二氧化钛纳米片基染料敏化太阳能电池的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源与环境的可持续发展是当今世界人类社会的两个重要发展战略。随着全球经济的发展,人们对能源的需求正在不断增长,新能源的发展势在必行。太阳能源源不断的辐照地面,且清洁无任何污染,因而成为最具开发潜力的新能源之一。染料敏化太阳能电池(DSSC)是一种有效利用太阳能的光电器件,它制作工艺简单、成本低廉、性能稳定、对环境无污染,因而具有良好的发展前景。DSSC在实际应用中光电转换效率偏低,纳米二氧化钛薄膜是染料敏化太阳能电池的重要组成部分,如何优化二氧化钛阳极对提高染料敏化太阳能电池的效率有很大影响。本论文着重研究了二氧化钛的纳米结构设计和二氧化钛/碳纳米复合材料的制备,以提高系统的电荷分离效果,从而提高染料敏化太阳能电池的光电性能。具体工作包括以下内容:
     1)(001)高能面暴露的锐钛矿Ti02纳米片在DSSC中的应用及其增强的光电转换效率。最近大量研究发现,与热力学稳定的(101)晶面相比,(001)晶面的反应活性更强,锐钛矿二氧化钛纳米片为高活性的材料和器件提供了一个新的选择。本文首次研究了(001)高能面暴露的锐钛矿二氧化钛纳米片(Ti02NS)在染料敏化太阳能电池中的应用。同时,对比研究了用(001)高能面暴露的锐钛矿二氧化钛纳米片、二氧化钛纳米颗粒以及商业P25电极制备的染料敏化太阳能电池(DSSC)的光电转化性能,其光电转化效率分别为4.56、4.24和3.64%。锐钛矿二氧化钛纳米片电极制备的染料敏化太阳能电池增强的光电转换效率主要源于其良好的晶化、大的孔体积以及增强的光散射效应。所制备的二氧化钛纳米片膜电极在光催化、催化、电化学、分离以及净化等领域有着广泛的潜在应用价值。
     2)锐钛矿二氧化钛纳米颗粒和纳米片对N719染料的吸附等温线、吸附动力学和吸附热力学研究。最近,(001)高能面暴露的锐钛矿二氧化钛纳米片(Ti02NS)膜电极已经被制备,且应用于染料敏化太阳能电池。锐钛矿二氧化钛纳米片电极制备的染料敏化太阳能电池增强的光电转换效率主要源于其良好的晶化、大的孔体积以及增强的光散射效应。从另一方面来讲,吸附在二氧化钛表面的染料复合物的吸附特性研究对于深入理解敏化特性以及优化染料敏化太阳能电池的性能有着非常重要的意义。因此,我们首次研究了暴露(001)(Ti02NS)对N719染料分子的吸附等温线、吸附动力学和吸附热力学性能,并对比研究了(101)晶面锐钛矿二氧化钛纳米颗粒(Ti02NP)的吸附性能。用准一级,准二级和颗粒内扩散动力学模型来拟合样品的吸附动力学数据,结果表明,准二级动力学和颗粒内扩散模型能更好地描述样品的吸附动力学。此外,用Langmuir和Freundlich模型来分析所制备样品吸附N719的平衡吸附数据,结果表明,Langmuir模型与实验数据符合得更好。通过Langmuir公式计算得到二氧化钛纳米片在不同温度对N719的最大吸附量(qmax)分别为65.2(30℃)、68.2(40℃)和76.6(50℃)mg g-1,小于二氧化钛纳米颗粒在各个温度对N719的最大吸附量92.4(30℃)、100.0(40℃)和108.2(50℃)mg g-1。与二氧化钛纳米片相比,二氧化钛纳米颗粒对N719的更高的最大吸附量是由于二氧化钛纳米颗粒具有更大的比表面积。进一步研究发现,二氧化钛纳米片在不同温度对N719染料的最大比吸附量(qmax/SBET)分别为1.5(30℃)、1.6(40℃)和1.7(50℃)mg m-2,大于二氧化钛纳米颗粒在各个温度对N719最大比吸附量0.9(30℃)、1.0(40℃)和1.1(50℃)mg m-2。与二氧化钛纳米颗粒相比,二氧化钛纳米片对N719具有更高的最大比吸附量,这是因为,与(101)晶面相比,反应物(吸附剂/吸附质)分子更容易在(001)晶面发生解离吸附。值得注意的是,qmax与qmax/SBET均随着温度的升高而增大,这表明二氧化钛表面对N719的吸附是一个吸热过程,这一点也通过对吸附过程的自由能、焓和熵等热力学参数的计算得到进一步的确认。此研究为二氧化钛纳米片和二氧化钛纳米颗粒对N719分子吸附的过程和机理的理解提供了新的视野,而这对于增强染料敏化太阳能电池的性能也有着重要的意义。
     3)Ti02纳米片/石墨烯复合膜在DSSC中的应用及其增强的光电性能。最近报道的锐钛矿二氧化钛纳米片电极制备的染料敏化太阳能电池增强的光电转换效率主要源于其良好的晶化、大的孔体积以及增强的光散射效应。特别的,考虑到石墨烯的二维纳米结构及优异的导电性,很多研究者将其与二氧化钛进行复合来提高它们的光催化活性和光电性能。本研究首次制备了染料敏化太阳能电池的Ti02NS/石墨烯复合膜电极,并研究了石墨烯对所制备的DSSC的微结构和光电转换性能的影响。石墨烯含量显著影响Ti02NS/石墨烯复合膜的物理结构和光吸收特性,同时也显著影响Ti02NS/石墨烯复合DSSC中载流子的传输、被陷阱捕获及复合。研究结果表明,石墨烯含量显著影响Ti02NS/石墨烯复合电池的光电转换效率。与纯二氧化钛膜制备的染料敏化太阳能电池相比,含有适量石墨烯(<0.75wt.%)的二氧化钛纳米片/石墨烯复合染料敏化太阳能电池表现出增强的光电转换效率。适量的石墨烯不仅降低二氧化钛膜/电解质界面之间的电子传输电阻、降低光生电子和空穴的复合、增强光生电子从二氧化钛膜到FTO导电玻璃基体的传输。同时,石墨烯的引入还增强光的捕获,从而增加光生电子的数量。此外,Ti02NS/石墨烯复合膜电极的良好的孔结构有利于电解质的扩散,从而有利于染料分子的再生和DSSC光电转换性能的增强。然而,过量的石墨烯(>0.75wt.%)显著降低了二氧化钛纳米片/石墨烯复合DSSC的光电性能。这是因为过量的石墨烯不仅降低了半导体半导体复合膜的晶化,同时也屏蔽了染料分子对光的捕获,减少了光生电子的数量。本研究将为高性能染料敏化太阳能电池的制备和结构设计提供新的视野。
     4)基于锐钛矿Ti02空心球/碳纳米管复合膜的染料敏化太阳能电池的研究。最近,锐钛矿Ti02空心结构材料由于其大的比表面和分等级纳米孔结构,以及其增强的光催化性能和光电转换效率而引起了越来越多的关注。进一步的,考虑到碳纳米管(CNT)的一维纳米结构和良好的导电性,我们有理由推断CNT/TiO2复合物应该有利于二氧化钛膜中电子的传输,有利于增强其光催化性能和光电转换效率。本研究首次制备了锐钛矿二氧化钛空心球(Ti02HS)/多壁碳纳米管(CNT)复合膜,并将其应用于染料敏化太阳能电池(DSSC)。同时,对比研究了相同厚度的TiO2HS/CNT与P25/CNT复合膜电极制备的染料敏化太阳能电池的光电转换效率。研究结果表明,碳纳米管含量显著影响TiO2HS/CNT复合电池的光电转换效率。少量的碳纳米管(<0.1wt.%)能够增强TiO2HS/CNT复合电池的光电转换效率,而过量的碳纳米管(>0.1wt.%)反而降低了其光电性能。前者是因为碳纳米管对电子的快速传输使得电子快速从二氧化钛膜转移到FTO导电玻璃基体。后者是因为过量的碳纳米管屏蔽了染料分子对光的捕获,减少了光生电子的数量,同时碳纳米管的引入也降低了半导体复合膜的晶化,从而增加了二氧化钛膜/染料/电解质界面之间的界面传输电阻,使得电池的性能降低。本研究将为高性能染料敏化太阳能电池的制备和结构设计提供新的视野。
Nowadays, the sustainable developments of energy and environment are both of the two important strategies for the development of human society in the world. With the development of the global economy, the demands for energy are growing, and the development of new energy is imperative. The solar energy is one of the most potential because of its continuous irradiation, harmless and inexhaustibility. Dye-sensitized solar cell (DSSC) is one of the effective energy conversion devices. Because of its simple fabrication procedure, low cost, better stability and cleanliness, DSSC has been intensively investigated. The dye-sensitized nanocrystalline porous TiO2film is an important part of the DSSC, and its structure has great impact on cell's photoelectric performance. In this work, nanostructure design and modification of TiO2with carbon namomaterials favor the separation of photogenerated charge carriers and thus enhance the photoelectric performances of DSSC. The point can be summarized as follows:
     1) Anatase TiO2nanosheets with exposed (001) facets:improved photoelectric conversion efficiency in dye-sensitized solar cells. Very recently, a lot of studies find that the (001) facets of anatase TiO2nanosheets is much more reactive than the thermodynamically stable (101) facets, the obtained nanosheets would offer a new chance to Design highly active photocatalytic materials and devices. Dye-sensitized solar cells (DSSC) are fabricated based on anatase TiO2nanosheets (TiO2NS) with exposed{001} facets. The photoelectric conversion performances of TiO2NS solar cells are also compared with TiO2nanoparticles (TiO2NP) and commercial-grade Degussa P25TiO2nanoparticles (P25) solar cells at the same film thickness, and their photoelectric conversion efficiencies (η) are4.56,4.24and3.64%, respectively. The enhanced performance of TiO2NS solar cell is due to their good crystallization, high pore volume, large particle size and enhanced light scattering. The prepared TiO2nanosheet film electrode should also find its widely potential applications in various fields including photocatalysis, catalysis, electrochemistry, separation, purification and so on.
     2) Adsorption of N719dye on anatase TiO2nanoparticles and nanosheets with exposed (001) facets:equilibrium, kinetic, and thermodynamic studies. Very recently, DSSCs based on two-dimensional anatase TiO2nanosheets have been proven to be effective in improving photoelectric conversion efficiency, because their two-dimensional (2D) nano-structures can enhance the light-collection efficiency by multiple light scattering. On the other hand, the characterization of the dye complex adsorption on the titania surface is very important for a deep understanding of the sensitization phenomenon and, then, optimize the performance of the sensitized cells. However, to the best of our knowledge, there are few systematic studies on the adsorption properties of N719molecules on TiO2NS with dominant (001) facets. In this work, the equilibrium, kinetic and thermodynamic data of the N719dye adsorption on TiO2NS with dominant (001) facets are studied and compared with TiO2NP with dominant (101) facets. Anatase TiO2nanosheets (TiO2NS) with dominant (001) facets and TiO2nanoparticles (TiO2NP) with dominant (101) facets are fabricated by the hydrothermal hydrolysis of Ti(OC4H9)4in the presence and absence of HF, respectively. Adsorption of N719onto the as-prepared samples from ethanol solutions is investigated and discussed. The adsorption kinetic data are modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations, indicating that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of N719on the as-prepared samples are analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities (qmax) of N719on TiO2NS at various temperatures determined using the Langmuir equation are65.2(30℃),68.2(40℃) and76.6(50℃) mg g-1, which are smaller than that on TiO2NP,92.4(30℃),100.0(40℃), and108.2(50℃) mg g-1, respectively. The larger adsorption capacities of N719for TiO2NP versus NS are attributed to its higher specific surface areas. However, the specific adsorption capacities (qmax/SBET) at various temperatures are1.5(30℃),1.6(40℃) and1.7(50℃) mg m-2for TiO2NS, which are otherwise higher than that for NP,0.9(30℃),1.0(40℃) and1.1(50℃) mg m-2, respectively. The larger specific adsorption capacities of N719for TiO2NS versus NP are because the (001) surface is more reactive for dissociative adsorption of reactant molecules compared with (101) facets. Notably, the qmax and qmax/SBET for both TiO2samples increase with increasing temperature, suggesting that adsorption of N719on TiO2surface is endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy and entropy of adsorption process. The present work will provide new understanding on the adsorption process and mechanism of N719molecules onto TiO2NS and NP, which should be of great importance for enhancing the performance of dye-sensitized solar cells.
     3) Enhanced photovoltaic performance of dye-sensitized solar cells based on TiO2nanosheets/graphene composite films. Very recently, DSSCs based on two-dimensional anatase TiO2nanosheets have been proven to be effective in improving photoelectric conversion efficiency, because their two-dimensional (2D) nano-structures can enhance the light-collection efficiency by multiple light scattering. Owing to the2D nano-structures and excellent electronic conductivity of graphene, numerous attempts have been made to combine graphene with TiO2to enhance their photocatalytic and photoelectric performance. In this work, DSSCs based on TiO2NS/graphene nanocomposite films were for the first time fabricated and the effects of graphene on the microstructures and photoelectric conversion performance of the as-fabricated DSSC were investigated. The graphene loading clearly influences the textural properties and the optical absorption properties. Moreover, the charge transfer and transport versus the charge trapping and recombination is also affected by the graphene loading. As a consequence, the photoelectric conversion efficiency of the TiO2NS/graphene nanocomposite film electrodes can be improved to great extent upon graphene loading, which is dependent on the loading amount of graphene. Moderate amount of graphene (<0.75wt.%) obviously enhanced the DSSC efficiency. Graphene not only reduced the electrolyte/electrode interfacial resistance and the charge recombination rate, but also enhanced the transport of electrons from the films to fluorine doped tin oxide (FTO) substrates. Furthermore, the incorporated graphene improved the light harvesting and thus increased the number of the photoinduced electrons. Besides, the modified porous structures of the composite photoanode facilitated the diffusion of electrolyte in the cell, which in turn helped to regenerate the dye. being important to the photovoltatic response of the solar cells. However, excessive graphene loading (>0.75wt.%) largely lowered the DSSC performance. Higher graphene loading not only impaired the crystallinity of the TiO2NS, but also shielded the light adsorption of the dyes and reduced the number of the photogenerated electrons. This study will provide new insight into fabrication and structural design of highly efficient dye-sensitized solar cells.
     4) Dye-sensitized solar cells based on anatase TiO2hollow spheres/carbon nanotube composite films. Resently, TiO2hollow structured materials have received extensive attention owing to high specific surface areas, hierarchically nanoporous structures, good photocatalytic activity and enhanced photoelectric conversion efficiency. Furthermore, taking account of the1D nano-structures and good electrical conductivity of carbon nanotubes (CNT), it is reasonable to conclude that CNT/TiO2composites are beneficial to transport the electrons within TiO2films and enhance their photocatalytic and photoelectric conversion efficiencies. In this work, the TiO2HS/CNTs composite films are for the first time applied to prepare the photoanodes of DSSCs. The photoelectric conversion performances of the DSSCs based on TiO2HS/CNT composite film electrodes are also compared with commercial-grade Degussa P25TiO2nanoparticles (P25)/CNT composite solar cells at the same film thickness. The results indicate that the photoelectric conversion efficiencies (η) of the TiO2HS/CNT composite DSSCs are dependent on the amount of CNT loading in the electrodes. A small amount of CNT clearly enhances DSSC efficiency, while excessive CNT loading significantly lowers their performance. The former is because CNT enhance the transport of electrons from the films to FTO substrates. The latter is due to high CNT loading shielding the visible light from being adsorbed by dyes.This study will provide new insight into fabrication and structural design of highly efficient dye-sensitized solar cells.
引文
[1]Bequerel E. Recherches sur les effets de la radiation chimique de lalumiere solaire, au moyen descourants electriques [J]. C. R. Acad. Sci.,1839,9:145-149.
    [2]Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power [J]. J. Appl. Phys.,1954,25:676-677.
    [3]杨术明,染料敏化太阳能电池[M],郑州:郑州大学出版社,2007.
    [4]Green M A, Emery K, Hishikawa Y, et al. Efficiency Tables (Version 37) [J]. Prog. Photovolt: Res. Appl.,2011,19:84-92.
    [5]Goetzberger A, Luther J, Willeke G. Solar cells:past, present, future [J]. Sol. Energy Mater. Sol. Cells,2002,74:1-11.
    [6]Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook [J]. Mater. Sci. Eng. R,2003,40:1-46.
    [7]O'Regan B, Gratzel M. A low cost and high efficiency solar cell based on dye sensitized colloidal TiO2 films [J]. Nature,1991,353:737-740.
    [8]Nazeetuddin M K, Gratzel M. Conversion of light to electricity by cis-X2Bis (2,2'-bipyridyl-4, 4'-dicaboxylate) ruthenium charge-transfer sensitizes (X=Cl-, Br-, I-, CN-and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.,1993,115:6382-6390.
    [9]Gratzel M. Recent advances in sensitized mesoscopic solar cells [J]. Acc. Chem. Res.,2009, 42(11):1788-1798.
    [10]Fang X, Ma T, Guan G, et al. Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell [J]. J. Electroanal. Chem.,2004, 570 (2):257-263.
    [11]Podraza N J, Chen C, Sainju D, et al. Thin-film compound semiconductor photovoltaics [J]. Mater. Res. Soc. Symp. Proc,2005,865:273.
    [12]Lee W J, Ramasamy E, Lee D Y, et al. Photonics:design, technology, and packaging [J]. Proc. SPIE-Int. Soc. Opt. Eng.,2006,6038:413.
    [13]Hara K, Nishikawa T, Kurashige M, et al. Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru(II) terpyridyl complex photo sensitizer [J]. Sol. Energy Mater. Sol. Cells,2005,85 (1):21-30.
    [14]Nazeeruddin M K, Pechy P, enouard T R, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J. Am. Chem. Soc.,2001,123: 1613-1624.
    [15]Tan B, Wu Y Y, Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle Nanowire Composites [J]. J. Phys. Chem. B,2006,110 (32):15932-15938.
    [16]Zhao D, Peng T Y, Lu L L, et al. Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles [J]. J. Phys. Chem. C,2008,112:8486-8494.
    [17]Kondo Y, Yoshikawa H, Awaga K, et al. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres [J]. Langmuir, 2008,24:547-550.
    [18]Wang Z S, Kawauchi H, Kashima T, et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell [J]. Coord. Chem. Rev.,2004,248:1381-1389.
    [19]Li J L, Wang L D, Kong X M, et al. A simple and efficient method using polymer dispersion to prepare controllable nanoporous TiO2 anodes for dye-sensitized solar cells [J]. Langmuir, 2009,25(32):11162-11167.
    [20]Zhao L, Yu J G, Fan J J, et al. Dye-sensitized solar cells based on ordered titanate nanotube films fabricated by electrophoretic deposition method [J]. Electrochem. Commun.,2009,11, 2052-2055.
    [21]Nakade S, Saito Y, Kubo W, et al. Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells [J]. J. Phys. Chem. B,2003,107 (33): 8607-8611.
    [22]Saito Y, Kambe S, Kitamura T, etal. Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells,2004, 83:1-13.
    [23]Gratzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photochem. Photobiol. A,2004,168 (3):235.
    [24]Uchida S, Chiba R, Tomiha M, et al. Application of titania nanotubes to a dye-sensitized solar cell [J]. Electrochemistry,2002,70 (6):418-420.
    [25]Adachi M, Murata Y, Okada I, et al. Hepatic injury in 12 patients taking the herbal weight loss aids chaso or onshido [J]. J. Electrochem. Soc.,2003,150:488-492+I47.
    [26]Mor G K, Shankar K, Paulose M, et al, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar sells [J]. Nano Lett.,2006,6 (2):215-218.
    [27]Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism [J]. J. Am. Chem. Soc.,2004,126 (45): 14943-14949.
    [28]Song M Y, Kim D K, Ihn K J, et al. Electrospun TiO2 electrodes for dye-sensitized solar cells [J]. Nanotechnology,2004,15 (8):1861-1865.
    [29]Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells [J]. Nat. Mater., 2005,4:455-459.
    [30]Ohsaki Y, Masaki N, Kitamura T, et al. Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization [J]. Phys. Chem. Chem. Phys.,2005,7: 4157-4163.
    [31]Jiu J, Isoda S, Wang F, et al. Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film [J]. J. Phys. Chem. B,2006,110 (5):2087-2092.
    [32]Nazeeruddin M K, Splivallo R, Liska P, et al. A swift dye uptake procedure for dye sensitized solar cells [J]. Chem. Commun.,2003,12:1456-1457.
    [33]Usami A. Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell [J]. Chem. Phys. Lett.,1997, 277:105-108.
    [34]Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells,1998,54:265-275.
    [35]Rothenberger G, Comte P, Gratzel M. A contribution to the optical design of dye-sensitized nanocrystalline solar cells [J]. Sol. Energy Mater. Sol. Cells,1998,58:321-336.
    [36]Yu J G, Li Q L, Shu Z. Dye-sensitized solar cells based on double-layered TiO2 composite films andenhanced photovoltaic performance [J]. Electrochim. Acta,2011,56,6293-6298.
    [37]Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder [J]. Sol. Energy Mater. Sol. Cells,1996,44 (1):99-117.
    [38]陈振兴.《高分子电池材料》[M],北京:化学工业出版社,2006.
    [39]Guo P, Aegerter M A. RU (Ⅱ) sensitized Nb2O5 solar cell made by the sol-gel process[J]. Thin Solid Films,1999,351 (1-2):290-294.
    [40]黄春辉,李富友,黄岩谊.《光电功能超薄膜》第1版[M].北京:北京大学出版社,2001,378-409.
    [41]Desilvoestro J, Gratzel M, Kaven L, et al. Highly efficient sensitization of titanium dioxide [J]. J. Am. Chem. Soc.,1985,107 (10):2988-2990.
    [42]Martinson A B, Hamann T W, Hupp J T, New architectures for dye-sensitized solar cells [J]. Chem. Eur. J.,2008,14 (15):4458-4467.
    [43]Wu J H, Hao S C, Lan J M, et al. Crystal morphology of anatase titania nanocrystals used in dye sensitized solar cells [J]. Cryst. Growth Des,.2008,8:247-252.
    [44]Lee B H, Song M Y, Jang S Y, et al. Charge transport characteristics of high efficiency dye-sensitized solar cells based on electrospun TiO2 nanorod photoelectrodes [J]. J. Phys. Chem. C,2009,113 (51):21453-21457.
    [45]Wang Y H, Yang H X, Xu H M. DNA-like dye-sensitized solar cells based on TiO2 nanowire-covered nanotube bilayer film electrodes [J]. Mater. Lett.,2010,64:164-166.
    [46]Bacsa R R, Dexpert-Ghys J, Verelst M, et al. Synthesis and structure-property correlation in shape-controlled ZnO nanoparticles prepared by chemical vapor synthesis and their application in dye-sensitized solar cells [J]. Adv. Funct. Mater.,2009,19:875-886.
    [47]Gubbala S, Chakrapani V, Kumar V, et al. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires [J]. Adv. Funct. Mater.,2008,18: 2411-2418.
    [48]Xia J B, Masaki N, Jiang K J, et al. Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells [J]. J. Phys. Chem. C,2007, 111 (22):8092-8097.
    [49]Qin P, Linder M, Brinck T, et al. High incident photon-to-current conversion efficiency of p-type dye-sensitized solar cells based on NiO and organic chromophores [J]. Adv. Mater., 2009,21,1-4.
    [50]王青,夏咏梅,何祖明等.染料敏化太阳能电池光阳极及其敏化研究进展[J].材料导报,2009,27(1):90-95.
    [51]Huang S Y, Gratzel M, Frank A J, et al. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J]. J. Phys. Chem. B,1997,101,2576-2582.
    [52]Huang C H, Howarth S, Hornsby T, et al. A highly efficient solar cell made from a dye modified ZnO covered TiO2 nanoporous electrode [J]. Chem. Mater.,2001,13:678-682.
    [53]倪东霞TiCl3处理对Ti02基染料敏化太阳能电池光电性能的影响[D].武汉理工大学硕士研究生学位论文,2011.
    [54]Chandiran A K, Sauvage F, Casas-Cabanas M, et al. Doping a TiO2 Photoanode with Nb5+to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2010,114 (37):15849-15856;
    [55]Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with Cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency [J]. Science,2011,334:629-634.
    [56]李清林.双层Ti02复合膜染料敏化太阳能电池中的制备与性能增强[D].武汉理工大学硕士研究生学位论文,2011.
    [57]Chandiran A K, Sauvage F, Etgar L, et al. Ga3+ and Y3+ cationic substitution in mesoporous TiO2 photoanodes for photovoltaic applications [J]. J. Phys. Chem. C,2011,115 (18): 9232-9240.
    [58]Brown P, Takechi K, Kamat P V, Single-walled carbon nanotube scaffolds for dye-sensitized solar cells [J]. J. Phys. Chem. C,2008,112 (12):4776-4782.
    [59]Zhu H, Wei J, Wang K, et al. Applications of carbon materials in photovoltaic solar cells [J]. Sol. Energy Mater. Sol. Cells,2009,93 (9):1461-1470
    [60]姬少靓.染料敏化太阳能电池光阳极结构的构筑及性能[D].黑龙江大学硕士研究生学位论文,2009.
    [61]Schlichthorl G, Huang S Y, Sprague J, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells:A study by intensity modulated photovoltage spectroscopy [J]. J. Phys. Chem. B,1997,101 (41):8141-8155.
    [62]Grazel M. Perspectives for dye-sensitized nanocrystalline solar cells [J]. Prog. Photovolt. Res. Appl.,2000,8:171-185.
    [63]孔凡太,戴松元,王孔嘉.染料敏化纳米薄膜太阳电池中的染料敏化剂[J].化学通报,2005,61:18-25.
    [64]Bessho T, Yoneda E, Yum J-H, et al. New paradigm in molecular engineering of sensitizers for solar cell applications [J]. J. Am. Chem. Soc.,2009,131(16):5930-5934.
    [65]Horiuchi T, Miura H, Sumioka K, et al. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes [J]. J. Am. Chem. Soc.,2004,126 (39):12218-12219.
    [66]Wang P, Klein C, Humphry-Baker R., et al. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2005,127:808-809.
    [67]Chen C Y, Pootrakulchote N, Wu S J, et al. New ruthenium sensitizer with carbazole antennas for efficient and stable thin film dye-sensitized solar cells [J]. J. Phys. Chem. C, 2009,113 (48):20752-20757.
    [68]Imahori H, Umeyama T, Ito S. Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells [J]. Acc. Chem. Res.,2009,42 (11):1809-1818.
    [69]Furukawa S, Iino H, Iwamoto T, et al. Characteristics of dye-sensitized solar cells using natural dye [J]. Thin Solid Films,2009,518:526-529.
    [70]Lu H P, Mai C L, Tsia C Y, et al. Design and characterization of highly efficient porphyrin sensitizers for green see-through dye-sensitized solar cells [J]. Phys. Chem. Chem. Phys., 2009,44(11):10270-10274.
    [71]Ito S, Miura H, Uchida S, et al. High conversion efficiency organic dye-sensitized solar cells with a novel indoline dye [J]. Chem. Commun.,2008,41:5194-5196.
    [72]Zhang G, Bala H, Cheng Y, et al. High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer [J]. Chem. Commun.,2009, 16:2198-2200.
    [73]Tennakone K, Perera V P S, Kottegada I R M, et al. Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin (IV) oxide films [J]. J Phy. D.,1999,32:347-349.
    [74]Nazeetuddin M K, Pechy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2 based solar cells [J]. J. Am. Chem. Soc.,2001,123: 1613-1624.
    [75]Wang P, Dai Q, Zakeeruddin S M. Ambient temperature plastic crystal electrolyte for efficient all-solid-state dye-sensitized solar cell [J]. J. Am. Chem. Soc.,2004,126: 13590-13591.
    [76]Zhang Y X, Huo Z P, Zhang C N, et al. Research on the dye-sensitized solar cells based on P(VDF-HFP)-type polymer gel electrolyte [J]. Acta Chimica Sinica,2009,67 (19): 2253-2257.
    [77]Li Q H, Wu J H, Tang Q W, et al. Application of polymer gel electrolyte with graphite powder in quasi-solid-state dye-sensitized solar cells [J]. Polym.Compos.,2009,30 (11): 1688-1692.
    [78]Zhou Y F, Xiang W C, Fang S B, et al. Effect of poly (ether urethane) introduction on the performance of polymer electrolyte for all-solid-state dye-sensitized solar cells [J]. Chinese Phys. Lett.,2009,26 (12):128201.
    [79]Fang X M, Ma T L, Akiyama M, et al. Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells [J]. Thin Solid Films,2005,472 (1-2):242-245.
    [80]Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder [J]. Sol. Energy Mater. Sol. Cells,1996,44 (1):99-117.
    [81]Ramasamy E, Lee W J, Lee D Y, et al. Spray coated multiwall carbon nanotube counter electrode for tri-iodide I3- reduction in dye-sensitized solar cells [J]. Electrochem. Commun., 2008,10(7):1087-1089.
    [82]孟庆波,林原,戴松元等.染料敏化纳米晶薄膜太阳能电池[J].物理学与新能源材料专题,2004,33(3):171-181.
    [83]Han L, Fukui A, Chiba Y, et al. Integrated dye-sensitized solar cell module with conversion efficiency of 8.2%[J]. Appl. Phys. Lett.,2009,94,013305.
    [84]Lenzmann F O, Kroon J M, Recent advances in dye-sensitized solar cells [J]. Adv. OptoElectron.,2007,65073:1-10.
    [85]Gratzel M. Recent applications of nanoscale materials:solar cells [M]. Nanostructured materials for electrochemical energy production and storage, R.E. Leite, Ed. Springer:New York,2008; Chapter 1.
    [86]Third international conference on the industrialization of dye sensitizer solar sells [C]. (DSC-IC3), Nara, Japan, April 2009.
    [87]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95(1):49-68.
    [88]Gratzel M. Photoelectrochemical cells [J]. Nature,2001,414,338-344.
    [89]Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells, harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films [J]. J. Am. Chem. Soc., 2006,128 (7):2385-2393.
    [90]Gratzel M. Dye-sensitized solar cells [J]. J. Photochem. Photobiol. C,2003,4 (2):145-153.
    [91]Zhao D, Peng T Y, Lu L L, et al. Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles [J]. J. Phys. Chem. C,2008,112 (22):8486-8494.
    [92]Kondo Y, Yoshikawa H, Awaga K, et al. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres [J]. Langmuir, 2008,24 (2):547-550.
    [93]Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania [J]. Adv. Funct. Mater.,2007,17:1984-1990.
    [94]Yu J G., Zhang L J, Cheng B, et al. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania [J]. J. Phys. Chem. C,2007,111 (28): 10582-10589.
    [95]Yu J G, Wang W G, Cheng B, et al. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment [J]. J. Phys. Chem. C,2009, 113 (16):6743-6750.
    [96]Wang J, Lin Z Q. Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering [J]. Chem. Mater.,2010,22 (2):579-584.
    [97]Wang J, Zhao L, Lin V S Y, et al. Formation of various TiO2 nanostructures from electrochemically anodized titanium [J]. J. Mater. Chem.,2009,19,3682-3687.
    [98]Ngamsinlapasathian S, Pavasupree S, Suzuki Y, et al. Dye-sensitized solar cell made of mesoporous titania by surfactant-assisted templating method [J]. Sol. Energy Mater. Sol. Cells,2006,90 (18-19):3187-3192.
    [99]Wei M D, Konishi Y, Zhou H S, et al. Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide [J]. J. Mater. Chem.,2006,16,1287-1293.
    [100]Chiba Y, Islam A, Watanabe Y, et al. Dye-sensitized solar cells with conversion efficiency of 11.1%[J]. Jpn. J. Appl. Phys. Part 2,2006,45 (25):L638-L640.
    [101]Hou K, Tian B Z, Li F Y, et al. Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells [J]. J. Mater. Chem.,2005,15,2414-2420.
    [102]Park H, Choi W. Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors [J]. J. Phys. Chem. B,2004,108 (13):4086-4093.
    [103]Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chem. Mater.,2002,14 (9):3808-3816,
    [104]Yu J C, Ho W K, Yu J G, et al. Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films [J]. Langmuir, 2003,19 (9):3889-3896.
    [105]Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic ions.2. Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system [J]. Langmuir,2000,16 (23):8964-8972.
    [106]Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic anions.1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system [J]. Langmuir, 2000,16 (6):2632-2641.
    [107]Wang C M, Mallouk T E. New photochemical method for selective fluorination of organic molecules [J]. J. Am. Chem. Soc.,1990,112 (6):2016-2041.
    [108]Hattori A, Yamamoto M, Tada H, et al. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films [J]. Chem. Lett,1998,27 (8):707-708.
    [109]Yang H G, Zeng H C. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening [J]. J. Phys. Chem. B,2004,108 (11):3492-3495.
    [110]Yu J G, Liu S W, Yu H G. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation [J]. J. Catal.,2007,249 (1): 59-66.
    [111]Yang H G, Sun C H, Qiao S Z. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature,2008,453:638-641.
    [112]Han X G, Kuang Q, Jin M S, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties [J]. J. Am. Chem. Soc.,2009,131 (9):3152-3153.
    [113]Yu J G, Zhang J. A simple template-free approach to TiO2 hollow spheres with enhanced Photocatalytic activity [J]. Dalton Trans.,2010,39:5860-5867.
    [114]Dai Y Q, Cobley C M, Zeng J, et al. Synthesis of anatase TiO2 nanocrystals with exposed {001} facets [J]. Nano Lett.,2009,9 (6):2455-2459.
    [115]Amano F, Yasumoto T, Prieto-Mahaney O, et al. Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium (Ⅳ) oxide [J]. Chem. Commun.,2009, 45:2311-2313.
    [116]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl. Chem.1985,57 (4):603-619.
    [117]Qi L F, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets [J]. Phys. Chem. Chem. Phys.2011,13:8915-8923.
    [118]Barnard A S, Curtiss L A. Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry [J]. Nano Lett.,2005,5 (7):1261-1266.
    [119]Liu S W, Yu J G, Jaroniec M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed{001} facets [J]. J. Am. Chem. Soc.,2010,132 (34):11914-11916.
    [120]Xiang Q J, Yu J G, Jaroniec M. Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed{001} facets [J]. Chem. Commun.,2011,47: 4532-4534.
    [121]Zhang D Q, Li G S, Yang X F, et al. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets [J]. Chem. Commun.2009,4381-4383;
    [122]Yang H G, Liu G, Qiao S Z, et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets [J]. J. Am. Chem. Soc.,2009,131 (11): 4078-4083.
    [123]Yu J G., Fan J J, Zhao L. Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method [J]. Electrochim. Acta,2010,55:597-602.
    [124]Park N G, Lagemeaat J V D, Frank A J. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells [J]. J. Phys. Chem. B,2000,104 (38):8989-8994.
    [125]Yu J G, Zhou M H, Effects of calcination temperature on microstructures and photocatalytic activity of titanate nanotube films prepared by an EPD method [J]. Nanotechnology,2008, 19:045606.
    [126]Yu J G, Wang G H, Cheng B, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders [J]. Appl. Catal. B,2007,69:171-180.
    [127]Xiang Q J, Lv K L, Yu J G Pivotal role of fluorinein enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air [J]. Appl. Catal. B,2010,96:557-564.
    [128]Yu J G, Xiang Q J, Zhou M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titaniana norods and first-principles study for electronic structures [J]. Appl. Catal. B,2009,90:595-602.
    [129]Yu J G, Xiang Q J, Ran J R, et al. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets [J]. CrystEngComm,2010,12:872-879.
    [130]Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts.1. synthesis by spray pyrolysis and surface characterization [J]. Chem. Mater.,2005,17 (10): 2588-2595.
    [131]Huang D G, Liao S J, Liu J M, et al. Preparation of visible-light responsive NF-codoped TiO2 photocatalyst by a sol-gel-solvothermal method [J]. J. Photochem. Photobiol. A,2006, 184 (3):282-288.
    [132]Li D, Haneda H, Hishita S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde [J]. J. Fluorine Chem. Mater.,2005,126 (1):69-77.
    [133]Fujishima A, Honda K. Electrochemical proteolysis of water at a semiconductor [J]. Nature, 1972,37:238-239。
    [134]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95:69-96.
    [135]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science 2001,293:269-271.
    [136]Yu J G, Wang W G, Cheng B. Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n Junction NiO/TiO2 photocatalyst [J]. Chem. Asian J.,2010, 5:2499-2506.
    [137]Wang J, Lin Z Q. Anodic formation of ordered TiO2 nanotube arrays:effects of electrolyte temperature and anodization potential [J]. J. Phys. Chem. C,2009,113 (10):4026-4030;
    [138]Wang J, Lin Z Q. Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization [J]. Chem. Mater.,2008,20 (4):1257-1261.
    [139]Yu J G, Hai Y, Cheng B. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification [J]. J. Phys. Chem. C,2011,115 (11):4953-4958.
    [140]Yu J G., Fan J J, Lv K L. Anatase TiO2 nanosheets with exposed (001) facets:improved photoelectric conversion efficiency in dye-sensitized solar cells[J]. Nanoscale,2010,2: 2144-2149.
    [141]Leon C P, Kador L, Peng B, et al. Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-vis, Raman, and FTIR spectroscopies [J]. J. Phys. Chem. B, 2006,110 (17):8723-8730.
    [142]Nazeeruddin M K, Humphry-Baker R, Liska P, et al. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell [J]. J. Phys. Chem. B,2003,107 (34):8981-8987.
    [143]Murakoshi K, Kano G, WadaY, et al. Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell [J]. J. Electroanal. Chem.,1995,396:27-34.
    [144]Yu J G, Qi L F, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets [J]. J. Phys. Chem. C,2010,114: 13118-13125.
    [145]Yu J G, Ran J R. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2 [J]. Energy Environ. Sci.,2011,4:1364-1371.
    [146]Cheng B, Le Y, Cai W Q, et al. Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congored in water [J]. J. Hazard. Mater.2011,185: 889-897.
    [147]Wang K J H, Jung S H, Park D W, et al. Heterogeneous ruthenium dye adsorption on nano-structured TiO2 films for dye-sensitized solar cells [J]. Curr. Appl. Phys.2010,10: S184-S187.
    [148]Hameed B H, Ahmad A A, Aziz N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash [J]. Chem. Eng. J.,2007,133:195-203.
    [149]Alkan M, Dogan M., Adsorption kinetics of victoria blue onto perlite [J]. Fresen. Environ. Bull.2003,12:418-425.
    [150]Asfour H M, Fadali O A, Nassar M M, et al. Equilibrium studies on adsorption of basic dyes on hard wood [J]. J. Chem. Technol. Biotechnol.1985,35:21-27..
    [151]Tan I A W, Hameed B H, Ahmad A L. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon [J]. Chem. Eng. J,2007,127:111-119.
    [152]Tan I A W, Ahmad A L, Hameed B H. Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon [J]. J. Hazard. Mater.2009,164:473-482.
    [153]Nollet H, Roels M, Lutgen P, et al. Removal of PCBs from waste water using fly ash [J]. Chemosphere 2003,53:655-665.
    [154]Weber W J, Morris J C. Proceedings of the International Conference on Water Pollution Symposium.vol.2, Pergamon, Oxford,1962:231-266.
    [155]Cheung W H, Szeto Y S, McKay G. Intraparticle diffusion processes during acid dye adsorption onto chitosan [J]. Bioresour. Technol.2007,98 (15):2897-2904.
    [156]Wu F C, Tseng R L, Juang R S. Comparisons of porous and adsorption properties of carbons activated by steam and KOH [J]. J. Colloid Interface Sci.,2005,283:49-56.
    [157]Langmuir I. The adsorption of gases on plane surfaces of glass, mica, and platinum [J]. J. Am. Chem. Soc.1918,40:1361-1402.
    [158]Hall K R, Eagleton L C, Acrivos A, Vermeulen T. Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions[J]. Ind. Eng. Chem. Fundam,1966,5: 212-223.
    [159]Cai W Q, Yu J G, Jaroniec M. Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water [J]. J. Mater. Chem.,2010,20:4587-4594.
    [160]Freundlich H M F. Uber die adsorption in losungen [J]. J. Phys. Chem,1906,57:385-470.
    [161]Kumar K V, Kumaran A. Removal of methylene blue by mango seed kernel powder [J]. Biochem. Eng. J.2005,27 (1):83-93.
    [162]Liu S W, Yu J G, Mann S. Synergetic codoping in fluorinated Ti1-xZrxO2 hollow microspheres [J]. J. Phys. Chem. C,2009,113 (24):10712-10717.
    [163]Leon C P, Kador L, Peng B.et al. Influence of the Solvent on the Surface-Enhanced Raman Spectra of Ruthenium(Ⅱ) Bipyridyl Complexes [J]. J. Phys. Chem. B 2005,109:5783-5789.
    [164]Yu J G, Tao H Z, Cheng B. Insitu monitoring of heterogeneous catalytic reactions [J]. ChemPhysChem,2010,11:1617-1618.
    [165]Wang M K, Chen P, Humphry-Baker R. The influence of charge transport and recombination on the performance of dye-sensitized solar cells [J]. ChemPhysChem,2009, 10:290-299.
    [166]Yu J G, Li Q L, Fan J J, et al. Fabrication and photovoltaic performance of hierarchically titanate tubular structures self-assembled by nanotubes and nanosheets[J]. Chem. Commun., 2011,47:9161-9163.
    [167]Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene [J]. Chem. Rev., 2010,110:132-145.
    [168]Xiang Q J, Yu J G. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets [J]. Nanoscale,2011,3:3670-3678.
    [169]Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition [J]. J. Mater. Chem.2011,21:7548-7551.
    [170]Hong W J, Xu Y X, Lu G W, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells [J]. Electrochem. Commun.2008,10: 1555-1558.
    [171]Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts [J]. Chem. Soc. Rev.,2012,41:782-796.
    [172]Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells [J]. ACS Nano,2010,4 (10):6203-6211.
    [173]Kavan, L.; Yum, J. H.; Gratzel, M.; Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets [J]. ACS Nano,2011,5 (1):165-172.
    [174]Zhang H, Lv X J, Li Y M, et al. P25-graphene composite as a high performance photocatalyst [J].ACS Nano,2010,4 (1):380-386.
    [175]Du, J.; Lai, X. Y; Yang, N. L, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films:improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities [J]. ACS Nano,2010,5 (1):590-596.
    [176]Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites [J]. J. Phys. Chem. C,2011,115: 7355-7363.
    [177]Zhang Y P, Pan C X. TiO2/grapheme composite from thermal reaction of grapheme oxide and its photocatalytic activity in visible light [J]. J. Mater. Chem.,2011,46:2622-2626.
    [178]Kim S R, Parvez M K, Chhowall M, UV-reduction of grapheme oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells [J]. Chem. Phys. Lett.,2009,483:124-127.
    [179]Sun S R, Gao L, Liu Y Q. Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation [J]. Appl. Phys. Lett.2010,96:083113.
    [180]Yang N L, Zhai J, Wang D, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells [J]. ACS Nano,2010,4 (2): 887-894.
    [181]Tang Y B, Lee C S, Xu J, et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application [J]. ACS Nano,2010,4 (6): 3482-3488.
    [182]Yu J G, Ma T T, Liu G, et al. Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification [J]. Dalton Trans.,2011,40:6635-6644.
    [183]Nethravathi C, Rajamathi M. Chemically modified grapheme sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon,2008,46: 1994-1998.
    [184]Fan J J, Cai W Q, Yu J G. Adsorption of N719 dye on anatase TiO2 nanoparticles and nanosheets with exposed (001) facets:equilibrium, kinetic, and thermodynamic studies, Chem. Asian J.,2011,6:2481-2490.
    [185]Kim U J, Furtado C A, Liu X M, et al. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes [J]. J. Am. Chem. Soc.,2005,127 (44):15437-15445.
    [186]Zhang L, Koka R V. A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy [J]. Mater. Chem. Phys.,1998,57:23-32.
    [187]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45:1558-1565.
    [188]Li Q, Guo B D, Yu J G, et al. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets [J]. J. Am. Chem. Soc.,2011,133: 10878-10854.
    [189]Yu J G, Ma T T, Liu S W. Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel [J]. Phys. Chem. Chem. Phys., 2011,13 (8):3491-3501.
    [190]K. Schwartsburg, F. Wllig, Influence of trap filling on photocurrent transients in polycrystalline TiO2 [J]. Appl. Phys. Lett.,1991,58 (22):2520-2522.
    [191]Yu J G, Fan J J, Cheng B. Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films [J]. J. Power Sources,2011,196:7891-7898.
    [192]Fischer A C, Peter L M, Ponomarev E A, et al. Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells [J]. J. Phys. Chem. B,2000,104 (5):949-958.
    [193]Shkrob I A, Sauer M C. Hole scavenging and photo-stimulated recombination of electron-hole pairs in aqueous TiO2 nanoparticles [J]. J. Phys. Chem. B,2004,108 (33): 12497-12511.
    [194]Yu J G, Dai G P, Huang B B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays [J]. J. Phys. Chem. C,2009,113: 16394-16401.
    [195]Qian X M, Qin D Q, Song Q. et al. Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes [J]. Thin Solid Films 2001,385(1-2):152-161.
    [196]Zhang Z P, Zakeeruddin S M, O'Regan B C, et al. Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells [J]. J. Phys. Chem. B, 2005,109 (46):21818-21824.
    [197]Hagfeld A, Gratzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95:49-68.
    [198]Q. Wang, J.E. Moser, M. Gratzel, Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B,2005,109 (31):14945-14953.
    [199]Lee K M, Hu C W, Chen H W, et al.Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells [J]. Sol. Energy Mater. Sol. Cells,2008, 92(12):1628-1633.
    [200]Yanagida S, Yu Y H, Manseki K, et al. Iodine/iodide-free dye-sensitized solar cells [J]. Acc. Chem. Res.,2009,42 (11):1827-1838.
    [201]Yen C Y, Lin Y F, Liao S H,et al. Nanotechnology,2008,19:375305.
    [202]Zhu G, Xu T, Lv T, et al. Graphene-incorporated nanocrystalline TiO2 films for CdS quantum dot-sensitized solar cells [J]. J. Electroanal. Chem.,2011,650:248-251.
    [203]Wang Z S, Koumura N, Cui Y, et al. Exploitation of ionic liquid electrolyte for dye-sensitized solar cells by molecular modification of organic-dye sensitizers [J]. Chem. Mater.,2009,21:2810-2816.
    [204]Mora-Sero I, Gimenez S, Fabregat-Santiago F, et al. Recombination in quantum dot sensitized solar cells [J]. Acc. Chem Res.2009,42 (11):1848-1857.
    [205]M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells [J]. Inorg. Chem., 2005,44 (20):6841-6851.
    [206]Meyer G J. Molecular approaches to solar energy conversion with coordination compounds anchored to semiconductor surfaces [J]. Inorg. Chem.,2005,44 (20):6852-6864.
    [207]Chen D H, Huang F Z, Cheng Y B, et al. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes:a superior candidate for high-performance dye-sensitized solar cells [J]. Adv. Mater.,2009,21:2206-2210.
    [208]Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2009,131 (11): 3985-3990.
    [209]Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [210]Kongkan A, Kamat P V. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions [J].ACS Nano,2007,1 (21):13-21.
    [211]Yu H T, Quan X, Chen S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability [J]. J. Phys. Chem. C,2007,111 (35):12987-12991.
    [212]Yu Y, Yu J C, Yu J G, et al. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes [J]. Appl. Catal. A,2005,289 (2):186-196.
    [213]Muduli S, Lee W J, Dhas V, et al. Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2-MWCNT nanocomposites [J]. ACS Appl. Mater. Interf.,2009,1 (9):2030-2035.
    [214]Lee T Y, Alegaonkar P S, Yoo J B. Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes [J]. Thin Solid Films,2007,515:5131-5135.
    [215]T. Sawatsuk, A. Chindaduang, C. Sae-kung, et al. Dye-sensitized solar cells based on TiO2-MWCNTs composite electrodes:Performance improvement and their mechanisms [J]. Diamond Relat. Mater.,2009,18:524-527.
    [216]Trapalis C, Todorova N, Anastasescu M, et al. Atomic force microscopy study of TiO2 sol-gel films thermally treated under NH3 atmosphere [J]. Thin Solid Films,2009,517 (23): 6243-6247.
    [217]Yu J G, Shi L. One-pot hydrothermal synthesis and enhanced photocatalytic activity of trifluoroacetic acid modified TiO2 hollow microspheres [J]. J. Mol. Catal. A,2010,326: 8-14.
    [218]Syoufian A, Nakashima K. Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst:Optimization of reaction by peroxydisulfate electron scavenger [J]. J. Colloid Interface Sci.,2007,313 (1):213-218.
    [219]Liu S W, Yu J G, Mann S. Nanostructured photoelectrode consisting of TiO2 hollow spheres for non-volatile electrolyte-based dye-sensitized solar cells [J]. Nanotechnology,2009,20: 356802.
    [220]Kim G S, Seo H K, Godble V P, et al. Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles:Application to dye-sensitized solar cells [J]. Electrochem. Commun.,2006,8 (6):961-966.
    [221]Zhou W, Pan K, Zhang L L, et al. Solar-induced self-assembly of TiO2-β-cyclodextrin-MWCNT composite wires [J]. Phys. Chem. Chem. Phys.,2009,11: 1713-1718.
    [222]Yu R Q, Chen L W, Liu Q P, et al. Platinum deposition on carbon nanotubes via chemical modification [J]. Chem. Mater.,1998,10 (3):718-722.
    [223]Yan X B, Tay B K, Yang Y. Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 sol [J]. J. Phys. Chem. B,2006,110 (51):25844-25949.
    [224]Li X H, Niu J L, Zhang J, et al. Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles [J]. J. Phys. Chem. B,2003,107 (11):2453-2458.
    [225]Hu G J, Meng X F, Feng X Y, et al. Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties [J]. J. Mater. Sci.,2007,42: 7162-7170.
    [226]Osswald S, Flahaut E, Gogotsi Y. In situ raman spectroscopy study of oxidation of double-and single-wall carbon nanotubes [J]. Chem. Mater.,2006,18 (6):1525-1533.
    [227]Xu C Y, Zhang P X, Yan L. Blue shift of Raman peak from coated TiO2 nanoparticles [J]. J. Raman Spectrosc.,2001,32:862-865.
    [228]Yu J G, Yu J C, Leung M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania [J]. J. Catal.,2003, 217:69-78.
    [229]Yu J G., Zhang L J, Cheng B, et al. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania [J]. J. Phys. Chem. C,2007,111 (28): 10582-10589.
    [230]Xiang Q J, Yu J G, Cheng B, et al. Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres [J]. Chem. Asian J.,2010,5:1466-1474.
    [231]M Gratzel. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photochem. Photobiol. A,2004,164:3-14.
    [232]Heimer T A, Heilweil E J, Bignozzi C A, et al. Electron Injection, Recombination, and Halide Oxidation Dynamics at Dye-Sensitized Metal Oxide Interfaces [J]. J. Phys. Chem. A, 2000,104(18):4256-4262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700