究,黄金,1987,8(2):37-40
    31. Brevis, Tony, Metal extraction by bacterial oxidation, Mining Magazine, 1995,173 (4):5pp
    32. D.T. Lacey and F. Lawson, Kinetics of the liquid-Phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans, Biotechnology and Bioengineering, 1970, 7: 29-50
    33. S. Ubalsini, F. Veglio, C. Abbruzzese, Bioleachig of sulfide for recovery of gold, Ind. Min., 1998, 19 (3-4): 26-29
    34. Y. Wei, K. Zhong, E.V. Adamov and R. W. Smith, Semi-continuous biooxidation of the Chongyang refractory gold ore, Minerals Engineering, 1997, (10): 577-583.
    
    
    35.C. Komnitsas, F. D. Pooley, Optimization of the bacterial oxidation of an arsenical gold sulphide concentrate from Olympias, Greece, Minerals Engineering, 1991, 4 (12): 1297-1303
    36.C. Abbruzzese, S. Ubaldioni, F. Veglio, L. Toro, Preparatory bioleaching to the conventional cyanidation of arsenical gold ores, Minerals Engineering, 1994, 7 (1): 49-60
    37.R.N. Sankaran, R. S. Yadava, D. B. Sen, S. C. Kulshrestha, K. B. Nohanty, J. Singh, Leachable U and AU in an Indian schistose quartzite, Hydrometallurgy, 1996, 43 (1-3): 387-389
    38.S.N. Groudev, I. I. Spasova, I. M. Ivanov, Two-stage microbial Ieaching of a refractory gold-bearing pyrite ore, Minerals Engineering, 1996, 9 (7): 707-713
    39.P. A. Spencer, J. R. Budden, J. Barrett, Pilot-plant bio-oxidation of gold-bearing arsenopyrite concentrates, Transactions of the Institution of Mining &Metallurgy, 1991, (100): 21-24
    40.A. Bailester, F. Gonzalez, M.L. Blazquez and J. L. Mier, The influence of various ions in the bioleaching of metal sulphides, Hydrometallurgy, 1990, (23): 221-235.
    41.A. Ballester, F. Gonzalez, M.L. Biazquez and J. L. Mier, The use of catalytic ions in bioleaching, Hydrometallurgy, 1992, (29): 145-160.
    42.Hiroshi Nakazawa, Hisashi Fujisawa, Hayato Sato, Effect of activated carbon on the bioleaching of chaicopyrite concentrate, Int. J. Miner. Process, 1998, 55 (2): 87-94
    43.N. Igliesias, I. Palencia, E Carranza, Removal of the refractoriness of a gold bearing pyrite-arsenopyrite ore by ferric sulfate leaching at low concentration, EPD Congress, 1993:99-115
    44.F. Carranza et al, Kinetic improvement of high grade sulfides bioleaching by effect separation, (Paper presented at the Ⅸ International Symposium of Biohydrometallurgy, Troia, Portugal, 1991, (9)
    45.K. A. Natarajan, Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans, Biotechnology and Bioengineering, 1992, (39): 907-913.
    46.K. A. Natarajan, Bioleaching of sulphides under applied potential, Hydrometallurgy, 1992, (29): 161-172.
    47.N. A. Kinsel, W. W. Umbreit, Method for electrolysis of culture medium to increase growth of the sulfur-oxidizing iron bacterium Ferrobacillus suifooxidans, J. Bacterial, 1964, (87): 1243-1246
    
    
    48.S.B. Yunker, J. M. Radovich, Enhancement of growth and ferrous iron oxidation rates of T. ferooxidans by electrochemical reduction of ferric iron. Biotechnol. Bioeng, 1986, (28):1867-1875
    49.M. Taya, H. Shiraishi, T. Katsunishi, S. Tone, Enhanced cell density culture of Thiobacillus ferrooxidans in membrane-type bioreactor with electrolytic reduction unit for ferric ion, J. Chem. Eng., 1991, (24): 291-296
    50.Robete C. Blake Ⅱ, Gary T. Howard, and Stephen Mcginness, Enhanced yields of ironoxidizing bacteria by in situ electrochemical reduction of soluble iron in the growth medium, Applied and Environmental Microbiology, 1994, (60): 2704-2710
    51.Li Ximing, Ko Jiajun, Men Xinhui et al. Chlorine leaching of gold-bearing sulphide concentrate and its calcine, Hydrometallurgy, 1992, (29): 205-215
    52.Beattle M., New Arseno refractory process of interest to gold miners, The Northern Miner, 1988,1, (11)
    53.V. I.Lakshmannan, D. W. Bosch, A. M.Childs, Treatment of refractory gold ores, 14~(th) Annual Hydrometallurgical Meeting, CIM. Timmins. Ont. Oct. 1984
    54.M.M. Antonijevic, M. Dimitrijievic and Z. Jankovic, Investigation of pyrite oxidation by potassium, Hydrometallurgy, 1993, (32): 61-72.
    55.I. J. Corrans, J. E. Angove, Ultra fine milling for the recovery of refractory gold, Minerals Engineering Proceedings of the First International Conference-Minerals Engineering' 91, 1991, 4 (7-11): 763-776
    56.N. Iglesias and F. Carranza, Treatment of a gold bearing arsenopyrite concentrate by ferric sulphate leaching, Minerals Engineering, 1996, 9 (3): 317-330.
    57.A. W. Breed, S. T. L. Harrison and G. S. Hansford, Technical note: A preliminary investigation of the ferric leaching of a pyrite/arsenopyrite flotation concentrate. Minerals Engineering, 1997, 10 (9): 1023-1030
    58.L. M. Abrantes, M. C. Costa, Electro-oxidation as a pre-treatrnent for gold recovery, Hydrometallurgy, 1996, (40): 99-110
    59.P.A. Spencer, J. R. Budden, M. K. Rhodes, Bacterial oxidation technology-A viable process for refractory gold ores, Minerals Engineering Proceedings of the First International Conference-Minerals Engineering '91, 1991, 4 (7-11): 1403-1055
    60.A.K. Haines, Factors influencing the choice of technology for the recovery of gold from refractory arsenical ores, Gold 100, Johanesburg, 1986
    
    
    61.M. Taxiarchou, K. Adam, A. Kontopouios, Bacterial oxidation condition for gold extraction from Olympias refractory arsenical pyrite concentrate, Hydrometallurgy, 1994, (36): 169-185
    62.A. P. Mehta and L. E. Murr, Fundamental studies of the contribution of Galvanic interaction to acid-bacterial leaching of mixed metal sulfides, Hydrometallurgy, 1983, (9):235-256
    63.Philippa F. Norman, Carel P. Snyman, The biological and chemical leaching of an auriferous pyrite/arsenopyrite flotation concentrate: a microscope examination, Geomicrobiology Journal, 1988, (6): 1-10
    64.J. Wells, A generic study of the capital and operating costs for the recovery of precious metals from refractory ores, CMP Conference, 1989,1
    65.R.W. Smith, M. Misra and J. Dubel, Mineral bio-processing and the future, Minerals Engineering, 1991, (4): 1127-1141.
    66.M. A. Jordan, S. McGinness and C. V. Phillips, Acidophilic bacteria-their potential mining and environmental applications, Minerals Engineering, 1996, 9 (2) :169-181
    67.R.W. Lawrence, Biotechnology in the mining industry: fundamental and applied aspects of processes for metal extraction, Adv. Bioprocess Eng. 1998, (2): 229-250
    68.C. Gomez, M. L. Biazquez and A. Ballester, Bioleaching of a Spanish complex sulphide ore bulk concentrate, Minerals Engineering, 1999, 12 (1): 93-106
    69.浸矿技术编委会,浸矿技术,北京:原子能出版社,1994:420~427
    70.D.S. Holmes, Biorecovery of metals from mining, industrial and urban wastes, In: A. M. Martin (Eds.), Bioconversion wastes
    71.A.D. Agate, World journal of microbiology and biotechnology, 1996, 12:487-495
    72. 冶金工业部北京矿冶研究院等译,细菌在采矿工程中的应用,北京:冶金工业出版社,1972
    73. 王文潜,邢学智,能浸多矿细菌预处理在北美的研究开发,黄金科学技术,1995,(6)
    74. 聂树人,索有瑞编著,难选冶金矿石浸金,地质出版社,1997
    75.D.W. Dew, E. N. Lawson, J. L. Broadhurst, The BIOX process for biooxidation of goldbearing ores or concentrates, in Biomining: Theory, Microbes and Industrial Processes (ed. D. E. Rawlings), 1997: 45-80
    76.D. E. Rawlings, Mesophilic, autrophilic bioleaching bacterial: description, Physiology and ore, Biomining, 1997:229-245
    
    
    77.D. R. Tipre, S. B. Vora, S. R. Dave, Improved metal extraction by selected T.f. consortium from polymetallic concentrate, J. Sci. Ind. Res., 1998, 57 (10&11): 805-808
    78.裘荣庆等,含金硫化矿石的细菌氧化预处理,黄金科学技术,1994 (2): 34-41
    79.印明善,马秀贞,中度嗜热细菌处理难冶含砷黄铁矿金精矿进展,黄金科技动态,1991(3):23-24
    80.张冬艳 氧化亚铁硫杆菌C-1#菌株的公离及特性研究,内蒙古大学学报,1995(4):1-5
    81.邱冠周,柳建设等,氧化亚铁硫杆菌生长过程铁的行为,中南工业大学学报,1998,29 (3):226-228
    82.王金祥,我国难浸金矿细菌氧化技术开发研究现状,湿法冶金,1997 (1): 1-6
    83.E. Gomez, M.L. Biazquez, A. Ballester and F. Gonzalez, Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria. Minerals Engineering, 1996, 9 (9): 985-999
    84.F. Torres, M. L. Blazquez, et al., The bioleaching of different sulfide concentrates using thermophilic bacteria, Metallurgical and Materials Transactions B, 1995, 26B: 455-464
    85.童雄 编著,微生物浸矿的理论与实践,冶金工业出版社,1997
    86.J.M. Casas, J, Martine, L. Moreno, T. Vargas, Bioleaching Model of a copper-sulfide ore bed in heap and dump configurations. Metall. Mater. Trans. B, 1998, 29B(4): 899-909
    87.J.A. Brierley, Heap leaching of gold-bearing deposits: theory and operational description, in Biomining, D. E. Rawlings (Eds.), 1997: 103-115
    88.S. N. Groudev, I. I. Spasova, and I. M. Ivanov, Microbial leaching of gold from a refractory pyrite ore, 6~(th) Balkan Conference on Mineral Processing, 1995, (9): 273-277
    89.R. W. Lawrence, Biotreatment of gold leaching, In: Microbial Mineral Recovery. L. Henry Ehrlich, L.Corale, Brierley (Eds.). New York: McGraw-Hill Publishing Company. 1990:127-149
    90.T. P. McNulty, D. L. Thompson, Economics of bioleaching, In: Microbial Mineral Recovery. L. Henry Ehrlich, L.Corale, Brierley (Eds.). New York: McGraw-Hill Publishing Company. 1990:171-183
    91.S.R. Hutchins, J. A. Brierley, and C. L. Brierley, Microbial pretreatment of refractory sulfide and carbonaceous ores improves the economics of gold recovery, Mining Engineering, 1988, (4): 249-257
    
    
    92.T. Hayward, D. M. Satalic, P. A. Spencer, Engineering , Equipment and materials: Developments in the design of a bacterial oxidation reactor, Minerals Engineering, 1997, 10(10): 1047-1055
    93.R M. Kubera, J. Y. Oldshue, Advanced Impeller technologies to match mixing performance to process needs, Randol Gold Forum, Vancouver, 1992
    94.E.N. Lawson, Environmental influences on BIOX, SAIMM Colloquium, Johannesburg, 1991, (3)
    95.G.M. Fraser, Mixing and oxygen transfer in mineral bioleaching, Biomine 93, 1993,5
    96.T. Oolman, Bioreactor design and scaleup, Applications in minerals bioleaching, International Biohydrometallurgy Symposium, Jackson Hole, 1993, (9)
    97.L. P. H. Greenhalgh, P. Riley, W. Baguley, Development of the Velmix Bio-reactor, Randol Gold Forum, Squaw Valley, 1990, (9)
    98.J. Barrett, M. N. Hughes, Mechanism of the bacterial oxidation of arsenopyrite-pyrite mixtures: the identification of plant control, Minerals Engineering, 1993, 6 (8-10):969-975
    99.P.R. Holmes, T. A. Fowler, F. K. Crundwell, The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans: An electrochemical study, J. Electrochem. Soc, 1999, 146 (8): 2906-2912
    100.Soumitro Nagpal, A structured model for Thiobacillus ferrooxidans growth on ferrous iron, Biotechnology and Bioengineering, 1997, (53): 310-319
    101.M. Nemati, C. Webb, A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans, Biotechnology and Bioengineering, 1997, (53): 478-486
    102.N. May, D. E. Ralph, and G. S. Hansford, Dynamic redox potential measurement for determining the ferric leaching kinetics of pyrite, Minerals Engineering, 1997,10 (11): 1279-1290.
    103.Preston Devasia, K. A. Natarajan, D. N. Sathyanarayana, and G. Ramananda Rao, Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on Mineral surfaces, Applied and Environmental Microbiology, 1993, (59): 4051-4055
    104.Goutam Karan, K. A. Natarajian,J. M. Modak, Estimation of mineral-adhered biomass of Thiobacillus ferrooxidans by protein assay—some problems and remedies, Hydrometallurgy, 1996, (42): 169-175
    105.B. Escobar, E. Jedlicke, J. Wiertz, T. Vargas, A method for evaluating the proportion of free and attached bacteria in the bioleaching of chalcopyrite with Thiobacillus ferrooxidans, Hydrometallurgy, 1996, (40): 1-10
    
    
    106.R Devasia, K. A. Natarajan and G. R. Rao, Role of bacterial growth conditions and adhesion in the bioleaching of chalcopyrite by Thiobaciilus ferrooxidans, Minerals and Metallurgical Processing, 1996, (5): 82-86.
    107.Robert C. Blake Ⅱ, Elizabeth A. Shute, and Gary T. Howard, Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxiclans in the presence of iron, pyrite, and sulfur, Applied and Environmental Microbiology, 1994, (60): 3349-3357.
    108.C. C. Bartels, G. Chatzitheodorou, M. Rodriguez-Leiva, and H. Tributsch, Novel technique for investigation and quantification of bacterial leaching by Thiobacillus ferrooxidans, Biotechnology and Bioengineering, 1989, (33): 1196-1204.
    109.C. Mustin, Ph. de Donato, and J. Berthelin, Quantification of the intragranular porosity formed in bioleaching of pyrite by Thiobacillus ferrooxidans, Biotechnology and Bioengineering, 1992, (39): 1121-1127
    110.F. Crundwell, The formation of biofilms of iron-oxidizing bacteria on pyrite, Minerals Engineering, 1996, 9 (10): 1081-1089
    111.C. Gomez, E. Roman, M. L. Blazquwz and A. Ballester, SEM and AES studies of chalcopyrite bioleaching in the presence of catalytic ions, Minerals Engineering, 1997, 10 (8): 825-835
    112.G. S.Hansford, Studies on the mechanism and kinetics of bioleaching, Fizykochem. Probl. Mineralurgii., 1998, (32): 281-291
    113.F. C. Boogerd, C. Vanden Beemd, T. Stoelwinder, P. Bos, and J. G. Kuegnen, Biotechnol. Bioeng., 1991, (38): 109
    114.M. P. Silverman and H. L. Ehrlich, Adv. Appl. Microbioi., 1964, (6): 181
    115.R. T. Eapejo, P. Ruiz, Biotechnol. Bioeng., 1987, (30): 586
    116.M. Boon, J. J. Heijnen, Chemical oxidation kinetics of pyrite in bioleaching processes, Hydrometailurgy, 1998, (48): 27-41
    117.M. Boon, G. S. Hansford, J. J. Heijnen, The role of bacterial ferrous iron oxidation in the bioleaching of pyrite, In: T. Vargas, C.A. Jerez, I. V. Wierta, H. Toledo (Eds.), Biohydrometallurgical Processing Vol. I, University of Chile, Santiago, 1996, 153-163
    118.L. K. Bailey, E. Peters, Decomposition of pyrite in acids by pressure leaching and anodization: the case for an electrochemical mechanism, Can. Met. Quart, 1976, (15):333-344
    
    
    119.L. M. Chia, et al., Electrochemical aspects of pyrite oxidation by T. ferrooxidans during the leaching of a Canadian Uranium ore, Joseph Sally (Eds.), Biohydrometallurgy, Jackson Hole, Wyoming, 1989, 8 (13-18): 35-48
    120.K. K. Mishra, K. Osseo Asare, Aspects of the interracial electrochemistry of semiconductor pyrite, J. Electrochem. Soc., 1988, 135 (10): 2502-2509
    121.I. Paleccia, R. Y. Wan, and J. D. Miler, The electrochemical behavior of a semiconducting nature pyrite in the presence of bacteria, Metallurgical Transaction B, 1991, 22B: 765-774
    122.张永柱,难处理金矿细菌氧化-氰化浸金新工艺及基础理论研究,中南工业大学博士学位论文,1992
    123.J. B. Hiskey, V. Sanchez, An electrochemical study of the surface oxidation of arsenopyrite in alkaline media, TMS-AIME, Warrendale PA, 1988:59-75
    124.M. J. V. Beattie, G. W. Poline, A study of the surface oxidation of arsenopyrite using cyclic voltammetry, Int. J. Miner. Process., 1987, (20): 87-108
    125.V. M. Sanchez, J. B. Hiskey, Electrochemical behavior of arsenopyrite in alkaline media, Miner. Metall. Process, 1991 (2): 1-6
    126.X. H. Wang, E. Ahlberg, K. S. E. Forssberg, Electrochemical study of surface oxidation and collectorless flotation of arsenopyrite, J. Appl. Electrochem., 1992, 22(11): 1095-1103
    127.H. K. Lin, Z. M. Zheng., Electrochemical oxidation of arsenopyrite in chloride solutions, Hydrometallurgy, 1996, (42): 411-424
    128.Isabel Lazaro, Roel Cruz, Ignacio Gonzalez, Marcos Monroy, Electrochemical oxidation of arsenopyrite in acidic media, Int. J. Miner. Process. 1997, (50): 63-75
    129.Reel Cruz, Isabel Lazaro, Juana M. Rodriguez, Marcos Monroy, Ignacio Gonzalez, Surface characterization of arsenopyrite in acidic medium by triangular scan voltammetry on carbon paste electrodes, Hydrometailurgy, 1997, (46): 303-319
    130.L. G. M. Beas Becking,, I. R., Kaplan, and D. Moore., Limits of natural environment in terms of pH and oxidation-reduction potentials, J. Geol., 1968 (68): 243-284
    131.李力,金牙金矿地质特征及金的赋存状态的研究,沈阳黄金学院学报,1996,15(4):301-306
    132.王军,钟康年,细菌对硫化矿可浮性影响的研究,国外金属矿选矿,1996,5
    
    
    133.范秀容,李广武,沈萍编,微生物学实验,高等教育出版社,1989
    134.舒余德,陈白珍编著,冶金电化学研究方法,中南工业大学出版社,1990
    135.陈国珍,黄贤智,刘文远等编著,紫外-可见光分光光度法(下),原子能出版社,1987:164
    136.Leduc L.G., and Ferroni G. D., The Chemolithotrophic Bacterium: Thiobacillus ferrooxidans, FEMS Microbiology Review, 1994, (14): 103-120
    137.H.Krebs and H. Kornberg, Ergeb. Physiol,1957, (49):212-298
    138.Cox, J. C.,and Boxer, D. H., The purification and some properties of rusticyanin, a blue copper protein involved in iron(Ⅱ)oxidation from Thiobacillus ferrooxidans, Biochem. J.1978, (174):497-502
    139.Ingledew. W. J.,Thiobacillus ferrooxidans: The bioenergeticx of an acidophilic chemolithotroph. Biochem. Biophys. Acta, 1982, (683):89-117
    140.Blake, R. C., White, K. J., and Shute, E. A., Electron transfer from iron to rusticyanin is catalyzed by an acid-stable cytochrome, in P. R. Norris and D. P. Kelly (eds.), Biohydrometallurgy, Proc. Intern. Symp., Warwick, Science and Technology Letters, Kew, U. K., 1988, pp. 103-110
    141.王军,低品位铜矿细菌浸出理论与工艺,中南工业大学博士论文
    142.小佩尔扎M J,里德R D,詹E C S编著,武汉大学生物学系微生物教研室译,微生物学,北京:科学山版社,1987:103~105
    143.H. Tributsch, and J. C. Bennett, Semiconductor-Electrochemical Aspects of Bacterial Leaching. Part 2. Survey of Rate-controlling Sulphide Properties. J. Chem. Tech. Biotechnol. 1981, (31): 627-635
    144.汤生荣,居乃琥,补料分批培养研究进展,工业微生物学,199020(1):29~36
    145.C. I. House and Road Chertsey, Potential-pH diagrams and their application to hydrometallugical systems, Separation Processes in Hydrometallurgy, Davizs, G. A. (eds.), Eilis Horwood Limite. Publisher Chichester.
    146.K.Osseo-Assare, T. Xue and V.S.T. Ciminelli, Solution chemistry of cyanide leaching systems. In: Kudryk V.,Carrigan D.A.and Liang W.W. eds. Precious Metals, Mining Extraction and Processing TMS-AIME, Warrendale, PA: 171-176
    147.D.D. Wagman, W. H Evans., V.B.Parker, R. H. Schumm, H. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, The NBS tables of chemical thermodynamic properties, National Bureau of Standards Washington, DC 20234, Journal of Physical and Chemical Reference Data, 1982, 11 (supplement 2).
    
    
    148.David R Lide, Henry V. Kehiaian. CRC HANDBOOK of THERMOPHYSICAL and THERMOPHYSICAL DATA, Boca Raton: CRC Press, 1994
    149.钟竹前,梅光贵,化学位图在湿法冶金和废水净化中的应用,长沙:中南工业大学出版社,1986
    150.E. Peters, Advances in Mineral Processing: A half-century of progress in application of theory to practice. Proceeding of a symposium honoring N. Arbiter on his 75'h birthday,New Orleans, P. Somasundaran (Eds.) SME, 1986:445-46
    151.R. T. Lowson, Aqueous oxidation of pyrite by molecular oxygen, Chemical Review, 1982,82 (5): 98- 112
    152.R. J. Biemat, R. G. Robins, High temperature potential/pH diagrams for the iron-water and iron-water-sulphur systems, Electrochemics Acta, 1972, (17): 1261-1283
    153.D. Wei, K.Osseo-Asare, Semiconductor electrochemistry of particulate pyrite: dissolution via hole and electron pathways, J. Electrochem. Soc. 1996,10 (143): 3192-3198
    154.Liisa Carlson, E. Borje Lindstrom, Kevin B., Hallberg, and Ollih. Tuovinen, Solid-phase products of bacterial oxidation of arsenical pyrite, Applied and Environmental Microbiology, 1992, (58): 1406-1409.
    155.曹楚南编著,腐蚀电化学,化学工业出版社,1994,5
    156.C.戈梅兹等,微生物对黄铜矿阳极溶解的作用,国外金属矿选矿,1997,12:12-16
    157.S.R.莫里森著,吴辉煌译,半导体与金属氧化膜的电化学,科学技术出版社,1988
    158.S.R.莫里森著,赵壁英译,表面化学物理,北京大学出版社,1984
    159.Karl W. Frese. Jr., Simple method for estimating energy levels of solids, J. Vac. Sci. Technol. 1979,16 (4): 1042-1044
    160.M. A. Butler and D. S. Ginley, Prediction of flatband potential at semiconductorelectrolyte interface from atomic electronegativities, J. Electrochem. Soc., 1978, 125 (2):228-232
    161.F. K. Crundwell, The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals, Hydrometallurgy, 1988,21:155-190
    162.Semiconducting ore minerals, Chapter 8: Arsenopyrite: 205-218.
    163.Hemut Tributsch and Jose C. Bennett, Semiconductor-Electrochemical aspect of bacterial leaching I. Oxidation of metal sulfides with large energy gap, J. Chem. Tech. Biotechnol., 1981,(31):565-577.
    
    
    164.广西金牙矿含砷金矿选冶工艺试验研究报告,湖南有色金属研究所,1995,6
    165.钱定福,李玉衡,李志生等,金牙金矿床金的赋存状态研究,地质论评,1988,34(4):361-368
    166.L.S.范著,蔡平等译,气液固流态化工程,中国石化出版社,1989
    167.有色金属提取冶金手册编辑委员会编,有色金属提取冶金手册-现代化设备,冶金工业出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700