理论研究—染料敏化太阳能电池体系光谱性质以及高效吸收染料分子的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池具有良好的光学性质,不但有很高的光电转化效率,同时兼具良好的热稳定性、低成本、制备简单等突出的优点,已经被作为传统能源的替代品,特别广泛地应用于机械、仿生、航天等领域,有望成为传统硅基太阳能电池的有力竞争者。通过近二十年的研究与优化改良,染料敏化太阳能电池的实验室效率已经超过了11%。因此,对于染料敏化太阳能电池体系实验和理论研究一直以来是学术界的前沿热点,实验上主要关注于电池材料效率的提高,包括染料分子的设计和器件的制作;而理论上对于分子结构和光电性质的分析和模拟更加感兴趣。
     本论文对一类以过渡金属Ru配合物作为染料敏化分子的太阳能电池体系作了系统的研究,得到了染料分子单体以及染料分子吸附在二氧化钛晶体之后的异质界面几何构型,电子结构和光谱性质.通过对以上诸方面的深入探索,拓宽了调控染料分子自身吸收光谱性质的操作空间并深入了对于涉及异质界面吸附模型的认识。全文共分为七章:第一章为前言,概述了染料敏化太阳能电池材料体系工作原理、影响电池效率的因素,以及当前实验和理论研究在此方向的研究进展和本文研究的理论意义;第二章为本研究涉及到的理论方法和技术细节;第三章至第五章对几类染料分子光电性质的理论研究;第六章和七章研究染料敏化太阳能电池中染料和二氧化钛晶体之间异质界面的几何和电子结构性质,进一步探讨提升电池效率的调控窗口。具体研究内容介绍如下:
     1.由于含不同的杂环的钌敏化剂拥有较母体N3更高的光电转换效率和更低的电荷重组能,此类物质被广泛设计和合成。正因如此,基本结构为Ru (辅助配体) (附着配体)的敏化分子引起了科研工作者的很大兴趣,其中C101和J13比较具有代表性。通过模拟不同质子化程度的敏化分子的吸收光谱性质来模拟不同pH值下的染料分子的吸收性能。应用密度泛函和含时密度泛函分别研究基态和激发态几何结构,并对电子结构和光谱性质进行计算研究。所有化合物在乙腈溶液中的吸收和发射光谱都是使用B3LYP泛函进行预测。计算结构表明,辅助配体对于分子整体的能级分布和吸收光谱有很大贡献。值得注意的是,作为修饰的而连接在辅助配体的噻吩基团可以有效的提高染料分子在380–450 nm范围内的吸收强度。尽管去质子化可以使染料分子的整体前线轨道不稳定,但是对于非占据轨道的影响要更大。因此随着去质子程度的加剧,吸收和发射都呈现出蓝移。最终,得到C101和J13最优去质子化程度。我们对染料分子的结构和光谱加以分析,期望能够获得更高效的染料敏化分子,并且让人们在对于染料敏化太阳能电池体系的效率有更全面的认知。
     2.本文在理论上设计了一系列染料敏化分子。把唑和其类似物作为修饰基团引入N3的辅助配体上,以期使N3具有更符合DSSC应用要求的光电性质。根据密度泛函理论(DFT)计算,含有1, 2, 4-三唑基团的敏化分子在可见光区具有强吸收带,可见辅助配体对于分子轨道和吸收光谱是有决定性的影响。另外,配体去质子化程度不仅能影响具体的前线轨道分布,而且能控制HOMO和LUMO之间的能隙以及LUMO和LUMO+1的能级差。如果LUMO和LUMO+1的的能级差足够小,那么就有望获得具有更宽阔的吸收谱带的染料分子。
     3.我们一直致力于提高AR20在可见区域的光吸收强度的研究工作。密度泛函理论的方法也被应用于探索AR20和它的衍生物的电子结构性质的研究中。TDDFT的结果暗示了辅助配体控制着分子轨道能级并决定了吸收跃迁的类型。敏化分子的去质子化作用不仅影响了分子轨道能级的分布,还决定了LUMO-HOMO和LUMO-LUMO+1的能量差。将噻吩基团引入到辅助配体中的行为,能增强染料敏化太阳能电池(DSSC)的效率。噻吩取代的AR20衍生物的吸收强度与周围环境的变化有关,如pH值。这个特殊的性质预示了噻吩修饰的AR20衍生物可能在DSSC的实际应用中发挥良好的作用。
     4.光激发后,电子由染料敏化分子注入二氧化钛纳米晶体导带的电荷转移过程决定着DSSC光电转化效率的高低。通过设计的合理二氧化钛表面模型(取自锐钛矿的101表面和取自金红石的110表面),借助DFT方法深入探究了C101,J13,N749等在不同吸附模型下的光谱性质。根据计算,我们获得了详细的轨道能级分布和吸收跃迁特征,进而可以很细致的确认激发态快速电子注入或发射机制。一般来说,不同的二氧化钛的表面模型和敏化分子自身的去质子化程度可以对体系的吸收光谱产生深远的影响。我们的计算表明提高共轭染料分子的共轭性质,可以强化可见光区乃至红外区域的吸收强度,提高对太阳能的利用率,进而提升DSSC的总观光电转化效率。
     5.基于染料敏化分子N749的DSSC在长波长范围内有出色的光电转化效率。基于二氧化钛(101)表面模型和N749与二氧化钛薄膜之间不同的连接类型的合理设计,我们在理论上成功模拟了吸附体系宏观光谱性质。采用TDDFT方法得到前线分子轨道能量分布和吸收光谱与实验吸收峰形和特征吻合。当前的研究表明,染料分子和二氧化钛晶体之间的异质界面的微观构型直接影响最终DSSC的宏观光电转化效率。DSSC中的电子注入方式可以通过激发过程中电荷转移的结果加以区别。此外,染料分子去质子化的程度也强烈影响着吸收光谱的具体形态。结果表明,高效的染料敏化太阳能电池应含有低能量、密集、易于部分轨道耦合的非占据分子轨道。
Due to the high incident photo-to-current efficiency (IPCE) and unique thermalstability, dye-sensitised solar cell (DSSC) have been widely used in mechanica, bionic,aerospace and other fields. Compared with the traditional silicon solar cell. DSSCs arelower in cost, simpler in preparation. Though lower in efficiency, DSSCs wouldchallenge the market of traditional silicon cells with further increasing in efficiency.The remarkable improvements in DSSCs's overall efficiency contributed by thechemistry commucity from every corner of the world have been enlargeing thispossibility in the last two decades. In experiment, the attentions are focused onincreasing efficiency, synthesizing dye molecule and optimizing device structure,while physical chemist devote more effort on the electronic structure of molecule andsimulation of photoelectric process related with DSSC efficiency.
     The current PhD thesis focuses on the electronic structure and spectral characterof the separate dye molecules and the dye which adsorbed TiO2surface. Based on thetheoretical design and calculation,the dye molecules with strong and wide absorptionband in the visible region were obtained. A small TiO2surface model which can beused to explore the electronic structure and spectral properties of dye onheterogeneous interface contributed by dye and TiO2surface was designed and the rationality has been validated. The detailed findings are summarized in the followingseven chapters. In Chapter 1, we provided the fundmental background about DSSC,the goal of the PhD project, and the principle conclusions I have got. The technicaldetails are summaried in Chapter 2 with possible clarity. The rest of the chapters focuson the exact work I have contributed.
     1. A variety of heteroleptic ruthenium sensitizers have been widly applied inDSSC due to their higher light-harvesting efficiency and lower charge-recombinationpossibility than the well known homoleptic N3 dye. Hence, a great deal of attentionhas been focused on sensitizers with the general formulaRu(ancillary-ligand)(anchoring-ligand)(NCS)2, for example, Ru(4,4'-bis(5-hexylthio-phen-2-yl)-2,2'-bipyridine)(4,4'-carboxylic acid-4'-2,2'-bipyri-dine)(NCS)2(C101) andRu(N-(4-butoxyphenyl)-N-2-pyridinyl-2-pyridinamine)(4,4'-carboxylic acid-4'-2,2'-bi-pyridine)(NCS)_2(J13). In order to simulate the real conformation of dye whenadsorbed onto the TiO_2surface under the experimental conditions, thephotosensitizing processes of these sensitizers within different degrees ofdeprotonation (2H, 1H to 0H) have been explored theoretically. The ground/excitedstate geometries, electronic structures and spectroscopic properties are calculatedusing density functional theory (DFT) and time-dependent DFT (TDDFT). Theabsorption and emission spectra of all the complexes in acetonitrile solution are alsopredicted at the TDDFT (B3LYP) level. The calculated results show that the ancillaryligand contributes to the molecular orbital (MO) energy levels and absorptiontransitions. It is intriguing to observe that the introduction of a thiophene group intothe ancillary ligand increased the absorption transitions in the 380–450 nm region.The calculations reveal that although deprotonation destabilizes the overall frontierMOs of the chromophores, it tends to exert a greater influence on the unoccupiedorbitals than on the occupied orbitals. Consequently, an obvious blue shift wasobserved for the absorptions and emissions from 2H, 1H to 0H. Finally, the optimaldegree of deprotonation for C101 and J13 has been evaluated, which is expected tolead further improvements in the performance of DSSCs coated with these sensitizers.
     2. Azoles and their derivatives were adopted as ancillary ligand to improve theperformance of N3 in DSSC. DFT based approaches were applied to explore theelectronic structures and properties. The calculation reveals that dye molecule with 1,2, 4-triazole groups would show very high intensity of absorption in visible range.TDDFT results indicate that the ancillary ligand dominates the molecular orbital (MO)energy levels and masters the absorption transition nature. The deprotonation ofanchoring ligand not only affects the frontier MO energy levels but also controls theenergy gaps of HOMO–LUMO and LUMO–LUMO+1. Small gap between LUMO–LUMO+1 contributes positively to the overall efficiency of DSSC.
     3. Special efforts were devoted to improve the absorption behavior of AR20 invisible region. DFT based approaches were applied to explore the electronic structureproperties of AR20 and its derivatives. TDDFT results indicate that the ancillaryligand controls the molecular orbital (MO) energy levels and masters the absorptiontransition nature. The deprotonation of anchoring ligand not only affects the frontierMO energy levels but also determines the energy gaps of highest occupiedMO–lowest unoccupied MO (LUMO) and LUMO–LUMO+1. Introducing thiophenegroups into ancillary ligands would enhance the efficiency of the final DSSC. Theabsorption intensity of the thiophene substituted derivatives of AR20 is irrelevantwith environment circumstance change, such as pH value. This special natureprognosticates the thiophene-substituted derivatives of AR20 which would have abroad application in DSSC.
     4. Electron injection from a photoexcited chromophore into the surface ofmesoscopic semiconductor TiO_2nanoparticles is one of the key electron transferprocesses for DSSC. A reasonable and reliable TiO_2surface model (taken from theanatase (101) and rutile (110) crystals a slab model) was designed, which wasemployed to investigate the absorption behavior of dye molecules such as C101, J13and N749 on TiO_2surface with under DFT method. According to the calculationresults, the detailed orbital components and absorption transition are obtained;furthermore, the ultrafast, excited-state charge injection and emission charege injection was discriminated. Generally, both the ways by which the dye is adsorbedinto TiO_2and degree of deprotonation of dye molecules could affect absorptionspectrum remarkably. Our calculations show that the more efficient DSSCs shouldhave larger conjugation degree for ancillary ligands or the whole system, which isbeneficial to photon absorption from the visible to near-IR region.
     5. N749, brings about outstanding IPCE in long wavelength range in DSSC.Depending on rational design of TiO_2(101) surface model and connecting typesbetween N749 and TiO_2film, the experimental absorption peaks have been wellreproduced within DFT and TDDFT approaches. According to the calculations, thedifference in connecting models in DSSC affects the final utilization of solar energydirectly. The way of electron injection in DSSC was discriminated within the resultsof charge-transfer transition. In addition, the degree of deprotonating about dyemolecules could also influence absorption spectrum obviously. It was demonstratedthat the dyes with closely-lying low energy unoccupied orbitals, which are conduciveto orbital-coupling, would improve the overall photo-to-current efficiency in DSSC.
引文
[1] PAULING L, WILSON E B. Introduction to quantum mechanics: withapplications to chemistry [M]. Dover Pubns, 1985.
    [2] MULLIKEN R S. Electronic Structures of Polyatomic Molecules and Valence. II.General Considerations [J]. Physical Review, 1932, 41:49.
    [3] MULLIKEN R S. The Assignment of Quantum Numbers for Electrons inMolecules. II. Correlation of Molecular and Atomic Electron States [J]. PhysicalReview, 1928, 32:761.
    [4] MULLIKEN R S. The Assignment of Quantum Numbers for Electrons inMolecules. I [J]. Physical Review, 1928, 32:186.
    [5]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社, 1982.
    [6]徐光宪,黎乐民,王德民.量子化学基本原理和从头算[M].北京:科学出版社, 1985.
    [7] BORN M, OPPENHEIMER R. Zur quantentheorie der molekeln [J]. Annalen derPhysik, 1927, 389: 457–484.
    [8] HARTREE D R, DOUGLAS R. The calculation of atomic structures [M]. J.Wiley, 1957.
    [9] SLATER J C. Atomic shielding constants [J]. Physical Review, 1930, 36:57.
    [10]ROOTHAAN C C J. New developments in molecular orbital theory [J]. Rev ModPhys, 1951, 23:69.
    [11] L WDIN P O. Correlation Problem in Many \Electron Quantum Mechanics I.Review of Different Approaches and Discussion of Some Current Ideas [J]. 1959,2:207–322.
    [12]SALTER E A, TRUCKS G W, BARTLETT R J. Analytic energy derivatives inmany-body methods. I. First derivatives [J]. J Chem Phys, 1989, 90:1752–1766.
    [13]POPLE J A, HEAD-GORDON M, RAGHAVACHARI K. Quadraticconfiguration interaction. A general technique for determining electron correlationenergies [J]. J Chem Phys, 1987, 87:5968–5975.
    [14]RAGHAVACHARI K, POPLE J A. Calculation of one \electron properties usinglimited configuration interaction techniques [J]. Int J Quantum Chem, 1981, 20:1067v1071.
    [15]KRISHNAN R, SCHLEGEL H, POPLE J. Derivative studies inconfiguration-interaction theory [J]. Journal of Chemical Physics, 1980,72:4654–4655.
    [16]BROOKS B R, LAIDIG W D, SAXE P, et al. Analytic gradients from correlatedwave functions via the two-particle density matrix and the unitary group approach [J].Journal of Chemical Physics, 1980, 72:4652–4653.
    [17]FRISCH MARTIN M J, POPLE J A. A direct MP2 gradient method [J]. ChemicalPhysics Letters, 1990, 166: 275–280.
    [18]MOLLER C, PLESSET M. Note on an approximation treatment formany-electron systems [J]. Physical Review, 1934, 46: 618.
    [19]HEAD-GORDON M, POPLE J A, FRISCH M J. MP2 energy evaluation bydirect methods [J]. Chemical Physics Letters, 1988, 153: 503–506.
    [20]HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys Rev, 1964,136: B864–B871.
    [21]KOHN W, SHAM L. Self-consistent equations including exchange andcorrelation effects [J]. Phys Rev, 1965, 140: A1133–A1138.
    [22]PARR R G, YANG W. Density-functional theory of atoms and molecules [M].Oxford University Press, USA, 1994.
    [23]POPLE J A, GILL P M W, JOHNSON B G. Kohn--Sham density-functionaltheory within a finite basis set [J]. Chemical Physics Letters, 1992, 199: 557–560.
    [24]SLATER J C. Quantum Theory of Molecules and Solids: The self-consistent fieldfor molecules and solids [M]. McGraw-Hill Companies, 1974.
    [25]BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitationswithin the adiabatic approximation of time dependent density functional theory [J].Chemical Physics Letters, 1996, 256: 454–464.
    [26]CASIDA M E, JAMORSKI C, CASIDA K C, et al. Molecular excitation energiesto high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximationionization threshold [J]. J Chem Phys, 1998, 108:4439.
    [27]MATSUZAWA N N, ISHITANI A, DIXON D A, et al. Time-dependent densityfunctional theory calculations of photoabsorption spectra in the vacuum ultravioletregion [J]. J Phys Chem A, 2001, 105: 4953–4962.
    [28]STRATMANN R E, SCUSERIA G E, FRISCH M J. An efficient implementationof time-dependent density-functional theory for the calculation of excitation energiesof large molecules [J]. J Chem Phys, 1998, 109:8218.
    [29]HUZINAGA S. Molecular Integrals [J]. Prog Theor Phys Suppl, 1967, 40:52–77.
    [30]HARRIS F E, MICHELS H H. The Evaluation of Molecular Integrals forSlater-Type Orbitals [M]. John Wiley & Sons, Inc., 2007.
    [31]HEHRE W, DITCHFIELD R, POPLE J. Self aconsistent molecular orbitalmethods. XII. Further extensions of gaussian atype basis sets for use in molecularorbital studies of organic molecules [J]. J Chem Phys, 1972, 56:2257.
    [32] O’REGAN B, GR TZEL M. A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films [J]. Nature, 1991, 353:737–740.
    [33] HAGFELDT A, GR TZEL M. Molecular photovoltaics [J]. Acc Chem Rev,2000, 33:269–277.
    [34] GR TZEL M. Photoelectrochemical cells [J]. Nature, 2001, 414:338-344.
    [35] KALYANASUNDARAM K, GR TZEL M. Applications of functionalizedtransition metal complexes in photonic and optoelectronic devices [J]. Coord ChemRev, 1998, 177:347–414.
    [36] HARA K, SATO T, KATOH R. Molecular design of coumarin dyes for efficientdye-sensitized solar cells [J]. J Phys Chem B, 2003, 107:597–606.
    [37] HORIUCHI T, MIURA H, SUMIOKA K, et al. High efficiency of dye-sensitizedsolar cells based on metal-free indoline dyes [J]. J Am Chem Soc, 2004,126:12218–12219.
    [38] MORANDEIRA A, BOSCHLOO G, HAGFELDT A, et al. Photoinducedultrafast dynamics of coumarin 343 sensitized p-type-nanostructured NiO films [J]. JPhys Chem B, 2005, 109:19403–19410.
    [39] ITO S, ZAKEERUDDIN S M, HUMPHRY-BAKER R. High-efficiencyorganic-dye-sensitized solar cells controlled by nanocrystalline-TiO2electrodethickness [J]. Adv Mater, 2006, 18:1202–1205.
    [40] DONG H Q, ZHAO Z L, WEN H Y, et al. Poly(ethylene glycol) conjugatednano-graphene oxide for photodynamic therapy [J]. Sci China Chem, 2010,53:2265–2271.
    [41] KUCIAUSKAS D, FREUND M S, GRAY H B, et al. Electron transfer dynamicsin nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmiumpolypyridyl complexes [J]. J Phys Chem B, 2001, 105:392–403.
    [42] ISLAM A, SUGIHARA H, HARA K, et al. Dye sensitization of nanocrystallinetitanium dioxide with square planar platinum(II) diimine dithiolate complexes [J].Inorg Chem, 2001, 40:5371–5380.
    [43] WANG Q, CAMPBELL W M, BONFANTANI E E, et al. Efficient lightharvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2films [J]. JPhys Chem B, 2005, 109:15397–15409.
    [44] GEARY E A M, YELLOWLEES L J, JACK L A, et al. Synthesis, structure, andproperties of [Pt(II)(diimine)(dithiolate)] dyes with 3,3'-, 4,4'-, and 5,5'-disubstitutedbipyridyl: Applications in dye-sensitized solar cells [J]. Inorg Chem, 2005,44:242–250.
    [45] NAZZRUDDIN M K, KAY A, RODICIO I, et al. Conversion of light toelectricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfersensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxideelectrodes [J]. J Am Chem Soc, 1993, 115:6382–6390.
    [46] NAZEERUDDIN M K, ZAKEERUDDIN S M, HUMPHRY-BAKER R, et al.Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) complexesand the effect of protonation on charge-transfer sensitization of nanocrystalline titania[J]. Inorg Chem, 1999, 38:6298–6305.
    [47] NAZEERUDDIN M K, PECHY P, RENOUARD T, et al. Engineering ofefficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J AmChem Soc, 2001, 123:1613–1624.
    [48] KOMATSUZAKI NO, YANAGIDA M, FUNAKI T, et al. Near-IR dye-sensitizedsolar cells using a new type of ruthenium complexes having2,6-bis(quinolin-2-yl)pyridine derivatives. Sol Energy Mater Sol Cells [J], 2011,95:310–314.
    [49] JANG SR, CHOI MJ, VITTAL R, et al. Anchorage of N3 dye-linked polyacrylicacid to TiO2/electrolyte interface for improvement in the performance of adye-sensitized solar cell [J]. Sol Energy Mater Sol Cells, 2007, 91:1209–1214.
    [50] WANG P, KLEIN C, HUMPHRY-BAKER R, et al. A high molar extinctioncoefficient sensitizer for stable dye-sensitized solar cells [J]. J Am Chem Soc, 2005,127:808–809.
    [51] WANG P, KLEIN C, HUMPHRY-BAKER R, et al. Stable≥8% efficientnanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility [J].Appl Phys Lett, 2005, 86:123508–123511.
    [52] GAO F F, WANG Y, SHI D, et al. Enhance the optical absorptivity ofnanocrystalline TiO2film with high molar extinction coefficient ruthenium sensitizersfor high performance dye-sensitized solar cells [J]. J Am Chem Soc, 2008,130:10720–10728.
    [53] CHEN C Y, CHEN J G, WU S J, et al. Multifunctionalized ruthenium-basedsupersensitizers for highly efficient dye-sensitized solar cells [J]. Angew Chem Int Ed,2008, 47:7342–7345.
    [54] KISSERWAN H, GHADDAR T H. Enhancement of photovoltaic performance ofa novel dye,‘‘T18”, with ketene thioacetal groups as electron donors for highefficiency dye-sensitized solar cells [J]. Inorg Chim Acta, 2010, 363:2409–2415.
    [55] SHI D, POOTRAKULCHOTE N, LI R, et al. New efficiency records for stabledye-sensitized solar cells with low-volatility and ionic liquid electrolytes [J]. J PhysChem C, 2008, 112:17046–17050.
    [56] JIN Z Z, MASUDA H, YAMANAKA N, et al. Efficient electron transferruthenium sensitizers for dye-sensitized solar cells [J]. J Phys Chem C, 2009,113:2618–2623.
    [57] JIN Z Z, MASUDA H. Triarylamine-functionalized ruthenium dyes for efficientdye-sensitized solar cells [J]. ChemSusChem, 2008, 1:901–904.
    [58] YAN S G, HUPP J T. Semiconductor-based interfacial electron-transferreactivity: Decoupling kinetics from ph-dependent band energetics in adye-sensitized titanium dioxide/aqueous solution system [J]. J Phys Chem, 1996,100:6867–6870.
    [59] GERISHER H. Neglected problems in the pH dependence of the flatbandpotential of semiconducting oxides and semiconductors covered with oxide layers [J].Electrochim Acta, 1989, 34:1005–1009.
    [60] NAZEERUDDIN M K, ANGELIS F D, FANTACCI S, et al. Combinedexperimental and DFT-TDDFT computational study of photoelectrochemical cellruthenium sensitizers [J]. J Am Chem Soc, 2005, 127:16835–16847.
    [61] BISQUERT J, CAHEN D, HODES G, et al. Physical chemical principles ofphotovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells[J]. J Phys Chem B, 2004, 108:8106–8118.
    [62] NAZEERUDDIN M K, HUMPHRY-BAKER R, LISKA P, et al. Investigation ofsensitizer adsorption and the influence of protons on current and voltage of adye-sensitized nanocrystalline TiO2Solar Cell [J]. J Phys Chem B, 2003,127:8981 8987.
    [63] SU R, XUE W D, FENG Y, et al. Sensitization mechanism oftris(8-hydroxyquinoline)iron(III) on TiO2anatase (101) surface [J]. Acta Phys-ChimSin, 2009, 25:947–952.
    [64] ARDO S, MEYER G J. Photodriven heterogeneous charge transfer withtransition-metal compounds anchored to TiO2semiconductor surfaces [J]. Chem SocRev, 2009, 38:115v164
    [65] BECKE A D. Density-functional thermochemistry. III. The role of exactexchange [J]. Chem Phys, 1993, 98:5648–5652.
    [66] YANG Y, BAI F Q, ZHANG H X, et al. Theoretical studies on structures andspectroscopic properties of a series of heteroleptic iridium complexes based ontridentate bis(benzimidazolyl)pyridine ligand [J]. Comput Theoret Chem, 2011,963:298–305.
    [67] CASIDA M E, JAMORSKI C, CASIDA K C, et al. Molecular excitation energiesto high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximationionization threshold [J]. J Chem Phys, 1998, 108:4439–4449.
    [68] STRATMANN R E, SCUSERIA G E. An efficient implementation oftime-dependent density-functional theory for the calculation of excitation energies oflarge molecules [J]. J Chem Phys, 1998, 109:8218–8224.
    [69] MATSUZAWA N N, ISHITANI A. Time-dependent density functional theorycalculations of photoabsorption spectra in the vacuum ultraviolet region [J]. J PhysChem A, 2001, 105:4953–4962.
    [70] BARONE V, COSSI M. Quantum calculation of molecular energies and energygradients in solution by a conductor solvent model [J]. J Phys Chem A, 1998,102:1995–2001.
    [71] COSSI M, REGA N, SCALMANI G, et al. Energies, structures, and electronicproperties of molecules in solution with the CPCM solvation model [J]. J ComputChem, 2003, 24:669–681.
    [72] BAUERNSCHMITT R, AHLRICHS R. Treatment of electronic excitationswithin the adiabatic approximation of time dependent density functional theory [J].Chem Phys Lett, 1996, 256:454–464.
    [73] ROSA A, BAERENDS E J, GISBERGEN S J. Electronic spectra of M(CO)6(M= Cr, Mo, W) revisited by a relativistic TDDFT Approach [J]. J Am Chem Soc, 1999,121:10356–10365.
    [74] LI M X, ZHOU X, XIA B H, et al. Theoretical studies on structures andspectroscopic properties of photoelectrochemical cell ruthenium sensitizers,
    [Ru(Hmtcterpy)(NCS)3]n–(m = 0, 1, 2, and 3; n = 4, 3, 2, and 1) [J]. Inorg Chem 2008;47:2312–2324.
    [75] WADT W R, HAY P J. Ab initio effective core potentials for molecularcalculations. Potentials for main group elements Na to Bi [J]. J Chem Phys, 1985,82:284–298.
    [76] HAY P J, WADT W R. Ab initio effective core potentials for molecularcalculations. Potentials for K to Au including the outermost core orbitals [J]. J ChemPhys, 1985, 82:299–310.
    [77] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian09, RevisionA.02 [M], Gaussian, Inc., Wallingford CT, 2009.
    [78] CHATT J, DUNCANSON L A. Olefin co-ordination compounds. Part III.Infra-red spectra and structure: Attempted preparation of acetylene complexes [J]. JChem Soc, 1953, 2939–2947.
    [79] BOULET P, CHERMETTE H, DAUL C, et al. Absorption spectra of severalmetal complexes revisited by the time-dependent density-functional theory-responsetheory formalism [J]. J Phys Chem A, 2001, 105:885–894.
    [80] MONAT J E, RODRIGUEZ J H, MCCUSKER J K. Ground- and excited-stateelectronic structures of the solar cell sensitizer bis(4,4'-dicarboxylato-2,2'-bipyridine)bis(isothiocyanato) ruthenium(II) [J]. J Phys ChemA, 2002, 106:7399–7406.
    [81] FANTACCI S, ANGELIS F D, SELLONI A. Absorption spectrum andsolvatochromism of the [Ru(4,4'-COOH-2,2'-bpy)2(NCS)2] molecular dye by timedependent density functional theory [J]. J Am Chem Soc, 2003, 125:4381–4387.
    [82] BAROLO C, NAZEERUDDIN M K, FANTACCI S, et al. Synthesis,characterization, and DFT-TDDFT computational study of a ruthenium complexcontaining a functionalized tetradentate ligand [J]. Inorg Chem, 2006, 45:4642–4653.
    [83] ANGELIS F D, FANTACCI S, SELLONI A. Time-dependent density functionaltheory study of the absorption spectrum of [Ru (4,4'-COOH-2,2'-bpy)2(NCS)2] inwater solution: Influence of the pH [J]. Chem Phys Lett, 2004, 389:204–208.
    [84] Zhang J, Li H.B, Wu Y, et al. TD-DFT Studies on Phenothiazine-based Dyes withDifferent Donor in Dye-sensitized Solar Cells [J]. Chem J Chin U., 2011,32:1343–1348.
    [85] Campbell W M, Burrell A K, Officer D L, et al. Porphyrins as light harvesters inthe dye-sensitised TiO2solar cell [J]. Coord. Chem. Rev., 2004, 248:1363-1379.
    [86] Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum SolvationModel [J]. Chem Rev, 2005, 105:2999–3094.
    [87] Dai S Y, Xiao S F, Shi C W, et al. Electrolyte Optimization in Dye-sensitizedSolar Cells [J]. Chem J Chin U, 2005,26:518–521.
    [88] Caricato M, Mennucci B, Tomasi J, et al. Formation and relaxation of excitedstates in solution: A new time dependent polarizable continuum model based on timedependent density functional theory [J]. J Chem Phys, 2006, 124:124520–124532.
    [89] Mennucci B, Cappelli C, Guido C A, et al. Structures and Properties ofElectronically Excited Chromophores in Solution from the Polarizable ContinuumModel Coupled to the Time-Dependent Density Functional Theory [J]. J Phys Chem A2009, 113:3009-3020.
    [90] Reynal A, Forneli A, Martinez-Ferrero E. Interfacial Charge RecombinationBetween e--TiO2and the I-/I3-Electrolyte in Ruthenium Heteroleptic Complexes: DyeMolecular Structure-Open Circuit Voltage Relationship [J]. J Am Chem Soc, 2008,130:13558–13567.
    [91] Higgins S L H, White T A, Winkel B S J, et al. Spectroscopic, and PhotophysicalProperties of Ru Pt Mixed-Metal Complexes Incorporating4,7-Diphenyl-1,10-phenanthroline as Efficient DNA Binding and PhotocleavingAgents [J]. Inorg Chem, 2011, 50:463–470.
    [92] Ramachandra S, Schuermann K C, Edafe F, et al. Luminescent RutheniumTripod Complexes: Properties in Solution and on Conductive Surfaces [J]. InorgChem, 2011, 50:1581–1591.
    [93] Kim S, Lee J K, Kang S O, et al. Molecular Engineering of Organic Sensitizersfor Solar Cell Applications [J]. J Am Chem Soc, 2006, 128:16701-16707.
    [94] Baryshnikov G V, Minaev B F, Minaeva V A. Quantum-chemical study of effectof conjugation on structure and spectral properties of C105 sensitizing dye [J]. Opticsand Spectroscopy, 2011, 110:393–400.
    [95] Dai F R, Wu W J, Wang Q W, et al. Heteroleptic ruthenium complexes containinguncommon 5,5’-disubstituted-2,2’-bipyridine chromophores for dye-sensitized solarcells [J]. Dalton Trans. 2011, 40:2314–2323.
    [96] Ning Z J, Fu Y, Tian H. Improvement of dye-sensitized solar cells: what we knowand what we need to know [J]. Energy Environ Sci, 2010, 3:1170–1181.
    [97] Qin P, Zhu H J, Edvinsson T, et al. Design of an Organic Chromophore forP-Type Dye-Sensitized Solar Cells [J]. J Am Chem Soc, 2008,130:8570–8571.
    [98] Nilsing M, Lunell S, Persson P, et al. Phosphonic acid adsorption at the TiO2anatase (1 0 1) surface investigated by periodic hybrid HF-DFT computations [J]. SurfSci, 2005, 582:49–60.
    [99] Nilsing M, Persson P, Ojamae L. Anchor group influence on molecule–metaloxide interfaces: Periodic hybrid DFT study of pyridine bound to TiO2via carboxylicand phosphonic acid [J]. Chem Phys Lett, 2005, 415:375–380.
    [100] Persson P, Lundqvist M J. Calculated Structural and Electronic Interactions ofthe Ruthenium Dye N3 with a Titanium Dioxide Nanocrystal [J]. J Phys Chem B,2005, 109:11918–11924.
    [101] Lundqvist M J, Nilsing M, Lunell S, et al. Spacer and Anchor Effects on theElectronic Coupling in Ruthenium-bis-Terpyridine Dye-Sensitized TiO2NanocrystalsStudied by DFT [J]. J Phys Chem B, 2006, 110:20513–20525.
    [102] Persson P, Lundqvist M J, Ernstorfer R, et al. Quantum Chemical Calculationsof the Influence of Anchor-Cum-Spacer Groups on Femtosecond Electron TransferTimes in Dye-Sensitized Semiconductor Nanocrystals [J]. J Chem Theory Comput,2006, 2:441–451.
    [103] Nilsing M, Persson P, Lunell S, et al. Dye-Sensitization of the TiO2Rutile (110)Surface by Perylene Dyes: Quantum-Chemical Periodic B3LYP Computations [J]. JPhys Chem C, 2007, 111:12116–12123.
    [104] Wolpher H, Sinha S, Pan J X, et al. Synthesis and Electron Transfer Studies ofRuthenium Terpyridine-Based Dyads Attached to Nanostructured TiO2[J]. InorgChem, 2007, 46:638–651.
    [105] Ghosh S, Chaitanya G K, Bhanuprakash K, et al. Electronic Structures andAbsorption Spectra of Linkage Isomers of Trithiocyanato(4,4‘,4‘‘-Tricarboxy-2,2‘:6,2‘‘-terpyridine) Ruthenium(II) Complexes: A DFT Study[J]. Inorg Chem, 2006, 45:7600–7611.
    [106] Nazeeruddin M K, Wang Q, Cevey L, et al. DFT-INDO/S Modeling of NewHigh Molar Extinction Coefficient Charge-Transfer Sensitizers for Solar CellApplications [J]. Inorg Chem, 2006, 45:787–797.
    [107] Lowry M S, Bernhard S. Synthetically Tailored Excited States: Phosphorescent,Cyclometalated Iridium(III) Complexes and Their Applications [J]. Chem-Eur J, 2006,12:7970–7977.
    [108] Li J R, Nilsing M, Kondov I, et al. Dynamical Simulation of PhotoinducedElectron Transfer Reactions in Dye Semiconductor Systems with Different AnchorGroups [J]. J Phys Chem C, 2008, 112:12326–12333.
    [109] Hagberg D P, Marinado T, Karlsson K M, et al. Tuning the HOMO and LUMOEnergy Levels of Organic Chromophores for Dye Sensitized Solar Cells [J]. J OrgChem, 2007, 72:9550–9556.
    [110] Qin H, Wenger S, Xu M, et al. An Organic Sensitizer with a FusedDithienothiophene Unit for Efficient and Stable Dye-Sensitized Solar Cells [J]. J AmChem Soc, 2008, 130:9202–9203.
    [111] Howie W H, Claeyssens F, Miura H, et al. Characterization of Solid-StateDye-Sensitized Solar Cells Utilizing High Absorption Coefficient Metal-Free OrganicDyes [J]. J Am Chem Soc, 2008, 130:1367–1375.
    [112] Tian H N, Yang X C, Chen R K, et al. Effect of Different Dye Baths andDye-Structures on the Performance of Dye-Sensitized Solar Cells Based onTriphenylamine Dyes [J]. J Phys Chem C, 2008, 112:11023–11033.
    [113] De-Angelis F, Fantacci S, Selloni A, et al. Time-Density Functional TheoryInvestigations on the Excited States of Ru(II)-Dye-Sensitized TiO2Nanoparticles: TheRole of Sensitizer Protonation [J]. J Am Chem Soc, 2007, 129:14156–14157.
    [114] Falaras P. Synergetic effect of carboxylic acid functional groups and fractalsurface characteristics for efficient dye sensitization of titanium oxide [J]. Sol EnergyMater Sol Cells, 1998, 53:163–175.
    [115] Weng Y X, Li L, Liu Y, et al. Surface-Binding Forms of Carboxylic Groups onNanoparticulate TiO2Surface Studied by the Interface-Sensitive TransientTriplet-State Molecular Probe [J]. J Phys Chem B, 2003, 107:4356–4363.
    [116] Persson P, Lunell S. Binding of bi-isonicotinic acid to anatase TiO2(101) [J].Solar Energy Materials & Solar Cells, 2000, 63:139–148.
    [117] Lee G W, Kim D, Ko M J, et al. Evaluation on over photocurrents measuredfrom unmasked dye-sensitized solar cells [J]. Solar Energy, 2010, 84:418–425.
    [118] Guo Z Y, Liang W Z, Zhao Y, et al. Real-Time Propagation of the ReducedOne-Electron Density Matrix in Atom-Centered Orbitals: Application to ElectronInjection Dynamics in Dye-Sensitized TiO2Clusters [J]. J Phys Chem C, 2008,112:16655–16662.
    [119] Syres K, Thomas A, Bondino F, et al. Dopamine Adsorption on Anatase TiO2(101): A Photoemission and NEXAFS Spectroscopy Study [J]. Langmuir, 2010,26:14548–14555.
    [120] Katoh R, Furube A, Kasuya M, et al. Photoinduced electron injection in blackdye sensitized nanocrystalline TiO2films [J]. J Mater Chem, 2007, 17:3190–3196.
    [121] Chen J, Bai F Q, Wang J, et al. Theoretical studies on spectroscopic propertiesof ruthenium sensitizers absorbed to TiO2film surface with connection mode forDSSC [J]. Dyes and Pigments, 2012, 94:459–468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700