控制合成硼碳氮材料的新方法探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本文中,我们借鉴水热合成立方氮化硼过程中积累的经验,并结合溶剂热反应过程的具体特点,首次将选相原位合成方法用于控制溶剂热合成氮化硼的反应过程,并初步探讨了其中的关键影响因素以及晶体生长过程控制方法。在优化的实验条件下,我们利用该方法成功制备了立方氮化硼纳米晶,并发现了氮化硼晶体生长的基本规律。另外,我们还首次提出了一种新的水热恒压合成方法,并将它应用于可控制备氮化碳材料的探索中。具体内容如下:
     为了增强溶剂热合成氮化硼反应过程的可控性,提高反应原料的利用率和样品的产率,我们用三卤化硼与有机碱的配合物取代三卤化硼作为反应原料制备氮化硼。在综合考虑配合物的化学稳定性、热稳定性以及在溶剂中的溶解度等因素后,确定吡啶(C_5H_5N)与三溴化硼(BBr_3)的配合物C_5H_5N·BBr_3作为硼源。利用红外光谱、拉曼光谱、核磁共振以及热分析对该配合物的性质进行了系统的分析,在此基础上确定了主要的实验参数;进一步地,以氮化锂(Li_3N)作为氮源,在吡啶中与C_5H_5N·BBr_3反应制备了氮化硼纳米晶,并对反应过程的关键因素进行了系统研究。结果表明,反应温度、反应原料摩尔配比和反应体系的压力等对产物的物相和结晶质量具有重要影响。
     利用C_5H_5N·BBr_3为原料合成氮化硼时,虽然在一定程度上提高了原料的利用率和氮化硼的产率,但是由于受到实验方法自身的限制,还无法真正实现氮化硼的可控制备。为了加强对反应过程的控制,我们进一步将选相原位合成方法应用于溶剂热合成氮化硼的探索中。在实验过程中我们发现:低的反应温度有利于六方氮化硼(hBN)生成,而升高反应温度则利于提高立方氮化硼(cBN)的含量。在保持其他条件不变的情况下,将反应温度提高到320℃可以得到结晶质量较好且粒度较大的cBN晶粒;如果L_3N相对过量,那么hBN将被抑制,样品的主要物相变成了cBN和正交氮化硼(eBN)。当配合物C_5H_5N·BBr_3与Li_3N的摩尔比为1:5时,利用选相原位合成方法在250℃可以制备粒径接近单分散的氮化硼纳米晶。另外,预先向反应釜充入高纯氮气,使反应过程一开始就在较高的压力下进行,制备的氮化硼样品结晶质量较差。利用苯和吡啶的混合溶剂合成氮化硼时,尽管制备的样品整体结晶质量不高,但是有利于对晶体生长过程的调控,能够得到粒度较大的hBN微晶。
     与立方氮化硼类似,beta相氮化碳(β-C_3N_4)具有一系列优异的性能和重要的应用价值,因此有关它的可控制备方法的探索具有重要的意义。为了实现β-C_3N_4的可控制备,我们提出了一种新的水热恒压合成方法,利用这种方法,通过相对独立地调变水热反应体系的温度和压力,初步尝试了用水热恒压合成方法制备氮化碳,并对反应过程的关键影响因素进行了系统研究。结果表明,提高反应温度(高于NaN_3的分解温度)不仅有利于氮化碳的生成和稳定,而且有利于减少甚至避免氧化铁杂质的产生;提高反应体系的压力能够抑制氮原子结合成氮分子的过程,减少氮源的损失和促进氮化碳形成;经过初步优化实验条件后,在300℃和160 MPa可以制备具有较高β-C_3N_4含量的氮化碳样品。
     对于氮化硼和氮化碳材料,它们的物相结构、结晶质量和粒度直接决定了它们的应用范围和价值。为了克服已有方法的缺陷,实现氮化硼和氮化碳材料在物相、结晶质量以及粒度方面的可控制备,我们提出了选相原位合成和水热恒压合成方法,并利用它们开展了初步的研究探索。尽管这些方法还远未达到完善的程度,但是它们为氮化硼和氮化碳等材料的制备和体块晶体的生长提供了一种温和的、更为可控的途径。
Based on the knowledge obtained from prepaing boron nitride by hydrothermal synthesis,together with the consideration of the characteristics of solvothermal process,a novel in-situ phase-selective synthesis route has been successfully introduced to the preparation of BN for the first time.Both the key factors affecting the preparation and the growth mechanism of BN crystals were preliminarily explored and discussed.Following these strategies,BN nanocrystals have been obtained under optimized conditions.And now we are able to control the growth process of BN to some extent.Furthermore,another new constant-pressure hydrothermal synthesis method has also been developed and used to synthesize carbon nitride.And products containing graphitic(g-)and beta(β-)carbon nitride have been attained.The detailed results are presented as follow:
     To control the solvothermal reaction process effectively,and to improve the yield of BN samples,the boron tribromide was replaced by the complex resulting from the reactions between boron tribromide and pyridine(C_5H_5N·BBr_3).On the basis of comprehensive characterization of this complex by FTIR,Raman,NMR and TG-DTA, the key experimental parameters were determined.Furthermore,BN nanocrystals were prepared by reacting lithium nitride(Li_3N)with the above complex in dry and oxygen-free pyridine under solvothermal conditions.The results indicate that the temperature,molar ratio of the reactants and pressure play important role in determining the phases and crystalline quality of BN products.
     Although the yield of BN samples have been obviously improved by using the complex C_5H_5N·BBr_3 as the boron source,it is still quite difficult to prepare BN nanocrystals in controllable way due to the intrinsic disadvantages of solvothermal synthesis method.In order to overcome this problem,the in-situ phase-selective solvothermal route is thus developed and employed.And the experimental results indicate that,the formation of hexagonal boron nitride(hBN)is favoured at comparatively low temperature,while the content of cubic boron nitride(cBN) increases with increasing temperature.And quite large cBN micro-crystals can be prepared when the temperature increased to 320℃.Hexagonal BN can be suppressed by adding excessive Li_3N into the reaction solution,at the same time,the formation of cBN and orthorhombic boron nitride(eBN)is promoted.The pressure also affects the phase and crystalline perfection of BN samples.If high purity nitrogen is impelled into the autoclave beforehand to make the reaction start with higher pressure,the crystalline quality of the obtained BN samples will become rather poor.Besides,the mixture of benzene and pyridine has also been used as the solvent during the in-situ phase-selective solvothermal syntheis of BN.Though reducing the crystalline quality of the samples,the mixture solvent favours the bulk crystal growth of BN;and large hBN micro-crystals have been obtained.
     Beta carbon nitride(β-C_3N_4)has a set of extreme properties similar to or even superior to cBN.In this study,another new constant-pressure hydrothermal synthesis route has been developed and used to explore the controlled synthesis of carbon nitride.As this method is employed,carbon nitride can be synthesized by adjusting the temperature and pressure independently.And the key factors influencing the phases and cyrstalline perfection of carbon nitride have been investigated.The results reveal that,the formation and stabilization of carbon nitride are facilitated at higher temperature(i.e.,above the decomposition temperature of NaN_3),and the impurities containing iron oxide are reduced,or even eliminated.Increasing the reaction pressure will inhibit the forming of nitrogen molecules to reduce the loss of nitrogen source, and promote the production of carbon nitride.By optimizing the preparation parameters,a sample with quite highβ-C_3N_4 content has been prepared at 300℃and 160 MPa.
     Generally,the potential application and practical value of both BN and C_3N_4 are determined by their phase structure,crystalline perfection and the particle size.To synthesize cBN andβ-C_3N_4 with specific crystalline perfection and particle size under moderate conditions,we have developed several new methods,e.g.in-situ phase -selective synthesis method,and constant-pressure hydrothermal synthesis method. And a series of experimental investigations have been carried out.Although these methods are still far from being perfect,they at least prove the possibilities of synthesizing cBN andβ-C_3N_4 in a moderate and controllable way.
引文
[1]V.L.Solozhenko,D.Hausermann,and M.Mezouar et al.,Equation of state of wurtzitic boron nitride to 66 GPa,Appl.Phys.Lett,,1998,72:1691-1693.
    [2]T.Yoshida,Vapour phase deposition of cubic boron nitride,Diamond Relat.Mater.,1996,5:501-507.
    [3]N.V.Novikov,I.A.Petrusha,and L.K.Shvedov et al.,Abrupt irreversible transformation of rhombohedral BN to a dense form in uniaxial compression of CVD material,Diam.Relat.Mater.,1999,8:361-363.
    [4]A.V.Kurdyumov,V.L.Solozhenko,and W.B.Zelyavski et al.,Lattice Parameters of Boron Nitride Polymorphous Modifications as a Function of Their Crystal-Structure Perfection,,J.Appl.Crystallogr.,1995,28:540-545.
    [5]J.Liu,Y.K.Vohra,J.T.Tarvin,and S.S.Vagarali,Cubic-to-rhombohedral transformation in boron nitride induced by laser heating:In situ Raman spectroscopy studies,Phys.Rev.B,1995,51:8591-8594.
    [6]A.Olszyna,J.Konwerska-Hrabowska,and M.Lisicki et al.,Molecular structure of E-BN,Diam.Relat.Mater.,1997,6:617-620.
    [7]J.Thomas,N.E.Wetston,and T.E.O'Connor et al.,Turbostratic boron nitride,thermal transformation to ordered-layer-lattice boron nitride,J.Am.Chem.Soc.,1963,84(24):4619-4622.
    [8]S.Alkoy,C.Toy,and T.Gonul et al.,Crystallization behavior and characterization ofturbostratic boron nitride,J.Eur.Ceram.Soc.,1997,17(12):1415-1422.
    [9]T.Kobayashi,S.Tashiro,and T.Sekine et al.,Phase transformation of turbostratic BN by shock compression,Chem.Mater.,1997,9(1):233-236.
    [10]R.Zedlitz,M.Heintze,and M.B.Schubert et al.,Properties of amorphous boron nitride thin films,J.Non-Cryst.Solids,1996,198-200(1):403-406.
    [11]L.Vel,G.Demazeau,and J.Etourneau et al.,Cubic boron nitride:synthesis,physicochemical properties and applications,Mater.Sci.Engin.B,1991,10:149-164.
    [12]R.R.Wills,Wurtzitic boron nitride-a review,Int.J.High Technology Ceramics, 1985,1(2):139-153.
    [13]S.S.Batsanov,L.J.Kopaneva,and E.V.Lazareva et al.,On the nature of boron nitride e-phase,Propellants,Explosives,Pyrotechnics,1993,18:352-355.
    [14]T.Akashi,H.R.Pak,and A.B.Sawaoka,Structural changes of wurtzite-type and zincblende-type boron nitrides by shock treatments,J.Mater.Sci.,1986,21:4060-4066.
    [15]H.Nameki,T.Sekine,and T.Kobayashi et al.,Rapid quench formation of E-BN from shocked turbostratic BN precursors,J.Mater.Sci.Lett.,1996,15:1492-1494.
    [16]A.V.Pokropivny,Structure of the boron nitride E-phase:Diamond lattice of B_(12)N_(12)fullerenes,Diam.Relat.Mater.,2006,15:1492-1495.
    [17]V.V.Pokropivny,A.S.Smolyar,and A.V.Pokropivny,Fluid synthesis and structure of a new boron nitride polymorph-hyperdiamond fulborenite B_(12)N_(12)(E-phase),Phys.Solid State,2007,49(3):591-598.
    [18]J.Y.Huang,and Yuntian T.Zhu,Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressures and temperatures,Chem.Mater.,2002,14:1873-1878.
    [19]T.Ishii,T.Sato,and Y.Sekikawa et al.,Growth of whiskers of hexagonal boron nitride,J.Cryst.Growth,1981,52(1):285-289.
    [20]W.J.Zhang,Y.M.Chong,I.Bello et al.Nucleation,growth and characterization of cubic boron nitride(cBN)films,J.Phys.D:Appl.Phys.,2007,40:6159-6174
    [21]W.Auwarter,H.U.Suter,and H.Sachdev et al.,Synthesis of one monolayer of hexagonal boron nitride on Ni(111)from B-trichloroborazine(C1BNH)_3,Chem.Mater.,2004,16:343-345.
    [22]K.Watanabe,T.Taniguchi,and H.Kanda,Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal,Nat.Mater.,2004,3:404-409.
    [23]T.Taniguchi,K.Watanabe,and S.Koizumi,Defect characterization of cBN single crystals grown under HP/HT,Phys.Status Solidi A,2004,201:2573-2577.
    [24]Y.Kubota,K.Watanabe,and O.Tsuda et al.,Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure,Science,2007,317:932- 934.
    [25]Y.Kubota,K.Watanabe,and O.Tsuda et al.,Hexagonal boron nitride single crystal growth at atmospheric pressure using Ni-Cr solvent,Chem.Mater.,2008,20(5):1661-1663.
    [26]T.Ishii,and T.Sato,Growth of single crystals of hexagonal boron nitride,J.Cryst.Growth,1983,61(3):689-690.
    [27]M.Kuhr,S.Reinke,and W.Kulisch et al.,Nucleation of cubic boron nitride (c-BN)with ion-induced plasma-enhanced CVD,Diam.Relat.Mater.,1995,4(4):375-380.
    [28]郭志猛,宋月清,陈宏霞,等,《超硬材料与工具》.冶金工业出版社,1996,p19。
    [29]田民波和刘德令编译,《薄膜科学与技术手册》,机械工业出版社,1991,p.861。
    [30]S.R S.Aray,A.Damico,Preparation,properties and applications of boron nitride thin films,Thin Solid Films,1998,157(2):267-282.
    [31]G.M.Ingo,G.Padeletti,X-ray photoelectron spectroscopy and secondary-ion mass spectrometry of boron nitride thin films on austenitic stainless steel,Thin Solid Films,1993,228(1-2):276-279.
    [32]G.Satta,G.Cappellini,and M.Palummo et al.,Ab initio optical properties of BN in the cubic and in the layered hexagonal phase,Computational Materials Science,2001,22:78-80.
    [33]H.Edgar,Prospects for device implementation of wide band gap semiconductors,J.Mater.Res.,1992,7(1):235-235.
    [34]Y.Kimura,T.Wakabayashi,and K.Okada,Boron nitride as a lubricant additive,Wear,1999,232:199-206.
    [35]T.Soma,S.Sawaoka,and S.Saito,Characterization of wurtzite type boron nitride synthesized by shock compression,Mater.Res.Bull.,1974,9:755-762.
    [36]P.K.Lam,R.M.Wentzcovitch,and M.L.Cohen,Synthesis and properties of boron nitride,in:J.J.Pouch,S.A.Alterovitz(Eds.),Materials Science Forum,vols.54,55,Trans Tech Publications,Zurich,Switzerland,1990,p.165.
    [37]R.Ahmeda,F.Aleema,and S.J.Hashemifar et al.,First principles study of structural and electronic properties of different phases of boron nitride,Physica B,2007,400:297-306.
    [38]J.H.Edgar,The properties of Ⅲ group nitrides.Inspec,London,1994.
    [39]V.F.Britun,A.V.Kurdyumov,and N.I.Borimchuk,Formation of diamond-like BN phases under shock compression of graphite-like BN with different degree of structural ordering,Diam.Relat.Mater.,2007,16:267-276.
    [40]谭华,韩钧万,等,冲击波合成氮化硼的形貌及热稳定性,高压物理学报,1995,9(1):53-58。
    [41]T.S.Bartnitskaya,T.Ya.Kosolapova,and A.V.Kurdyumov et al.,Structure and some properties of fine-grained graphite-like boron nitride,J.Less Common Met.,1986,117(1-2):253-258.
    [42]V.L.Solozhenko,and N.F.Ostrovskaya,Structural peculiarities of graphite-like boron nitride produced by crystallization in the region of metastability,Mater.Lett.,1995,25:133-137.
    [43]T.Sato,Proc.Japan Acad.,1985,61:459.
    [44]A.Onodera.K.Inoue,and H.Yoshihara et al.,Synthesis of cubic boron nitride from rhombohedral form under high static pressure,J.Mater.Sci.,1990,25:4279-4284.
    [45]M.Ueno.,K.Hasegawa,and R.Oshima et al.,Room-temperature transition of rhombohedral-type boron nitride under high static pressure,Phys.Rev.B,1992,45:10226-10230.
    [46]T.Sato,T.Ishii,and N.Setaka,Formation of Cubic Boron Nitride from Rhombohedral Boron Nitride by Explosive Shock Compression,J.Am.Ceram.Soc.,1982,65:162-162.
    [47]T.Sekine,and T.Sato,Shock-induced mechanisms of phase transformation from rhombohedral BN to cubic BN,J.Appl.Phys.,1993,74:2440-2444.
    [48]V.F.Britun,A.V.Kurdyumov,and I.A.Petrusha et al.,Structural features of boron nitride dense phase formation from rhombohedral modification under high static pressure,J.Mater.Sci.,1993,28:6575-6581.
    [49]V.L.Solozchenko,G.Will,and H.Hupen et al.,Isothermal compression of rhombohedral boron nitride up to 14 GPa,Solid State Commun,,1994,90:65-67
    [50]T.Oku,K.Hiraga,and T.Matsuda,Twin structures of rhombohedral and cubic boron nitride prepared by chemical vapor deposition method,Diam.and Relat.Mater.,2003,12:1138-1145.
    [51]R.C.DeVries,"Cubic Boron Nitride:Handbook of Properties",General Electric Company,Schenectady,New York,1972.
    [52]宋志忠,郭永乎,张仿清等,立方氮化硼薄膜的研究现状及应用前景,物理,1995,24(5):307-319。
    [53]R.C.DeVies,Diamond and Diamond-like Films amd Coatings,es,R.E.Clausing,1991,p.153.
    [54]T.Wada,N.Yamashita,Formation of cBN films by ion beam assisted deposition,J.Vac.Sci.Technol.A,1992,10(3):515-520.
    [55]O.Mishima,"Synthesis and Properties of Boron Nitride",Edited by J.J.Pouch and S.A.Alterovitz,1990,54/55,p313.
    [56]T.K.Harris,E.J.Brookes,and C.J.Taylor,The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials,Int.J.Refract,Met.H.,2004.
    [57]C.Fitz,A.Kolitsch,W.Fukarek.Stress relaxation during annealing of boron nitride films,Thin Solid Films,2001,389(1-2):173-179.
    [58]F.P.Bundy,and R.H.Wentorf,Direct transformation of hexagonal boron nitride to denser forms,J.Chem.Phys.,1963,38(5):1144-1149.
    [59]O.Mishima,K.Era,J.Tanaka,and S.Yamaoka,Ultraviolet light-emitting diode of a cubic boron nitride p-n junction made at high pressure,Appl.Phys.Lett.,1988,53(11):962-964.
    [60]O.Mishima,J.Tanaca,and S.Yamaoka et al.,High-temperature Cubic Boron Nitride PN Junction Diode Made at High Pressure,Science,1987,238:181-183
    [61]S.S.Batzanov,G.E.Blochin.,and A.A.Deribas et al.,J.Struct.Chem.,1965,7: 209-213.
    [62]T.Akashi,A.B.Sawaoka,and S.Saito et al.,Structural changes of boron nitride caused by multiple shock-compressions,Jpn.J.Appl.Phys.,1976,15(5):891-892.
    [63]A.Sokolowska,and A.Olszyna,Photon assisted chemical synthesis of E-BN,J.Crys.Growth,1992,121(4):733-736.
    [64]A.Sokolowska,and A.Olszyna,Electron assisted chemical synthesis of E-BN,J.Crys.Growth,1992,116(3-4):507-510.
    [65]A.Olszyna,M.Mustah,and A.Sokolowska,The in-flame crystallization of a metastable BN form,Diam.Relat.Mater.,1995,4(4):386-389.
    [66]F.Jensen,and H.Toflund,Structure and stability of C_(24)and B_(12)N_(12)isomers,Chem.Phys.Lett.,1993,201:89-96.
    [67]V.V.Pokropivny,and L.I.Ovsyannikova,Electronic structure and the infrared absorption and Raman spectra of the semiconductor clusters C_(24),B_(12)N_(12),Si_(12)C_(12),Zn_(12)O_(12),and Ga_(12)N_(12),Phys.Solid State,2007,49(3):562-570.
    [68]V.V.Pokropivny,L.I.Ovsyannikova,and S.V.Kovrigin,Electronic structure of crystal-forming fulborenes B_nN_n,Phys.Solid State,2007,49(12):2335-2341.
    [69]E.Kroke,and M.Schwarz,Novel group 14 nitrides,Coordin.Chem.Rev.,2004,248:493-532.
    [70]E.C.Franklin,The ammono carbonic acids,J.Am.Chem.Soc.,1922,44:486-509.
    [71]C.E.Redemann,and H.J.Lucas,_Some derivatives of cyameiuric acid and probable structures of melam,melem and melon,J.Am.Chem.Soc.,1940,62:842-846.
    [72]H.May,Pyrolysis of melamine,J.Appl.Chem.,1959,9:340-344.
    [73]A.I.Finkel'shtein,and N.V.Spiridonova,Chemical Properties and molecular structure of derivatives of sym-heptazine[1,3,4,6,7,9,9b-heptaazaphenalene,tri-1,3,5-triazine],Russ.Chem.Rev.,1964,33(7):400-405.
    [74]A.G.Koryakin,V.A.Gal'perin,and A.N.Sarbaev et al.,Z.Organicheskoi Khimii,1971,7:972.
    [75]R.S.Hosmane,M.A.Rossman,and N.J.Leonard,Synthesis and structure of tri-s-triazine.J.Am.Chem.Soc.,1982,104:5497-5499.
    [76]M.Shahbaz,S.Urano,and P.R.LeBreton et al.,_Tri-s-triazine:synthesis,chemical behavior,and spectroscopic and theoretical probes of valence orbital structure.J.Am.Chem.Soc.,1984,106:2805-2811.
    [77]A.M.Halpern,M.A.Rossman,and R.S.Hosmane et al.,_Photophysics of the S1.tautm.SO transition in tri-s-triazine,J.Phys.Chem.,1984,88:4324-4326.
    [78]M.L.Cohen,Calculation of bulk moduli of diamond and zinc-blende solids,Phys.Rev.B,1985,32(12):7988-7991.
    [79]A.Y.Liu,and M.L.Cohen,Prediction of new low compressibility solids,Science,245:841-842.
    [80]Y.Guo,and W.A.Goddard Ⅲ,Is carbon nitride harder than diamond? No,but its girth increases when stretched(negative Poisson ratio),Chem.Phys.Lett,1995,237:72-76
    [81]A.Y.Liu,and M.L.Cohen,Structural properties and electronic structure of low-compressibility materials:β-Si_3N_4 and hypothetical β-C_3N_4,Phys.Rev.B,1990,41:10727-10734.
    [82]D.M.Teter,and R.J.Hemley,Low-compressibility carbon nitrides.Science,1996,271:53-55.
    [83]J.Ortega,O.F.Sankey,Relative stability of hexagonal and planar structures of hypothetical C_3N_4 solids,Phys.Rev.B,1995,51:2624-2627.
    [84]A.Y.Liu,R.M.Wentzcovich,Stability of carbon nitride solids,Phys.Rev.B,1994,50:10362-10365.
    [85]A.Reyes-Serrato,D.H.Galvan,I.L.Garzon,Ab initio Hartree-Fock study of structural and electronic properties of β-Si_3N_4 and β-C_3N_4 compounds,Phys.Rev.B,1995,52:6293-6300.
    [86]P.Kroll,Pathways to metastable nitride structures,J.Solid State Chem.,2003,176:530-537.
    [87]S.D.Mo,L.Ouyang,W.Y.Ching,I.Tanaka,Y.Koyama,R.Riedel,Interesting Physical Properties of the New Spinel Phase of Si_3N_4 and C_3N_4,Phys.Rev.Lett, 1999,83:5046-5049.
    [88]P.Kroll,and R.Hoffmann,_theoretical tracing of a novel route from molecular precursors through polymers to dense,hard C_3N_4 solids,J.Am.Chem.Soc.,1999,121:4696-4703.
    [89]J.E.Lowther,Defective and amorphous structure of carbon nitride,Phys.Rev.B,1998,57:5724-5727.
    [90]J.E.Lowther,Relative stability of some possible phases of graphitic carbon nitride,Phys.Rev.B,1999,59:11683-10686.
    [91]F.Weich,J.Widany,and Th.Fraunheim,Paracyanogen-like structures in high-density amorphous carbon nitride,Carbon,1999,37:545-548.
    [92]B.Molina,and L.E.Sansores,_electronic structure of six phases of C_3N_4:a theoretical approach,Mod.Phys.Lett.B,1999,13:193-201.
    [93]A.Snis,S.F.Matar,Electronic density of states,ls core-level shifts,and core ionization energies of graphite,diamond,C_3N_4 phases,and graphitic C_(11)N_4,Phys.Rev.B,1999,60:10855-10863.
    [94]M.Mattesini,S.F.Matar,and A.Snis et al.,_Relative stabilities,bulk moduli and electronic structure properties of different ultra-hard materials investigated within the local spin density functional approximation,J.Mater.Chem.,1999,9:3151-3158.
    [95]M.Mattesini,S.F.Matar,J.Etourneau,_Stability and electronic property investigations of the graphitic C_3N_4 system showing an orthorhombic unit cell,J.Mater.Chem.,2000,10:709-713.
    [96]I.Alves,G.Demazeau,and B.Tanguy et al.,On a new model of the graphitic form of C_3N_4,Solid State Commun.,1999,109:697-701.
    [97]S.D.Mo,L.Ouyang,and W.Y.Ching et al.,Interesting physical properties of the new spinel phase of Si_3N_4 and C_3N_4,Phys.Rev.Lett.,1999,83:5046-5049.
    [98]C.M.Sung,and M.Sung,Carbon nitride and other speculative superhard materials,Mater.Chem.Phys.,1996,43:1-18.
    [99]J.L.Corkill,and M.L.Cohen,Calculated quasiparticle band gap of β-C_3N_4,Phys.Rev.B,1993,48:17622-17624.
    [100]H.Yoa,and W.Y.Ching,Optical properties of β-C_3N_4 and its pressure dependence,Phys.Rev.B,1994,50:11231-11234.
    [101]J.V.Badding,and D.C.Nesting,Thermodynamic analysis of the formation of carbon nitrides under pressure,Chem.Mater.,1996,8:535-540.
    [102]W.Y.Ching,S.D.Mo,and I.Tanaka et al.,Prediction of spinel structure and properties of single and double nitrides,Phys.Rev.B,2001,63:064102(1-4).
    [103]H.Yao,and W.Y.Ching,Optical properties of β-C_3N_4 and its pressure dependence,Phys.Rev.B,1994,50:11231-11234.
    [104]A.Zerr,G.Miehe,and G.Serghiou et al.,Cubic silicon nitride,Nature,1999,400:340-342.
    [105]B.Jurgens,E.Irran,and J.Senker et al.,Melem(2,5,8-triamino-tri-s-triazine),an important intermediate during condensation of melamine rings to graphitic carbon nitride:synthesis,structure determination by X-ray powder diffraetometry ,solid-state NMR,and theoretical studies,J.Am.Chem.Soc.,2003,125:10288-10300.
    [106]E.Kroke,M.Schwarz,and P.Kroll et al.,Tri-s-triazine derivatives.Part Ⅰ.From trichloro-tri-s-triazine to graphitic C_3N_4 structures,New J.Chem.,2002,26:508-512.
    [107]D.T.Vodak,K.Kim,and L.Iordanidis et al.,Computation of Aromatic C_3N_4Networks and Synthesis of the Molecular Precursor N(C_3N_3)_3C1_6,Chem.Eur.J.,2003,9(17):4197-4201.
    [108]F.Weich,J.Widany,and T.Frauenheim et al.,Paracyanogenlike Structures in High-Density Amorphous Carbon Nitride,Phys.Rev.Lett.,1997,78:3326-3329.
    [109]F.Weich,J.Widany,and T.Frauenheim,Paracyanogen-like structures in high-density amorphous carbon nitride,Carbon,1999,37:545-548.
    [110]M.Deifallah,P.F.McMillan,and F.Cora,Electronic and structural properties of two-dimensional carbon nitride graphenes,J.Phys.Chem.C,2008,112(14):5447-5453.
    [111]J.J.Cuomo,P.A.Leary,and W.Reuter et al.,Reactive sputtering of carbon and carbide targets in nitrogen,J.Vac.Sci.Technol.,1979,16:299-302.
    [112]H.X.Han,B.J.Feldman,Structural and optical properties of amorphous carbon nitride,Solid State Commun.,1988,65:921-923.
    [113]T.Tomikawa,N.Fujita,Jpn.Patent,1991,JP03240959 A2(Chem.Abstr.116:163119).
    [114]J.Viehland,S.Lin,and B.J.Feldman et al.,Search for the nitrogen dangling bond in amorphous hydrogenated carbon nitride,Solid State Commun.,1991,80(8):597-599
    [115]H.W.Song,F.Z.Cui,and X.M.He et al.,Carbon nitride films synthesized by NH_3-ion-beam-assisted deposition,J.Phys.:Condens.Matter.,1994,(31)6:6125-6129.
    [116]K.H.Chen,J.J.Wu,C.Y.Wen,Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition,Thin Solid Films,1999,355-356:205-209.
    [117]C.Popov,M.F.Plass,and R.Kassing et al.,Plasma chemical vapor deposition of thin carbon nitride films utilizing transport reactions,Thin Solid Films,1999,355-356:406-411.
    [118]Chen G.H.,Wu X.C.,He D.Y.,Journal of Inorganic Materials,2001,16(2):377-380.
    [119]张永平,顾有松,高鸿钧等,微波等离子体化学气相沉积法制备C_3N_4薄膜的结构研究,物理学报,2001,50:1396-1399。
    [120]顾有松,张永平,常香荣等,理论预言的氮化碳超硬膜研究新进展,物理,1999,8:479-484。
    [121]Y.Kusano,C.Christou,and Z.H.Barber et al.,Deposition of carbon nitride films by ionised magnetron sputtering,Thin Solid Films,1999,355-356:117-121.
    [122]R.Kaltofen,T.Sebald,G.Weise,Plasma diagnostic studies to the carbon nitride film deposition by reactive r.f.magnetron sputtering,Thin Solid Films,1996,290-291:112-119.
    [123]R.Kaltofen,T.Sebald,and G.Weise,Low-energy ion bombardment effects in reactive rf magnetron sputtering of carbon nitride films,Thin Solid Films,1997,308-309:118-125.
    [124]S.Kobayashi,Nozaki S.,and Morisaki H.et al.,Carbon nitride thin films deposited by the reactive ion beam sputtering technique,Thin Solid Films,1996,281-282:289-293.
    [125]S.A.Korenev,Deposition of carbon nitride films by vacuum ion diode with explosive emission,Thin Solid Films,1997,308-309:233-238.
    [126]M.R.Wixom,Chemical preparation and shock wave compression of carbon nitride precursors,J.Am.Ceram.Soc.,1990,73:1973-1978.
    [127]D.C.Nesting,and J.V.Badding,High-Pressure synthesis of sp~2-bonded carbon nitrides,Chem.Mater.,1996,8,1535-1539.
    [128]L.C.Ming,P.Zinin,and Y.Meng et al.,A cubic phase of C_3N_4 synthesized in the diamond-anvil cell,J.Appl.Phys.,2006,99:033520.
    [129]H.A.Ma,X.P.Jia,and L.X.Chen et al.,High-pressure pyrolysis study of C_3N_6H_6:a route to preparing bulk C_3N_4,J.Phys.:Cond.Matter.,2002,14:11269-11273.
    [130]Q.Fu,J.T.Jiu,and H.Wang et al.,Simultaneous formation of diamond-like carbon and carbon nitride films in the electrodeposition of an organic liquid,Chem.Phys.Lett.,1999,301:87-90.
    [131]Q.Lu,C.B.Cao,and C.Li et al.,Formation of crystalline carbon nitride powder by a mild solvothermal method,J.Mater.Chem.,2003,13:1241-1243.
    [132]Q.Lu;C.B.Cao,and H.S.Zhu et al.,Solvothermal synthesis of crystalline carbon nitrides,Chin.Sci.Bull.,2003,6:519-522.
    [133]Q.Lu,C.Cao,and J.Zhang et al.,The composition and structures of covalent carbon nitride solids synthesized by solvothermal method,Chem.Phys.Lett.,2003,372:469-475.
    [134]Y.J.Bai,B.Lu,and Z.G.Liu et al.,Solvothermal preparation of graphite-like C_3N_4 vnanocrystals J.Cryst.Growth,2003,247:505-508.
    [135]Y.Fahmy,T.D.Shen,and D.A.Tucker et al.,Possible evidence for the stabilization of β-carbon nitride by high-energy ball milling,J.Mater.Res., 1999,14:2488-2491.
    [136]L.W.Yin,M.S.Li,and Y.X.Liu et al.,Synthesis of beta carbon nitride nanosized crystal through mechanochemical reaction,J.Phys.:Cond.Matter.,2003,15:309-314.
    [137]L.W.Yin,M.S.Li,and G.Luo et al.,Nanosized beta carbon nitride crystal through mechanochemical reaction,Chem.Phys.Lett,2003,369:483-489.
    [138]L.W.Yin,Y.Bando,and M.S.Li et al.,Unique single-crystalline beta carbon nitride nanorods,Adv.Mater.,2003,15:1840-1844.
    [139]Z.Zhang,K.Leinenweber,and M.Bauer et al.,High-pressure bulk synthesis of crystalline C_6N_9H_3·HCl:a novel C_3N_4 graphitic derivative,J.Am.Chem.Soc.,2001,123:7788-7796.
    [140]E.G.Gillan,Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor,Chem.Mater.,2000,12:3906-3912.
    [141]T.Komatsu,and T.Nakamura,Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides,J.Mater.Chem.,2001,11:474-478.
    [142]T.Komatsu,Attempted chemical synthesis of graphite-like carbon nitride,J.Mater.Chem.,2001,11:799-801.
    [143]T.Komatsu,Prototype carbon nitrides similar to the symmetric triangular form of melon,J.Mater.Chem.,2001,11:802-803.
    [144]B.V.Lotsch,M.Doblinger,and J.Sehnert et al.,Unmasking melon by a complementary approach employing electron diffraction,solid-state NMR spectroscopy,and theoretical calculations-structural characterization of a carbon nitride polymer,Chem.Eur.J.,2007,13:4969-4980.
    [145]K.Watanabe,T.Taniguchi,and T.Kuroda et al.,Effects of deformation on band-edge luminescence of hexagonal boron nitride single crystals,Appl.Phys.Lett,2006,89:141902.
    [146]Y.Kubota,K.Watanabe,and T.Taniguchi,Synthesis of cubic and hexagonal boron nitrides by using Ni solvent under high pressure,Jpn.J.Appl.Phys,2007,46(1):311-314.
    [1]S.Ulrich,J.Schwan,and W.Donner et al.,Knock-on subplantation-induced formation of nanocrystalline c-BN with r.f.magnetron sputtering and r.f.argon ion plating ,Diam.Relat.Mater.,1996,5:548-551.
    [2]G.Demazeau,High pressure diamond and cubic boron nitride synthesis,Diam.Relat.Mater.,1995,4:284-287.
    [3]S.N.Mohammad,Electrical characteristics of thin film cubic boron nitride,Solid-State Electron,2002,46:203-222.
    [4]O.Mishima,J.Tanaka,and S.Yamaoka et al.,High-temperature cubic boron nitride p-n junction diode made at high pressure,Science,1987,238:181-183.
    [5]R.Kalish,Doping of diamond,Carbon,1999,37:781-785.
    [6]O.Mishima,K.Era,and Y.Kumashiro,Electric Refractory Materials,Dekker,New York,2000,chap.21
    [7]K.Watanabe,T.Taniguchi,and H.Kanda,Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal.Nat.Mater.,2004,3:404-409.
    [8]T.Taniguchi,K.Watanabe,and S.Koizumi,Defect characterization of cBN single crystals grown under HP/HT,Phys.Status Solidi A,2004,201:2573-2577.
    [9]R.H.Wentorf,Cubic form of boron nitride,J.Chem.Phys,1957,26(4):956.
    [10]L.Vel,G.Demazeau,and J.Etoumeau,Mater.Sci.Eng.B,1991,10:149.
    [11]G.L.Doll,J.A.Sell,and C.A.Taylor et al.,Growth and characterization of epitaxial cubic boron nitride films on silicon,Phys.Rev.B,1991,43(8),6816-6819.
    [12]V.L.Solozhenko,and V.Z.Turkevich,On nucleation of cubic boron nitride in the BN-MgB_2 System,J.Phys.Chem.B,1999,103:8137-8140.
    [13]J.Y.Huang,Y.T.Zhu,Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressures and temperatures,Chem.Mater.,2002,14:1873-1878.
    [14]X.W.Zhang,H.G.Boyen,and N.Deyneka et al.,Epitaxy of cubic boron nitride on(001)-oriented diamond,Nat.Mater.,2003,2:312- 315.
    [15]Y.Meng,H.K.Mao,and P.J.Eng et al.,The formation of sp~3 bonding in compressed BN,Nat.Mater.,2004,3:111-114.
    [16]C.X.Wang,Y.H.Yang,and L.Q.Xiu,Nucleation thermodynamics of cubic boron nitride upon high-pressure and high-temperature supercritical fluid system in nanoscale,J.Phys.Chem.B.,2004,108(2):728-731.
    [17]W.Zhang,I.Bello,and Y.Lifshitz et al.,Epitaxy on diamond by chemical vapor deposition:a route to high-quality cubic boron nitride for electronic applications,Adv.Mater.,2004,16(16):1405-1408.
    [18]K.M.Leung,C.Y.Chan,and Y.M.Chong,Studying the growth of cubic boron nitride on amorphous tetrahedral carbon interlayers,J.Phys.Chem.B.,2005,109(34):16272-16277.
    [19]S.K.Singhal,J.Von der Gonna,and G.Nover et al.,Synthesis of cubic boron nitride at reduced pressures in the presence of Co[(NH_3)_6]C1_3 and NH_4F,Diam.Relat.Mater.,2005,14(8):1389-1394.
    [20]Y.C.Zhao,and M.Z.Wang,Preparation of polycrystalline cBN containing nanodiamond,J.Mater.Process.Tech.,2008,198(1-3):134-138.
    [21]X.P.Hao,D.L.Cui,and G.X.Shi et al.,Synthesis of cubic boron nitride at low-temperature and low-pressure conditions,Chem.Mater.,2001,13(8):2457-2459.
    [22]H.S.Booth and D.R.Martin,Boron trifluoride and its derivatives,John Wiley and Sons,Inc.,New York,N.Y.,1949.
    [23]D.R.Martin,Coordination compounds of boron trichloride,Chem.Revs.,1944,34:461-473.
    [24]W.G.Paterson and M.Onyszchuk,The interaction of boron trifluoride with hydrazine,Can.J.Chem.,1961,39(5):986-994.
    [25]H.C.Browna and R.R.Holmes,The heats of reaction ofpyridine and nitrobenzene with boron trifluoride,trichloride and tribromide;the relative acceptor properties of the boron halides,J.Am.Chem.Soc.,1956,78(10):2173-2176.
    [26]Wu Jin-gugng(吴瑾光)et al.,《近代傅里叶变换红外光谱技术及应用(卷)》,1994,p574.
    [27]SDBS No.518HSP-40-411.
    [28]Geick R.and Perry C.H.,Normal Modes in Hexagonal Boron Nitride,Phys.Rev.,1966,146:543.
    [29]A.Olszyna,J.Konwerska-Hrabowska,M.Lisicki.Molecular structure of E-BN,Diamond Relat.Mater.,1997,6:617-620.
    [30]R.J.Nemanich,S.A.Solin,and R.M.Martin,Light scattering study of boron nitride microcrystals,Phys.Rev.B,1981,23:6348-6356.
    [31]L.L.Yu,B.Gao,and Z.Chen et al.,In situ FT-IR investigation on phase transformations in BN nanoparticles.Chin.Sci.Bull.,2005,50(24):2827.
    [32]W.J.Zhang,Y.M.Chong,adn I.Bello et al.Nucleation,growth and characterization of cubic boron nitride(cBN)films,J.Phys.D:Appl.Phys.,2007,40:6159-6174.
    [33]A.Olszyna and I.Zacharenko,Phase transformation of BN on the solid state during electrostatic deposition,Surf.Coat Technol.,1996,78:227-232.
    [34]A.Olszyna,M.Muftah,A.Sokolowska,The in-flame crystallization of a metastable BN form,Diamond Relat.Mater,,1995,4:386-389.
    [35]Z.F.Lai,L.L.Zhu,and L.L.Yu et al.,Structural transformation of boron nitride nanoparticles in benzene under moderate conditions,Z.Naturforsch B,2006,61b:1555-1560.
    [36]JCPDS No.89-1499.
    [37]T.Taniguchi,and S.Yamaoka,Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure,J.Cryst. Growth,2001,222:549-557.
    [38]T.Taniguchi,K.Kimoto,and T.Masataka et al.,Phase transformation of amorphous boron nitride under high pressure,Chem.Mater.,2003,15:2744-2751.
    [39]G.Turrel,Infrared and Raman Spectra of Crystrals,Academic press,London and New York,1972.
    [40]P.J.Gielisse,S.S.Mitra,and J.N.Plendl et al.,Lattice infrared spectra of boron nitride and boron monophosphide.Phys.Rev.,1967,155(3):1039-1046.
    [41]R.M.Chrenko,Ultraviolet and infrared spectra of cubic boron nitride,Solid State Comm.,1974,14(6):511-515.
    [1]M.Y.Yu,K.Li,and Z.F.Lai et al.,Phase-selective synthesis of cubic boron nitride in hydrothermal solutions,J.Cryst.Growth,2004,269:570-574.
    [2]M.Y.Yu,S.Y.Dong,and K.Li et al.,Synthesis of BN nanocrystals under hydrothermal conditions,J.Cryst.Growth,2004,270:85-91.
    [3]M.Y.Yu,D.L.Cui,and K.Li et alo,Hydrothermal synthesis of cubic boron nitride crystals,Mater.Sci.Engin.B,2005,121:166-169.
    [4]M.Y.Yu,K.Li,and D.L.Cui et al.,Effects of temperature raising speed on the growth of BN crystals in hydrothermal solutions,Chin.J.Chem.,2004,22:528-532.
    [5]M.Y.Yu,D.L.Cui,and K.Li,et al,Mixed nitrogen sources effect in the hydrothermal synthesis of cubic BN.Mater.Lett.,2006,61:76-78.
    [6]JCPDS No.89-1499.
    [7]JCPDS No.74-1978.
    [8]A.Olszyna,J.K.Hrabowska,and M.Lisicki,Molecular structure of E-BN,Diam.Relat.Mater.,1997,6:617- 620.
    [9]JCPDS No.51-0779.
    [10]H.Nameki,T.Sekine,and T.Kobayashi et al.,Rapid quench formation of E-BN from shocked turbostratic BN precursors,J.Mater.Sci.Lett,1996,15:1492-1494.
    [11]W.J.Zhang,Y.M.Chong,and I.Bello et al.Nucleation,growth and characterization of cubic boron nitride(cBN)films,J.Phys.D:Appl.Phys.,2007,40:6159-6174.
    [12]A.Olszyna,and I.Zacharenko,Phase transformation of BN on the solid state during electrostatic deposition,Surf.Coat Technol.,1996,78:227-232.
    [13]A.Olszyna,M.Muftah,and A.Sokolowska,The in-flame crystallization of a metastable BN form,Diam.Relat.Mater.,1995,4:386-389.
    [14]J.A.Dean,Lange Handbook of Chemister,World Press,Singapore,2001.
    [15]T.Akashi,H.R.Pak,and A.B.Sawaoka,Structural Changes of Wurtzite-type and Zincblende-type Boron Nitrides by Shock Treatments,J.Mater.Sci.,1986,21:4060-4066.
    [16]S.S.Batsanov,L.J.Kopaneva,and E.V.Lazareva,On the Nature of Boron Nitride e-Phase,Propellants,Explosives,Pyrotechnics,1993,18:352-355.
    [17]A.Sokolowska,and A.Olszyna,Photon assisted chemical synthesis of E-BN,J.Cryst.Growth,1992,121(4):733-736.
    [18]邓金祥,陈浩,陈光华等,立方氮化硼薄膜表面的XPS研究,功能材料,2004,35:3187-3190.
    [19]P.Widmayer,H.G.Boyen,and P.Ziemann,Electron spectroscopy on boron nitride thin films:comparison of near-surface to bulk electronic properties,Phys.Rev.,1999,B59:5233-5241.
    [20]D.H.Berns,and M.A.Cappelli,Cubic boron nitride synthesis in low-density supersonic plasma flows,Appl.Phys.Lett,1996,68:2711-2713.
    [21]Y.D.Yin,C.K.Erdonmez,and A.Cabot et al,Colloidal synthesis of hollow cobalt sulfide nanocrystals,Adv.Funct.Mater.,2006,16:1389-1399.
    [22]J.X.Huang,Y.Xie,and B.Li et al.,In-situ source template interface reaction route to semiconductor CdS submicrometer hollow spheres,Adv.Mater.,2000,12:808-811.
    [23]L.Y.Chen,Y.L.Gu,and L.Shi et al.,A room-temperature approach to boron nitride hollow spheres,Solid State Comm.,2004,130:537-540.
    [24]Reiss,H,The growth of uniform colloidal dispersions,J.Chem.Phys.,1951,19:482-487.
    [25]Y.D.Yin,and A.P.Alivisatos,Colloidal nanocrystal synthesis and the organicinorganic interface.Nature,2005,437:664-670.
    [26]P.J.Gielisse,S.S.Mitra,and J.N.Plendl et al.,Lattice infrared spectra of boron nitride and boron monophosphide,Phys.Rev.,1967,155(3):1039-1046.
    [27]R.M.Chrenko.Ultraviolet and infrared spectra of cubic boron nitride,Solid State Comm.,1974,14(6):511-515.
    [28]Lu M.,Bousetta A.,Sukach R.et al,Growth of cubic nitride on Si(100)by neutralized nitrogen ion bombardment,AppL Phys.Lett.,1994,64:1514-1516.
    [29]G.Turrel,Infrared and Raman Spectra of Crystrals,Academic Press,London and New York,1972.
    [30]Geick R.and Perry C.H.,Normal modes in hexagonal boron nitride,Phys.Rev.,1966,146:543-547.
    [1]A.Y.Liu,and M.L.Cohen,Prediction of new low compressibility solids,Science,1989,245:841-842.
    [2]A.Y.Liu,and M.L.Cohen,Structural properties and electronic structure of low compressibility materials:β-Si_3N_4,and hypotheticalβ-C_3N_4,Phys.Rev.B,1990,B41:10727-10734.
    [3]M.R.Wixom,Chemical preparation and shock wave compression of carbon nitride precursors,J.Am.Ceram.Soc.,1990,73:1973-1978.
    [4]P.Kouakou,V.Brien,and B.Assouar et al,Preliminary synthesis of carbon nitride thin films by N_2/CH_4 microwave plasma assisted chemical vapour deposition:characterisation of the discharge and the obtained films,Plasma Process.Polym.,2007,4:S210-S214.
    [5]N.Hellgren,K.Macak,E.Broitman et al.,Influence of plasma parameters on the growth and properties of magnetron sputtered CNx thin films.J.Appl.Phys.,2000,88:524.
    [6]R.Gago,I..Jimenez,D.Caceres,Hardening mechanisms in graphitic carbon nitride films grown with N_2/Ar ion assistance,Chem.Mater.,2001,13:129-135.
    [7]H.V.Huynh,M.A.Hiskey,J.G.Archuleta et al.,3,6-di(azido)-1,2,4,5-tetrazine:a precursor for the preparation of carbon nanospheres and nitrogen-rich carbon nitrides,Angew.Chem.Int.Ed.,2004,43:5658-5661.
    [8]M.Aono,S.Aizawa,and N.Kitazawa et al.,XPS study of carbon nitride films deposited by hot filament chemical vapor deposition using carbon filament,Thin Solid Films,2008,516:648-651.
    [9]E.H.Bordon,R.Riedel,and P.F.McMillan et al.,High-pressure synthesis of crystalline carbon nitride imide,C_2N_2(NH),Angew.Chem.Int.Ed.,2007,46:1476-1480.
    [10]A.Vinu,K.Ariga,and T.Mori et al.,Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride,Adv.Mater.,2005,17:1648-1652.
    [11]L.C.Ming,P.Zinin,and Y.Meng et al.,A cubic phase of C_3N_4 synthesized in the diamond-anvil cell,J.Appl.Phys,,2006,99:033520.
    [12]A.Vinu,Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter,surface area and nitrogen content,Adv.Funct.Mater.,2008,18:816-827.
    [13]H.V.Huynh,M.A.Hiskey,and D.E.Chavez et al.,Synthesis,characterization,and energetic properties of diazido heteroaromatic high-nitrogen C-N Compound J.Am.Chem.Soc.,2005,127:12537-12543.
    [14]L.W.Y.,Y.Bando,and M.S.Li et al.,Unique single-crystalline beta carbon nitride nanorods,Adv.Mater.,2003,15(21):1840-1844.
    [15]JCPDS No.87-1526.
    [16]S.Matsumoto,E.Q.Xie,F.Izumi,On the validity of the formation of crystaline carbon nitrides,C_3N_4,Diam.Relat.Mater.,1999,8(7):1175-1182.
    [17]JCPDS No.50-1250.
    [18]JCPDS No.86-0550.
    [19]H.Izumi,T.Kaneyoshi,and T.Ishihara et al.,X-Ray emission and absorption spectra of carbon nitride films prepared by laser ablation,X-Ray Spec.,1999,28:509-514
    [20]J.Wei,P.Hing and Z.Q.Mo,TEM,XPS and FTIR characterization of sputtered carbon nitride films,Surf.Interface Anal.,1999,28:208-211.
    [21]B.L.Ivanov,L.M.Zambov,and G.T.Georgiev et al.,Low-pressure CVD of carbon nitride using triazine-containing precursors,Chem.Vap.Deposition,1999,5(6):265-273.
    [22]F.Rossi,B.Andre,and A.V.Veen et al.,Physical properties of a-C:N films produced by ion beam assisted deposition,J.Mater.Res.,1994,9(9):2440-2449
    [23]D.W.Wu,D.J.Fu,and H.X.Guo et al.,Structure and characteristics of C_3N_4thin films prepared by rf plasma-enhanced chemical vapor deposition,Phys.Rev.B,1997,56(8):4949-4954.
    [24]Y.Qiu and L.Gao,Chemical synthesis of turbostratic carbon nitride,containing C-N crystallites,at atmospheric pressure,Chem.Commun.,2003,2378-2879
    [25]Q.Lv,C.B.Cao,C.Li,Formation of crystalline carbon nitride powder by a mild solvothermal method,J.Mater.Chem.,2003,13:1241-1243.
    [26]X.A.Zhao,C.W.Ong,and Y.C.Tsang et al.,Reactive pulsed laser deposition of CNx films,Appl.Phys.Lett.,1995,66:2652-2654.
    [27]B.Jurgens,E.Irran,and J.Senker et al.,Melem(2,5,8-triamino-tri-s-triazine),an important intermediate during condensation of melamine rings to graphitic carbon nitride:synthesis,structure determination by X-ray powder diffractometry,solidstate NMR,and theoretical studies,J.Am.Chem.Soc.,2003,125:10288-10300.
    [28]A.L.Smith,The Coblentz Society Desk Book of Infrared Spectra in Carver,C.D.,editor,The Coblentz Society Desk Book of Infrared Spectra,Second Edition,The Coblentz Society:Kirkwood,MO,1982,pp 1-24.
    [29]D.Marton,K.J.Boyd,and A.H.Al-Bayati et al.,Carbon nitride deposited using energetic species:a two-phase system,Phys.Rev.Lett,1994,73(1):118-121.
    [30]V.N.Khabashesku,J.L.Zimmerman,and J.L.Margrave,Powder synthesis and characterization of amorphous carbon nitride,Chem.Mater.,2000,12:3264-3270.
    [31]M.Terrones,P.Redlich,and N.Grobert et al.,Carbon nitride nanocomposites:formation of aligned C_xN_y nanofibers,Adv.Mater.,1999,11(8):655-658.
    [32]D.Y.Lee,Y.H.Kim,and I.K.Kim et al.,The effects of substrates on carbon nitride thin films prepared by direct dual ion beam deposition,Thin Solid Films,1999,355-356:239-245.
    [33]L.D.Jiang,A.G.Fitzgerald,and M.J.Rose et al.,Effect of reactive ion etching on amorphous carbon nitride films,Surf.Interface Anal.,2002,34:728-731.
    [34]L.D.Jiang,A.G.Fitzgerald,and M.J.Rose,Microstructural studies of copper incorporated amorphous carbon nitride films,Phys.Stat Sol.(a),2002,189(1):203-207.
    [35]M.Aono,K.Yamaguchi,and N.Kitazawa et al.,Preparation of amorphous carbon nitride films from toluene and nitrogen by rf-PECVD,Mater.Sci.Tech.,2004,20:1119-1122.
    [36]S.Lopez,H.M.Dunlop,and M.Benmalek et al.,XPS,XANES and ToF-SIMS characterization of reactively magnetron-sputtered carbon nitride films,Surf.Interface Anal.,1997,25,827-835.
    [37]G.C.Allen,M.T.Curtis,and A.J.Hooper,X-ray photoelectron spectroscopy of iron-oxygen systems,J.Chem.Soc.Dalton Trans.,1974,14:1525-1530.
    [1]R.Riedel,Adv.Mater.6,549(1994).
    [2] P. B. Mirkarinmi, K. F. McCarty, D. L. Medlin, Mater. Sci. Eng. 47, R21,1997.
    
    [3] W. J. Zhang, I. Bello, Y. Lifshitz, S. T. Lee, MRS Bull. 184,28,2003.
    
    [4] O. Mishima, K Era, J. Tanaka, S. Yamaoka, Appl. Phys. Lett. 962, 53,1988.
    
    [5] L. Vel, G Demazeau, J. Etourneau, Mater. Sci. Eng. B 149,10,1991.
    
    [6] R. H. Wentorf, J. Chem. Phys. 956,26,1957.
    
    [7] R. C. Devries, J. F. Fleischer, Mater. Res. Bull. 433,4(7), 1969.
    
    [8] T. Endo, O. Fukunaga, M. Iwata, J. Mater. Sci. 1375,14,1979.
    
    [9] T. Sato, H. Hiraoka, T. Endo,O . Fukunaga, and M. Iwata, J. Mater. Sci. 1829, 16, 1981.
    [10] T. Sato, T. Endo, S. Kashima, O. Fukunaga, M. Iwata, J. Mater. Sci. 3054, 18, 1983.
    [11] M. Kagamida, H. Kanda, M. Akaishi, A. Nukui, T. Osawa, and S. Yamaoka, J. Cryst. Growth 261, 94(1), 1989.
    
    [12] V. L. Solozhenko, V. Z. Turkevich, Mater. Lett. 179, 32, 1997.
    [13] T. Taniguchi, S. Yamaoka, J. Cryst. Growth 549, 222, 2001.
    [14] K. Susa, T. Kobayashi, S. Taniguchi, Mater. Res. Bull. 1443, 9,1974.
    [15] T. Kobayashi, J. Chem. Phys. 5898, 70,1979.
    [16] T. Taniguchi, K. Kimoto, T. Masataka, S.Horiuchi, S.Yamaoka, Chem. Mater. 2744,15,2003.
    
    [17] J. Y. Huang, Yuntian T. Zhu, Chem. Mater. 1873,14,2002.
    [18] Z. Chen, Z. F. Lai, K. Li, D. L. Cui, N. Lun, Q. L. Wang, M. H. Jiang, Int. J. Modern Phys. B 2663,19(15-17), 2005.
    [19] K. Li, H. H. Jiang, G. Lian, X. Zhao, Q. L. Wang, D. L. Cui, X. T. Tao, J. Cryst. Growth, submitted.
    [20] X. P. Hao, D. L. Cui, G X. Shi, Y. Q. Yin, X. G Xu, J. Y Wang, M. H. Jiang, X. W. Xu, Y. P. Li, B. Q. Sun, Chem. Mater. 2457,13(8), 2001.
    [21] A. Olszyna, J. Konwerska-Hrabowska, M. Lisicki, Diamond Relat. Mater. 617, 6, 1997.
    
    [22] H. Z. Zhang, B. Gilbert, F. Huang, J. F. Banfield, Nature 1025, 424,2003.
    [23] L. L. Yu, B. Gao, Z. Chen, C. T. Sun, D. L. Cui, C. J. Wang, Q. L. Wang, M. H. Jiang, Chin. Sci. Bull. 2827, 50(24), 2005.
    [24] P. B. Mirkarimi, K. F. McCarty, D. L. Medlin, W. G. Wolf, T. A. Friedmann, E. J. Klaus, G F. Cardinale, D. G Howitt, J. Mater. Res. 2925, 9, 1994.
    [1]Wentorf R.H.,J.Chem.Phys.,1957,26:956.
    [2]ZHONG Xiang-Li(钟向丽),WANG Jin-Bin(王金斌),and ZHANG Can-Yun (张灿云)et al.,Chem.J.Chinese Universities(高等学校化学学报),2004,35(2):186-187.
    [3]Zhang X.W.,Boyen H.G.,and Dyneka N et al.,Nat.Mater.,2003,2(5):312-315.
    [4]ZHAO Yong-Nian(赵永年),ZOU Guang-Tian(邹广田),and WANG Bo(王波) et al..Chem.J.Chinese Universities(高等学校化学学报),1998,19(7):1136-1139.
    [5]Satta G.,Cappellini G.,and Olevano V.et al.,Phys,Rev.B,2004,70:195212-195224.
    [6]Kagamida M.,Kanda H.,and Akaishi M.et al.,J.Cryst.Growth,1989,94(1):261-269.
    [7]Taniguchi T.,Watanabe K.,Koizumi S.,Phys.Stat.Sol.(a),2004,201(11):2573-2577.
    [8]Hao X.P.,Cui D.L.,and Shi G.X.,et al.,Chem.Mater.,2001,13(8):2457-2459.
    [9]Yu M.Y.,Li K.,and Lai Z.F.et al.,J.Cryst.Growth,2004,269:570-574.
    [10]Huang F.L.,Cao C.B.,and Xiang X.et al.,Diam.Relat.Mater.,2004,13:1757-1760.
    [11]Sokolowska A.,and Olszyna A.,J.Cryst.Growth,1992,116(3-4):507-510.
    [12]Batzanov S.S.,Kopaneva L.J.,Lazareva E.V.,Propellants,Explosives,Pyrotechnics,1993,18:352-355.
    [13]Batzanov S.S.,Blokhina G.E.,and Deribas A.A.,J.Struct.Chem.,1965,6:209.
    [14]Solozhenko V.L.,Chernyshev V.V.,Fetisov G.V.et al.,J.Phys.Chem.Solids,1990,51:1011-1012.
    [15]Olszyna A.,Konwerska J.,and Lisicki M.,Diam.Relat.Mater.,1997,6:617-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700