基于掺硼金刚石膜电极的COD在线分析仪的研制与复合传感器的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学需氧量(COD)是水污染监测中的重要参数,同时也是我国“十二五“期间总量减排的四项约束性指标之一。COD的标准测量方法是重铬酸钾法,以该方法为基础开发的在线式设备结构复杂,产生二次污染。近年来发展起来的电化学测量方法,克服了标准方法的诸多不足。本文在课题组前期工作的基础上,以器件化的BDD膜电极为核心传感器,搭建了COD在线式分析仪。另外,研究制备了Ti/BDD/PbO2和Ti/Sb-SnO2/PbO2两种复合电极,提高了电化学方法测定COD的检测限,以期适应轻度污染水体的监测。本文围绕以上内容开展的研究工作主要包括以下几个方面:
     (1)利用微波等离子体气相化学沉积设备,控制氢气流量89sccm,甲烷流量1sccm,硼烷流量10sccm,微波功率2000 W,反应压强4000-6000 Pa,基体温度600-800℃,可以制备出棱角分明、刻面清晰的微米级BDD膜;XRD谱图可观察到(111)和(220)晶面的衍射峰,Raman光谱中出现了位于1334 cm-1处的尖峰,显示制备的BDD膜具有良好的形貌和晶形。电化学测试表明BDD膜电极的电势窗口大于3.5 V,阳极析氧电位大于2.3 V,是作为COD传感器的良好电极材料。将BDD膜进行器件化组装,器件化的电极具有良好的密封性,不同电极对100 mg/L的葡萄糖水样测定的相对标准偏差小于10%,显示了良好的平行性,为在仪器中的使用奠定了基础。
     (2)以器件化的BDD膜电极为核心传感器,开发了与之配套的在线式监测方法和仪器。探讨了样机的开发框架、主要配件、测量流程、标准曲线模型等问题。优化的相关参数分别为:硼碳比10000 ppm、电极直径8 mm、清洗电位4 V、清洗时间90s。在优化条件下,样机的检测范围为30-10000 mg/L,可以在较大的范围内对污染源进行监测;对不同COD浓度的葡萄糖水样进行测定的相对标准偏差均小于5%,显示出良好的稳定性。与标准方法相比,基于BDD膜电极的COD在线样机的检测时间大为缩短(测量周期5-8 min,其中响应时间为2 min),无二次污染问题,进一步完善后有望进行市场化运作。
     (3)采用微波等离子体气相化学沉积和电沉积两步法制备了Ti/BDD/PbO2复合电极,利用电化学方法进行COD测定研究。该方法的最优测量电位为1.45 V,线性范围为0.5-175 mg/L,检测限为0.3 mg/L(S/N=3)。对实际废水的测定结果表明,该方法与标准方法之间的相对误差小于10%,具有较好的一致性。与现有电化学测量方法相比,该方法的检测限大为提高,在低浓度污水的监测方面具有良好的应用前景。
     (4)采用热分解与电沉积结合的方法制备了Ti/Sb-SnO2/PbO2复合电极,并将其用于COD测定研究。实验优化的测量电位为1.4 V,pH值为3-9,Na2SO4浓度为25 mM。在此优化的条件下,建立的COD浓度与响应电流之间的关系为inet=2.059 COD+0.3762,线性范围为0.5-200 mg/L,对应的检测限为0.3 mg/L。对包括地表水在内的实际水样的测定结果表明,该方法与标准方法之间的最大相对误差小于12%。该方法同时具有不使用有毒有害试剂,易实现在线测定等优势,不但可以用于污染源排放的控制领域,而且有望在轻微污染水体的有机物污染监测方面加以应用。
     综上所述,以器件化的BDD膜电极为COD传感器搭建的在线式分析仪,具有结构简单、测量周期短,检测范围宽等优点,且不使用有毒化学试剂,有效的解决了二次污染问题。同时,本文研究制备的Ti/BDD/PbO2和Ti/Sb-Sn02/PbO2两种复合电极的灵敏度大为提高,很好的适应了污染源监测的需求,有助于促进电化学测量方法在COD测定领域的应用与发展。
Chemical oxygen demand (COD) is an important parameter for the evaluation of water quality and it is also one of the four reduction indicators during the twelfth five-year plan. The most common COD determination method is dichromate titration. The on-line COD analyzer based on dichromate method results in secondary pollution and the structure of this kind of analyzer is also complex. The electrochemical method developed in recent years can avoid many disadvantages involved in the conventional method. In the past research, the environmentally friendly material, boron doped diamond (BDD), was used as a sensor to determine COD under manual operating condition. In this dissertation, a practical BDD film electrode is fabricated and applied to a homemade on-line COD analyzer, and then the relative measurement parameters are optimized. Additionally, two kinds of composite electrode materials, Ti/BDD/PbO2 and Ti/Sb-SnO2/PbO2, are prepared, enhancing the detection limit of COD measurement by electrochemical method. The application of both electrodes would be extremely attractive in the field of COD determination for surface water or other clean waters with low COD values. Around what mentioned above, the following work has been done:
     (1) A microwave plasma chemical vapor deposition system (MPCVD) was used to prepare BDD films. The source gas (flow rate 100 sccm) with a mixture of methane (1 sccm), hydrogen (89 sccm), and B2H6 (10 sccm) was employed as the reagents. Temperature of the substrate was 800℃and pressure of the reacting chamber was in the range of 4000-6000 Pa. The fabricated BDD film was composed of well faceted diamond crystals in the micron range. The characteristic peak of diamond in Raman spectrum appeared clearly at 1334 cm-1 and the diffraction peaks of diamond (111) and (220) in XRD pattern were observed, indicating that the quality of the BDD film was perfect. Then the BDD film was assemble into a practical BDD film electrode with good sealing performance. The assembled BDD film electrode would be an important part of the homemade on-line COD analyzer.
     (2) Based on the assembled BDD film electrode, a homemade on-line COD analyzer was developed. The factors such as the instrument framework, the main components, the measurement process and the model of the calibration were discussed. The optimum B/C ratio was 10000 ppm, the diameter of electrode was 8 mm, the cleaning applied potential was 4 V and the cleaning time was 90 s. Under the optimized conditions, the analyzer was successfully employed to determine the COD values of glucose samples with different concentration and the resulting relative standard deviation (RSD) was below 5%. As compared with the standard method, the homemade analyzer could be carried out rapidly and overcome the shortage of secondary pollution. Therefore, the analyzer was promising to realize market operation.
     (3) A novel Ti/BDD/PbO2 composite electrode was prepared for COD determination via chemical vapor deposition (CVD) combined with electrodepositition method. Under the potential of 1.45 V, a linear range of 0.5-175 mg/L and a detection limit of 0.3 mg/L were achieved. The real samples from sewage plant, food and dyeing factories were applied to test the feasibility. The results measured by Ti/BDD/PbO2 composite electrode agreed well with those determined by the standard method. The proposed method with lower detection limit showed a respect in COD detection of slight polluted water.
     (4) A Ti/Sb-SnO2/PbO2 electrode was fabricated and applied in the area of COD determination. The optimum applied potential, pH range and electrolyte were 1.4 V,3-9 and 25 mM Na2SO4. Under the optimized testing conditions, the relationship between the net current and COD,inet=2.059COD+0.3762, was obtained. The linear range and the detection limit were 0.5-200 mg/L and 0.3 mg/L (S/N=3), respectively. The COD measurements for real water samples from reservoir, municipal sewage plants, and dyeing factories could be well completed and the resulting largest RSD was lower than 12%. So the proposed method would promote the development of a fast, in situ and on-line COD analysis.
     In conclusion, the structure of the on-line COD analyzer based on the BDD film electrode was simple and the measurement range is wide. More importantly, the analyzer could be carried out rapidly and overcome the shortage of secondary pollution. Meanwhile, the prepared Ti/BDD/PbO2 and Ti/Sb-SnO2/PbO2 composite electrode were sensitive enough to meet the requirement of pollution monitoring, which was hoped to promote the development of COD determination by electrochemical method.
引文
[1]水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [2]American Public Health Association. American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater,19th ed [M]. Apha-Awwa-Wef, Washington, DC,1995.
    [3]Kingston, H M, Haswell S J. Microwave enhanced chemistrys fundamentals, sample preparation, and applications [M].American Chemical Society, Washington, DC:1997.
    [4]Nakashima S, Sturgeo R E, Willie S N, et al. Acid digestion of marine samples for trace element analysis using microwave heating [J].Analyst,1988,113(1):159-163.
    [5]杨屹,侯翔燕,王书俊,等.微波消解-AAS法测芦荟中微量金属元素锌、锰、镉、铅[J].光谱学与光谱分析,2004,24(12):1672-1675.
    [6]许良,胡建国,刘瑞平.微波消解-火焰原子吸收光度法分析蒙成药金属元素[J].光谱学与光谱分析,2008,28(1):222-224.
    [7]Jassie L B, Kingston H M. Introduction to microwave sample preparation:Theory and practice [M].American Chemical Society, Washington, DC:1988.
    [8]Kingston H M, Jassie L B. Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical samples [J]. Analytical Chemistry,1986,58(12):2534-2541.
    [9]Nadkarni R A. Application of microwave oven sample dissolution in analysis [J].Analytical Chemistry, 1984,56(12):2233-2237.
    [10]尹计秋,燕小梅,牛奔.微波消解-火焰原子吸收光谱法测定海藻中的微量元素[J].光谱实验室,2011,28(1):118-120.
    [11]Matusiewicza M, Sturgeon R E, Berman S S. In situ hydride generation preconcentration of arsenic in a graphite furnace with sample vaporization into a microwave induced plasma for emission spectrometry [J].Spectrochimica Acta Part B:Atomic Spectroscopy,1990,45(1):209-214.
    [12]Dunemann L, Meinerling M. Comparison of different microwave-based digestion techniques in view of their application to fat-rich foods [J].Fresenius'Journal of Analytical Chemistry,1992,342(9):714-718.
    [13]Knapp, G. Mechanized techniques for sample decomposition and element preconcentration [J].Mikrochimica Acta,1991,104(1):445-455.
    [14]Jardim W F, Rohweder J J R. Chemical oxygen demand (COD) using microwave digestion [J].Water Reseach,1989,23(8):1069-1071.
    [15]Slatter N P, Alborough H. Chemical oxygen demand (COD) using microwave digestion:A entative new menthod [J].Water SA,1992,18(3):145-147.
    [16]Dharmadhikari D M, Vanerkar A P, Barhate N M. Chemical oxygen demand using closed microwave digestion system [J].Environmental. Science. Technology,2005,39(16):6198-6201.
    [17]Domini C E, Hidalgo M, Marken F, et al. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand:Closed microwaves, open microwaves and ultrasound irradiation [J].Analytical. Chimica Acta,2006,561(1):210-217.
    [18]江惜卿.微波密封消解法快速测定COD技术应用研究[J].环境,2006,S2(103):28-29.
    [19]吕红镰,吴红.WMX-1型微波消解COD快速测定法与K2Cr2O7法测定COD的对比[J].环境保护科学,1999,26(4):34-35.
    [20]李德豪.混酸介质微波消解快速测定炼油污水CODcr [J].环境工程,1999,17(5):52-54.
    [21]Tarr M A, Zhu G, Browner R F. Transport effects with dribble and jet ultrasonic nebulizers [J].Journal of Analytical Atomic Spectrometry,1992,7(6):813-817.
    [22]Carvalho L R F, Souza S R, Martinis B S, et al. Monitoring of the ultrasonic irradiation effect on the extraction of airborne particulate matter by ion chromatography [J].Analytica Chimica Acta,1995,317(1): 171-179.
    [23]Luque-Garcia J L, Luque de Castro M D. Ultrasound:a powerful tool for leaching [J].TrAC Trends in Analytical Chemistry,2003,22(1):41-47.
    [24]Azouzi H E, Cervera M L, Guardia M D L. Multi-elemental analysis of mussel samples by atomic absorption spectrometry after room temperature sonication [J].Journal of Analytical Atomic Spectrometry, 1998,12(6):522-538.
    [25]Rio-Segade S, Bendicho C. Slurry sampling combined with ultrasonic pretreatment for total mercury determination in samples containing inorganic and methylmercury by flow injection-cold vapor-atomic absorption spectrometry [J].Journal of Analytical Atomic Spectrometry,1999,14(12):1907-1912.
    [26]Perez-Cid B, Lavilla I, Bendicho C. Speeding up of a three-stage sequential extraction method for metal speciation using focused ultrasound [J].Analytica Chimica Acta,1998,360 (1):35-41.
    [27]Saterlay A J, Compton R D. Sonoelectroanalysis-an overview [J].Fresenius' Journal of Analytical Chemistry,2000,367(4):308-313.
    [28]Caulier T P, Maeck M. Homogeneous Sonochemistry:A Study of the Induced Isomerization of 1, 2-Dichloroethene under Ultrasonic Irradiation [J].The journal of organic chemistry,1995,60(1):272-273.
    [29]Caulier T P, Reisse J. On Sonochemical Effects on the Diels-Alder Reaction [J].The journal of organic chemistry,1996,61 (7) 2547-2548.
    [30]Mason T J, Paniwnyk L, Lorimer J P. The uses of ultrasound in food technology [J].Ultrasonics Sonochemistry,1996,3(3):S253-S260.
    [31]Canals A, Hernande Z M R. Ultrasound-assisted method for determination of chemical oxygen demand [J].Analytical and Bioanalyical Chemistry,2002,374(6):1132-1140.
    [32]Canals A, Cuesta A, Gras L, et al. New ultrasound assisted chemical oxygen demand determination [J].Ultrasonics Sonochemistry,2002,9(3):143-149.
    [33]韦利杭.化学需氧量快速测定法的研究[J].环境污染与防治,1995,17(3):38-41.
    [34]王敏.COD开管消解测定法的试验研究[J].安徽建筑工业学院学报(自然科学版),2007,15(1):79-83.
    [35]沈歈忼,陈立波.COD快速开管测定法研究[J].环境工程,1994,12(1):40-42.
    [36]方扬.开管催化消解法测定废水中COD的可行性探讨[J].安徽化工,2000,10(3):43-44.
    [37]章竹君,吕九如.铬(Ⅲ)催化鲁米诺-过氧化氢体系化学发光反应的研究[J].化学通报,1984,5:25-30.
    [38]Hu Y G, Yang Z Y. A Simple Chemiluminescence Method forDetermination of Chemical Oxygen Demand Values in Water [J].Talanta,2004,63(3):521-526.
    [39]Jin B H, He Y, Shen J, et al. Measurement of chemical oxygen demand (COD) in natural water samples by flow injection ozonation chemiluminescence (FI-CL) technique [J].Journal of Environmental Monitoring,2004,6(8):673-678.
    [40]李保新,章竹君.流动注射化学发光法快速测定化学需氧量[J].分析实验室,2004,23(7):19-20.
    [41]刘光虹,庞志涛,胡涌刚.流动注射式化学发光法测定化学需氧量[J].实验技术与管理,2008,25(7):58-61.
    [42]邱菊.COD测量方法与快速监测系统研究[D].杭州:浙江大学,测试计量技术及仪器,2003.
    [43]何德文.库仑滴定法测定化学需氧量的可靠性研究[J].干旱环境监测,1999,13(4):200-207.
    [44]陈志军.库仑法测定COD的改进[J].理化检验—化学分册.2001,37(7):324-325.
    [45]Cusesta A, Jose L, Mora J, et al. Rapid Determination of Chemical Oxyg en Demand by a Semiautomated Method Based on Microwave Sample Digestion, Chromium (VI) Organic Solvent Extraction and Flame Atomic Absor ption Spectrometry [J].Analytica Chimica Acta,1998,372(3): 399-409.
    [46]肖开提·阿布力孜,王吉德,鹿毅,等.原子吸收法测定环境水样中化学需氧量[J].分析试验室,1999,18(3):90-92.
    [47]缪培凯,张新中,马莉.化学需氧量测定方法的现状和研究进展[J].皮革科学与工程,2005,15(5):40-42.
    [48]Caze M Z, Ly S Y, Kim M K. Chemical Oxygen demand based on epectrophotometric measurement of permanganate [J]. Korean Chemical Society,1994,38(2):880-884.
    [49]Korenaga T, Zhou X J, Okada K, et al. Determination of chemical oxygen demand by a flow-injection method using cerium(Ⅳ) sulphate as oxidizing agent [J].Analytica Chimica Acta,1993,272(2):237-244.
    [50]张国勋,朱文,王锐.光度法测定高浓度化学需氧量[J].环境污染与防治,1996,18(6):24-26.
    [51]赵登山.密封恒温分光光度法快速测定化学需氧量[J].分析试验室,2001,20(5):59-61.
    [52]Ogura N. Ultraviolet absorbing materials in natural water [J].Nippon Kagaku Zasshi,1965,86(12): 1286-1288.
    [53]Megumi C, Yoshimichi I. Ultraviolet spectrometry for the evaluation of water pollution [J].Norio Sendai shi Eisei Shikenshoho,1977,7:251-254.
    [54]Masaru M, Akira A. An application of an ultraviolet spectrophotometric method for the evaluation of matt er in river water [J].Aichiken Kogai Chosa Senta Shoho,1978,6:81-85.
    [55]欧远洋,楼紫阳,赵由才.紫外吸光度与渗虑液COD浓度的关系研究[J].苏州科技学院学报(工程技术版),2003,16(3):6-10.
    [56]袁丽水.污水紫外吸光度与COD的关系[J].上海环境科学,2000,19(12):579-581.
    [57]Yeun A K W, Viraraghavan T. Relationship between COD and UV absorbance at 254nm of wastewaters and surface waters [J].Asian Environ,1987,9(2):4-6.
    [58]周娜,罗彬,廖激,等.紫外吸收光谱法直接测定化学需氧量的研究进展[J].四川环境,2006,25(1):84-87.
    [59]陈迪钊,彭礼英.交流示波极谱滴定法测定水中化学耗氧量[J].怀化师专学报,1990,9(1):97-101.
    [60]袁洪志.COD的极谱法研究[J].环境科学与技术,1994,(2):26-28.
    [61]Dubber D, Gray N F. Replacement of chemical oxygen demand (COD) with total organic carbon for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste [J].Journal of environmental science health. Part A, Toxic hazardous substance environmental engineering,2010,45(12): 1595-600.
    [62]崔建升,郭玉凤,王振川.市政污水TOC与COD相关性[J].城市环境与城市生态,2003 16(6):107-108.
    [63]陈光.刘廷良,孙宗光.水体中TOC与COD相关性研究[J].中国环境监测,2005,21(5):9-12.
    [64]江莉,张业明,曹刚.富营养化东湖水中COD与TOC的相关性研究[J].环境科学与技术,2007,30(10):37-39.
    [65]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J].Nature, 1972,238(5358):37-38.
    [66]Cary J H, Lawrence J, Tosine H M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous [J].Bulletin of Environmental Contamination and Toxicology,1976,16(6):697-701.
    [67]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J].Chemical Review,1995,95(3):735-758.
    [68]O'Shea K E, Garcia I, Aguilar M. TiO2 photocatalytic degradation of dimethyl- and diethyl-methylphosphonate, effects of catalyst and environmental factors [J].1997,23(4):325-339.
    [69]Alfano O M, Cabrera M I, Cassano A E. Photocatalytic Reactions Involving Hydroxyl Radical Attack [J].Journal of Catalysis,1997,172(2):370-379.
    [70]Aboel-Magd A. Abdel-Wahab, Abd El-Aal M. Gaber.TiO2-photocatalytic oxidation of selected heterocyclic sulfur compounds [J].Jounal of photochemistry and photobiology A:Chemisty,1998,114(3): 213-218.
    [71]Yao Y, Kakimoto K, Ogawa H I. Photodechlorination Pathways of Non-Ortho Substituted PCBs by Ultraviolet Irradiation in Alkaline 2-Propanol [J].Bulletin of Environmental Contamination and toxicology, 1997,59(2):238-245.
    [72]Kenichi O. Photocatalytic destruction of organic dyes in Aqueous TiO2 suspensions using concentrated simulated and natural solar energy [J].Bulletin of the Chemical Society of Japan,1985,58(7): 2015-2022.
    [73]史月萍,杨祝红,冯新.掺铂二氧化钛纤维光催化降解氯仿的研究[J].催化学报,2003,24(9):664-668.
    [74]Herrmann J, Matos J, Disdier J, et al. Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension [J].Catalysis Today,1999, 54(2):255-265.
    [75]Guillard C, Disdier J, Monne C. Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications [J].Applied Catalysis B:Environmental,2003,46(11): 319-332.
    [76]Bamba D, Atheba P, Robert D, et al. Photocatalytic degradation of the diuron pesticide [J].Environmental Chemistry Letters,2008,6(3):163-167.
    [77]Beltran-Heredia J, Torregrosa J, Dominguez J R, et al. Comparison of the degradation of p-hydroxybenzoic acid in aqueous solution by several oxidation processes [J].Chemosphere,2001,42(4): 351-359.
    [78]Byrne J A, Eggins B R. Photoelectrochemistry of oxalate on particulate TiO2 electrodes [J].Journal of Electroanalytical Chemistry,1998,457(1):61-72.
    [79]Bhatkhnade D S, Kamble S P, Sawant S B, et al. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light [J].Chemical Engineering Journal,2004,102(3):283-290.
    [80]Byrne J A, Eggins B R, Brown N M D, et al. Immobilisation of TiO2 powder for the treatment of polluted water [J].Applied Catalysis B:Environmental,1998,17(1):25-36.
    [81]Chan A H C, Chan C K, Barford J P. et al. Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater [J].Water Research,2003,37(5):1125-1135.
    [82]Chen D, Ray A K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension [J].Water Research, 1998,32(11):3223-3234.
    [83]Chen C C, Lu C S, Chung Y C, et al. UV light induce photodegradation of malachite green on TiO2 nanoparticles [J].Journal of Hazardous Materials,2007,141(3):520-528.
    [84]Chin M L, Mohamed A R, Bhatia S. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream [J].Chemosphere,2004, 57(7):547-554.
    [85]Chin S S, Lim T M, Chiang K, et al. Hybrid lowpressure submerged membrane photoreactor for the removal of bisphenol A [J].Desalination,2007,202(1):253-261.
    [86]Chong M N, Lei S, Jin B, et al. Optimisation of an annular photoreactor process for degradation of Congo red using a newly synthesized titania impregnated kaolinite nano-photocatalyst [J].Separation and purification technology,2009,67(3):355-363.
    [87]Esplugas S, Gime'nez J, Conteras S, et al. Comparison of different advanced oxidation processes for phenol degradation [J].Water Research,2002,36(4):1034-1042.
    [88]Evgenidou E, Fytianos K, Poulios I. Semiconductorsensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts [J].Applied Catalysis B:Environmental,2005,59(1):81-89.
    [89]Korbahti B K, Rauf M A. Application of response surface analysis to the photolytic degradation of Basic Red 2 dye [J].Chemical Engineering Journal,2008,138(1):166-171.
    [90]Kormann C, Bahnemann D W, Hoffman M R. Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions [J].Environmental Science and Technology,1991,25(3):494-500.
    [91]Liu H L, Chio Y R. Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology [J].Chemical Engineering Journal,2005,112(1): 173-179.
    [92]Molinari R, Pirilla F, Loddo V, et al. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor [J].Catalysis Today,2006, 118(1):205-213.
    [93]Muradov N Z, Raissi A T, Muzzey D, et al. Selective photocatalytic degradation of airborne VOCs [J].Solar Energy Material and solar Cells,1996,56(5):445-453.
    [94]Pera-Titus M, Garcia-Molina V, Banos M A, et al. Degradation of chlorophenols by means of advanced oxidation processes:a general review [J].Applied Catalysis B:Environmental,2004,47(4): 219-256.
    [95]Schmelling D C, Gray K A, Vamat P V. The influence of solution matrix on the photocatalytic degradation of TNT in TiO2 slurries [J].Water Research,1997,31(6):1439-1447.
    [96]Tang C, Chen V. The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor [J].Water Research,2004,38(11):2775-2781.
    [97]Vinodgopal K, Kamat P V. Photochemistry on surfaces:photodegradation of 1,3-diphenylisobenzofuran over metaloxide particles [J].Journal of Physical Chemistry,1992,96(12): 5053-5059.
    [98]Wong C C, Chu W. The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources [J].Chemosphere,2003,50(8):981-987.
    [99]Xu Y, Langford C H. Variation of Langmuir adsorption constant determined for TiO2-photocatalyzed degradation if acetophenone under different light intensity [J].Journal of Photochemistry and Photobiology A:Chemistry,2000,133(1):67-71.
    [100]Zhang H, Quan X, Chen S, et al. The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability [J].Applied Surface Science,2006,252 (24):8598-8604.
    [101]Zhang, X, Du A J, Lee P, et al. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water [J].Journal of Membrane Science,2008,313(1):44-51.
    [102]Zhu H, Zhang M, Xia Z, et al. Titanium dioxide mediated photocatalytic degradation of monocrotophos [J].Water Research,1995,29,2681-2688.
    [103]Bellobono I R, Morazzoni F, Bianchi R, et al. Solar energy driven photocatalytic membrane modules for water reuse in agricultural and food industries Pre-industrial experience using s-triazines as model molecules [J].International Journal of Photoenergy,2005,7(2):87-94.
    [104]Ghazi I E, Elamrani M K, Mansour M. Photocatalytic oxidation of the textile dye basic red 18 with irradiated titanium Dioxide [J].Toxicological and Environmental Chemistry,2003,85(1):1-6.
    [105]朱亦仁,解恒参,张振超.TiO2光催化氧化法处理草浆纸厂废水的研究[J].安全与环境学报.2005,5(1):20-22.
    [106]许佩瑶,康玺,朱洪涛.掺杂Fe3+和Zn2+纳米二氧化钛薄膜光催化降解制革废水的试验研究[J].中国皮革,2007,36(13):17-31.
    [107]朱静,李天祥,曾祥钦.纳米二氧化钛光催化氧化焦化废水的研究[J].煤炭转化,2005,28(2):81-83.
    [108]Herrmann J M, Guillard C. Photocatalytic degradation of pesticides in agricultural used waters [J]. Comptes Rendus de l'.Academie des Sciences-Series ⅡC.Paris, Serie Ⅱc-Chemistry,2000,3(6):417-422.
    [109]方涛,廖丽霞,李晓勤.电助光催化处理高COD农药废水的研究[J].环境科学与技术2006,29(8):101-102.
    [110]Kim Y C, Lee K H, Sasaki S, et al. Photocatalytic sensor for chemical oxygen Demand determination based on oxygen electrode [J].Analytical Chemistry,2000,72(14):3379-3382.
    [111]Lee K H, Kim Y C, Sasaki S, et al. Disposable chemical oxygen demand sensor using a microfabricated Clark-Type oxygen electrode with a TiO2 suspension solution [J].Electroanalysis,2000, 12(16):1334-1338.
    [112]Kim Y C, Sasaki S, Yano K et al. Photocatalytic sensor for the determination of chemical oxygen demand using flow injection analysis [J].Analytical Chimica Acta,2001,432(1):59-66.
    [113]Kim Y C, Sasaki S, Yano K, et al. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen [J].Analytical Chemistry,2002,74(15):3858-3864.
    [114]Zhao H J, Jiang D L, Zhang S Q. Development of a direct photoelectrochemical method for determination of chemical oxygen demand [J]. Analytical Chemistry,2004,76(1):155-160.
    [115]Zhang S Q, Zhao J, Jiang D et al. Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell [J].Analytica Chimica Acta,2004,514(1): 89-97.
    [116]Zhang S Q, Jiang D L, Zhao H J. Development of chemical oxygen demand on-line monitoring system based on a photoelectrochemical degradation principle [J].Environmental Science Technology, 2006,40 (7):2363-2368.
    [117]Zhang S Q, Li L H, Zhao H J. A Portable Photoelectrochemical Probe for Rapid Determination of Chemical Oxygen Demand in Wastewaters [J].Environmental Science Technology,2009,43 (20): 810-7815.
    [118]Zhang S Q, Li L H, Zhao H J, et al. A portable miniature UV-LED-based photoelectrochemical system for determination of chemical oxygen demand in wastewater [J].Sensors and Actuators B:Chemical, 2009,141(2):634-640.
    [119]赵燕,但德忠.二氧化钛紫外光在线消解测定COD的研究[J].宁波大学学报,2008,21(2):251-254.
    [120]王成艳,刘曦,冉祥成.纳米TiO2的制备及其在COD测定中的原理研究[J].中国环境监测,2009,25(3):66-69.
    [121]Yang M, Li L H, Zhang S Q. Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode [J].Sensors and Actuators B:Chemical,2010,147(2):622-628.
    [122]艾仕云,李嘉庆,杨娅.一种新的光催化氧化体系用于化学需氧量的测定研究[J].高等学校化学学报,2004,25(5):823-826.
    [123]丁红春,柴怡浩,张中海.光催化氧化法测定地表水化学需氧量的研究[J].化学学报,2005,63(2):148-152.
    [124]张继东,陈俊水,刘梅川.TiO2光催化传感器的制备及其在化学需氧量测定中的应用研究[J].化学传感器,2003,23(2):18-26.
    [125]Zhang J L, Baoxue Zhou B X, Zheng Q. Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array [J]. Water research,2009,43 (7):1986-1992.
    [126]Chen G H. Electrochemical technologies in wastewater treatment [J].Separation and purification technology,2004,38(1):11-41.
    [127]Gattrell M, Kirk D W.The electrochemical oxidation of aqueous phenol at a glassy carbon electrode [J].The Canadian Journal of Chemical Engineering,1990,68(6):997-1003.
    [128]Lin S H, Peng C F. Treatment of textile wastewater by electrochemical method [J]. Water Research, 1994,28(2):277-282.
    [129]Inan H, Dimoglo A, Karpuzcu M. Olive oil mill wastewater treatment by means of electro-coagulation [J].Separation and purification technology,2004,36(1):23-31.
    [130]Pouet M F, Grasmick A. Urban wastewater treatment by electrocoagulation and flotation [J].Water Science and Technology,1995,31(3):275-283.
    [131]Abuzaid N S, Al-Hamouz Z, Bukhari A A, et al. Electrochemical treatment of nitrite using stainless steel Electrodes [J].Water Air and Soil Pollution,2004,109(1):429-442.
    [132]Ogutveren U.B, Koparal S. Electrocoagulation for oil water emulsion treatment [J].Journal of environmental science health. Part A, Toxic hazardous substance environmental engineering,1997,32(9): 2507-2520.
    [133]Ho C C, Chan C Y. The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent [J].Water Research,1986,20 (12):1523-1527.
    [134]Murphy O J, Hitchens G D, Kaba L, et al. Direct electrochemical oxidation of organics for wastewater treatment [J].Water Research,1992,26 (4):443-451.
    [135]Szpyrkowicz L, Kaul S N, Neti R N, et al. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater [J].Water Research,2009,39 (8):1601-1613.
    [136]Boudenne J L, Cerclier O, Galea J, et al. Electrochemical oxidation of aqueous phenol at a carbon black slurry electrode [J].Applied Catalysis A:General,1996,143 (2):185-202.
    [137]Boudenne J L, Cerclier O. Performance of carbon blackslurry electrodes for 4-chlorophenol oxidation [J]. Water Research,1999,33(2):494-504.
    [138]Polcaro A M, Palmas S. Electrochemical oxidation of chlorophenols [J].Industral and Engineering Chemistry Research,1997,36(5):1791-1798.
    [139]Hofseth C S, Chapman T W. Electrochemical destruction of dilute cyanide by copper-catalyzed oxidation in a flowthrough porous electrode [J].Journal of Electrochemical Society,1999,146(1):199-207.
    [140]Chen X, Chen G, Yue P L. Anodic oxidation of dyes at novel Ti/B-diamond electrode [J].Chemical Enginddring Science,2003,58(3):995-1001.
    [141]Awad Y M, Abuzaid N S. Electrochemical treatment of phenolic wastewater:efficiency, design considerations and economic evaluation [J].Journal of environmental science health, Part A, Toxic hazardous substance environmental engineering,1997,32 (5):1393-1414.
    [142]Polcaro A M, Palmas S, Renoldi F, et al. On the performance of Ti/SnO2 and Ti/PbO2 anodes in electrochemical degradation of 2-chlorophenol for wastewater treatment [J].Journal of Applied Electrochemistry,1999,29(2):147-151.
    [143]Vincent C A, Weston D G C. Preparation and properties of semiconducting polycrystalline tin oxide [J].Journal of Electrochemical Society,1972,119 (4):518-521.
    [144]Lipp L, Pletcher D. The preparation and characterization of tin dioxide-coated titanium electrodes [J].Electrochimica Acta,1997,42(7):1091-1099.
    [145]Grimm F, Bessarabov D, Maier W, et al. Sol-gel film-preparation of novel electrodes for the electrocatalytic oxidation of organic pollutants in water [J].Desalination,1998,115(3):295-302.
    [146]Waterston K, Bejan D, Bunce N J. Electrochemical oxidation of sulfide ion at a boron-doped diamond anode [J].Journal of Applied Electrochemistry,2007,37(3):367-373.
    [147]Kesselman J M, Weres O, Lewis N S, et al. Electrochemical production of hydroxyl radical at polycrystalline Nb-doped TiO2 electrodes and estimation of the partitioning between hydroxyl radical and direct hole oxidation pathways [J].Journal of Physical Chemistry. B,1997,101(4):2637-2643.
    [148]Chen G, Betterton E A, Arnold R G. Electrolytic oxidation of trichloroethylene using a ceramic anode [J].Journal of Applied Electrochemistry,1999,29(8):961-970.
    [149]Fryda M, Herrmann D, Schafer L. Properties of diamond electrodes for wastewater treatment [J].New Diamond and. Frontier Carbon. Technology,1999,9(3):229-240.
    [150]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002.
    [151]Marselli B, Garcia-Gomez J, Michaud P A, et al. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes [J].Journal of the Electrochemical Society,2003,150(3):D79-D83.
    [152]Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J].Electrochimica Acta,1994,39(11):1857-1862.
    [153]Simond O, Schaller V, Comninellis C. Theoretical model for the anodic oxidation of organics on metal oxide electrodes [J].Electrochimica Acta,1997,42(13):2009-2012.
    [154]Haag W R, Yao C C D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants [J].Environmental Science and Technology,1992,26(5):1005-1013.
    [155]王树勇,李刚.不同金属氧化物阳极上甲基橙的电化学氧化降解[J].过程工程学报,2007,7(6):1149-1153.
    [156]Xu J H, Swain G M. Oxidation of azide anion at boron doped diamond thin-film electrodes [J].Analytical Chemistry,1998,70 (8):1502-1510.
    [157]Comninellis C, Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment [J].Journal of Applied Electrochemistry,1991,25(1):23-28.
    [158]Rodrigo M A, Michaud P A, Duo I. Oxidation of 4-Chlorophenol at Boron Doped Diamond Electrode for Wastewater Treatment [J].Journal of the Electrochemical Society,2001,148(5):D60-D64.
    [159]刘小波,林海波,孙智权Ti/SnO2-Sb2O5电极电催化降解苯胺和苯酚溶液的UV-Vis和HPLC研究[J].光谱学与光谱分析,2006,26,(6):1141-1144.
    [160]Comninellis C, Pulgarin C. Anodic oxidation of phenol for waste water treatment [J].Journal of Applied Electrochemistry,1991,21(6):703-708.
    [161]Comninellis C, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes [J].Journal of Applied Electrochemistry,1993,23(2):108-112.
    [162]Panizza M, Michaud P A, Cerisola G. Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes:Prediction of specific energy consumption and required electrode area [J].Electrochemistry Communication,2001,3(7):336-339.
    [163]Corred-Lozano B, Comninellis C, Battisti A D. Service life of Ti/SnO2-Sb2O5 anodes [J].Journal of Applied Electrochemistry,1997,27(8):970-974.
    [164]Ferro S, Battisti A D, Duo I. Chlorine Evolution at Highly Boron-Doped Diamond Electrodes [J].Journal of the Electrochemical Society,2000,147(7):2614-2619.
    [165]Varkaraki E, Nicole J, Plarrner E. Electrochemical promotion of IrO2 catalyst for the gas phase combustion of ethylene [J].Journal of the Electrochemical Society,1995,25(10):978-981.
    [166]Bellagamba R, Michaud P A, Comninellis C. Electro-combustion of polyacrylates with boron-doped diamond anodes [J].Electrochemistry Communication,2002,4(2):171-176.
    [167]Yang C H, Lee C C, Wen T C. Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater [J].Journal of the Electrochemical Society,2000,30(9):1043-1051.
    [168]Nicole J, Comninellis C. Electrochemical promotion of IrO2 catalyst activity for the gas phase combustion of ethylene [J].Journal of the Electrochemical Society,1998,28(3):223-226.
    [169]Perret A, Haenni W, Skinner N. Electrochemical behavior of synthetic diamond thin film electrodes [J].Diamond and Related Materials,1999, (8):820-823.
    [170]Gandini D, Mahea E, Michaud P A. Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment [J].Journal of Applied Electrochemistry,2000,30(12):1345-1350.50.
    [171]Cossu R, Polcaro A M, Lavagnolo M C. Electrochemical Treatment of Landfill Leachate: Oxidation at Ti/PbO2 and Ti/SnO2 Anodes [J].Environmental Science and Technology.1998,32 (22): 3570-3573.
    [172]Li X Y, Cui Y H, Feng Y J. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes [J]. Water Research,2005,39(10):1972-1981.
    [173]Iniesta J, Michaud P A, Panizza M. Electrochemical oxidation of phenol at boron-doped diamond electrode [J].Electrochimica Acta,2001,46(23):3573-3578.
    [174]Rossler-Fromme R, Scholz F. A solid composite electrode for the determination of the electrochemical oxygen demand of aqueous samples [J].Fresenius Journal of Analytical Chemistry,1996, 356(3):197-201.
    [175]Orozcoa J, Fernandez-Sancheza C, Mendoza E. Composite planar electrode for sensing electrochemical oxygen demand [J].Analytica Chimica Acta,2008,607(2):176-182.
    [176]Lee K H., Ishikawa T., McNiven S J, et al. Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode [J].Analytica Chimica Acta,1999,398 (2):161-171.
    [177]Lee K H, Ishikawa T, Sasaki S, et al. Chemical oxygen demand (COD) sensor using a stopped-flow thin layer electrochemical cell [J].Electroanalysis,1999,11(16):1172-1179.
    [178]Jeong B G, Yoon S M, Choi C H, et al. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit [J].Journal of Environmental monitoring,2007, 9(12):1352-1357.
    [179]Claudineia R S, Cleone D C C, Viviane G B, et al. Determination of the chemical oxygen demand (COD) using a copper electrode:a clean alternative method [J].Journal of Solid State Electrochemistry, 2009,13(5):665-669.
    [180]Lee K H, Ishikawab T, McNivena S. Chemical oxygen demand sensor employing a thin layer electrochemical cell [J].Analytica Chimica Acta,1999,386(3):211-220.
    [181]顾粉林,艾仕云,高梦南,等.二氧化锡修饰电极测定水体化学耗氧量的研究[J].化学传感器,2003,23(1):32-37.
    [182]Ai S. Y, Gao M N, Yang Y, et al. Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode [J].Electroanalysis,2004,16(5):404-409.
    [183]Li J Q, Li L P, Zheng L, et al. Amperometric determination of chemical oxygen demand with flow injection analysis using F-PbO2 modified electrode [J].Analytica Chimica Acta,2005,548(1):199-204.
    [184]Westbroek P, Temmerman E. In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring Pt/PbO2 disc electrode [J].Analytica Chimica Acta,2001, 437(1):95-105.
    [185]Yu H B, Wang H, Quan X, et al. Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor [J].Electrochemistry Communication,2007,9(9):2280-2285.
    [186]Yu H B, Ma C J, Quan X, et al. Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode [J].Environmental Science and Technology,2009,43(6): 1935-1939.
    [187]周喜风.基于掺硼金刚石(BDD)电极的COD在线监测仪测试条件的优化[D].大连,大连理工大学环境学院,2010.
    [188]Xie Y Q, Huber C O. Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste [J].Analytical Chemistry,1991,63(17):1714-1719.
    [189]Lee H L, Chen S C. Microchip capillary electrophoresis with amperometric detection for several carbohydrates [J].Analytical Chemistry,2002,74(23):5919-5923.
    [190]Shoesmith D W, Sunder, Bailey S M G. Anodic oxidation of copper in alkaline solutions*:Part Ⅳ. Nature of the passivating film [J].Journal of Electroanalytical Chemistry and Interfcial Electrochemistry, 1983,143(1):153-165.
    [191]Ye J, Baldwin R P. Determination of amino acids and peptides by capillary electrophoresis and electrochemical detection at a copper electrode [J].Analytical Chemistry,1994,66(17):2669-2674.
    [192]Luo P F, Zhang F Z, Baldwin R P. Constant potential amperometric detection of underivatized amino acids and peptides at a copper electrode [J].Analytical Chemistry,1991,63(17):1702-1707.
    [193]Miller B. Split-ring disk study of the anodic processes at a copper electrode in alkaline solution [J].Journal of the Electrochemical Society,1969,116(12):1675-1680.
    [194]Somasundrum M, Kirtikara K, Tanticharoen M. Amperometric determination of hydrogen peroxide by direct and catalytic reduction at a copper electrode [J].Analytica Chimica Acta,1996,319(1):59-70.
    [195]Yang W C, Yu A M, Chen H Y. Applications of a copper microparticle-modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis [J].Journal of Chromatography A,2001,905(1):309-318.
    [196]Anandan S, Wen X G, Yang S H. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells [J].Materials Chemistry and Physics,2005,93(1): 35-40.
    [197]Din A M S E, Wahab F M A E. The behaviour of the copper electrode in alkaline solutions upon alternate anodic and cathodic polarization [J].Electrochmica,1964,9(1):113-121.
    [198]Fogg A G, Scullion S P, Edmonds T E. Direct reductive amperometric determination of nitrate at a copper electrode formed in situ in a capillary-fill sensor device [J].Analyst,1991,116(6):573-579.
    [199]Nagy L, Nagy G, Hajos P. Copper electrode based amperometric detector cell for sugar and organic acid measurements [J].Sensors and Actuators B:Chemical,2001,76(1):494-499.
    [200]Vicent F, Moralloa n E, Quijada C. Characterization and stability of doped SnO2 anodes [J].Journal of Applied Electrochemistry,1998,28(6):607-612.
    [201]Kotz R, Stucki S, Carcer B. Electrochemical waste water treatment using high overvoltage anodes. Part I:Physical and electrochemical properties of SnO2 anodes [J].Journal of Applied Electrochemistry, 1991,21(1):14-20.
    [202]Kong J T, Shi S Y, Zhu X P. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol [J].Journal of Environmental Sciences,2007, (19):1380-1386.
    [203]Zanta C L P S, Michaud P A, Comninellis C. Electrochemical oxidation of p-chlorophenol on SnO2-Sb2O5 based anodes for wastewater treatment [J].Journal of Applied Electrochemistry,2003,33(12): 1211-1215.
    [204]Villullas H M, Mattos-Costa F I, Nascente P A P. Anodic oxidation of formaldehyde on Pt-modified SnO2 thin film electrodes prepared by a sol-gel method [J].Electrochimica Acta,2004,49(22):3909-3916.
    [205]Liu Y, Li Z Y, Li J H. IrO2/SnO2 electrodes:prepared by sol-gel process and their electrocatalytic for pyrocatechol [J].Acta Materialia,2004,52(3):721-727.
    [206]Memming R, Schroppel F, Bringmann U. Sensitized oxidation of water by tris(2,2'-bipyridyl) ruthenium at SnO2 electrodes [J].Journal of Electroanalytical Chemistry,1979,100(1):307-318.
    [207]Makgae M E, Theron C C, Przybylowicz W J. Preparation and surface characterization of Ti/SnO2-RuO2-IrO2 thin films as electrode material for the oxidation of phenol [J].Materials Chemistry and Physics,2005,92(2):559-564.
    [208]Chen X Y, Chen G H. Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution [J].Electrochimica Acta,2005,50(20):4155-4159.
    [209]Houk L L, Johnson S K, Feng J. Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte [J].Journal of Applied Electrochemistry,1998,28(11):1167-1177.
    [210]Marinez-huitle C, Battisti A E, Ferro S. Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb/PbO2, Ti/SnO2, and Si/BDD electrodes[J].Environmental Science and Technology,2008,42(18):6929-6935.
    [211]Borras C, Bezoy C, Mostany J. Oxidation of p-methoxyphenol on SnO2-Sb2O5 electrodes:Effects of electrode potential and concentration on the mineralization efficiency [J].Journal of Applied Electrochemistry,2006,36(4):433-439.
    [212]Quioz M, Reyna S, Sanchez J. Anodic oxidation of pentachlorophenol at Ti/SnO2 electrodes[J].Journal of Solid Electrochemitry,2003,7(5):277-282.
    [213]Wang Y H, Chan K Y, Li X Y. Electrochemical degradation of 4-chlorophenol at nickel-antimony doped tin oxide electrode oxide electrode [J].Chemosphere,2006,65(7):1087-1093.
    [214]Simonsson D. Current Distribution in the Porous Lead Dioxide Electrode [J].Journal of the Electrochemical Society,1973,120(2):151-157.
    [215]Ellis S R, Hampson N A, Ball M C. Reviews of applied electrochemistry 13-the lead dioxide electrode [J].Journal of Applied Electrochemistry,1986,16 (2):159-167.
    [216]Ghasemi S, Karami H, Mousavi M F. Synthesis and morphological investigation of pulsed current formed nano-structured lead dioxide [J].Electrochemistry Communication,2005,7(12):1257-1264.
    [217]Abacia S, Tamer U, Pekmez K, et al. Electrosynthesis of benzoquinone fromphenol on a and β surfaces of PbO2 [J].Electrochimica Acta,2005,50(18):3655-3659.
    [218]Harrison J A, Mayne J M. The oxidation of aromatic organic compounds at a lead dioxide electrode [J].Electrochimica Acta,1983,28(9):1223-1228.
    [219]Wu Z C, Zhou M H. Partial degradation of phenol by advanced electrochemical oxidation process [J].Environmental Science and Technology,2001,35 (13):2698-2703.
    [220]Quiroz M A, Reyna S, Martinez-Huitle C A. Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes [J].Applied Catalysis B:Environmental,2005,59(3):259-266.
    [221]Ai S Y, Gao M G, Zhang W. Preparation of Ce-PbO2 modified electrode and its application in detection of anilines [J].Talanta,2004,62(3):445-450.
    [222]Tahar N B, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide:a comparison of the activities of various electrodeformulations [J].Journal of Applied Electrochemistry,1999,29(3):277-283.
    [223]Zhou M H, Dai Q Z, Lei L C, et al. Long life modified lead dioxide anode for organic wastewater treatment:electrochemical characteristics and degradation mechanism [J].Environmental Science and Technology,2005,39(1):363-370.
    [224]Song Y H, Wei G, Xiong RC. Structure and properties of PbO2-CeO2 anodes on stainless steel [J].Electrochimica Acta,2007,52(24):7022-7027.
    [225]Iniesta J, Gonzalez-Garcia J, Exposito E. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes [J].Water Research,2001,35(14): 3291-3300.
    [226]徐莺,朱承驻,董文博.新型二氧化铅电极处理有机染料废水的研究[J].环境污染治理技术与设备,2006,7(5):124-128.
    [227]只金芳,田如海.金刚石薄膜电化学[J].化学进展,2005,17(1):55-63.
    [228]Honda K, Yamaguchi Y, Yamanaka Y, et al. Hydroxyl radical-related electrogenerated chemiluminescence reaction for a ruthenium tris(2,2')bipyridyl/co-reactants system at boron-doped diamond electrodes [J].Electrochimica Acta,2005,51(4):588-597.
    [229]Panizza M, Cerisola G. Application of diamond electrodes to electrochemical processes [J].Electrochimica Acta,2005,51(2):191-199.
    [230]Mitadera M, Spataru N, Fujishima A. Electrochemical oxidation of aniline at boron-doped diamond electrodes [J].Journal of Applied Electrochemistry,2004,34(3):249-254.
    [231]Panizza M, Michaud P A, Cerisola G, et al. Anodic oxidation of 2-naphthol at boron-doped diamond electrodes [J].Journal of Electroanalytical Chemistry,2001,507(1):206-214.
    [232]俞杰飞,周亮,工亚林.掺硼金刚石薄膜电极电催化降解染料废水的研究[J].高校化学工程学报,2004,18(5):648-652.
    [233]Lee J, Park S M. Direct electrochemical assay of glucose using boron doped diamond electrodes [J].Analytica Chimica Acta,2005,545(1):27-32.
    [234]Suzuki A, Ivandini T A, Yoshimi K. Fabrication, Characterization, and Application of Boron-Doped Diamond Microelectrodes for in Vivo Dopamine Detection [J].Analytical Chemistry,2007,79(22): 8608-8615.
    [235]Lawrence N S, Thompson M, Prado C, et al. Amperometric detection of sulfide at a boron doped diamond electrode:the electrocatalytic reaction of sulfide with ferricyanide in aqueous solution [J].Electroanalysis,2002,14(7):499-503.
    [236]Lawrence N S. Amperometric detection of sulfide:An electrocatalytic reaction with ferrocene carboxylate [J].Electroanalysis,2006,18(17):1658-1663.
    [237]Ward-Jones S, Banks G E, Simm A O, et al. An in situ copper plated boron-doped diamond microelectrode array for the sensitive electrochemical detection of nitrate [J].Electroanalysis,2005,17(20): 1806-1815.
    [238]Spataru N, Rao T N, Tryk D A, et al. Determination of nitrite and nitrogen oxides by anodic voltammetry at conductive diamond electrodes [J].Journal of the Electrochemical Society,2001,148(3): E112-E117.
    [239]Ji X B, Banks C E, Compton R G. The electrochemical oxidation of ammonia exhibits analytically useful signals in aqueous solutions [J].Analyst,2005,130(10):1345-1347.
    [240]Charoenraks T, Chuanuwatanakul S, Honda K, et al. Analysis of tetracycline antibiotics using hplc with pulsed amperometric detection [J].Analytical Sciences,2005,21(3):241-245.
    [241]Chailapakul O, Fujishima A, Tipthara P, et al. Electroanalysis of glutathione and cephalexin using the boron-doped diamond thin-film electrode applied to flow injection analysis [J].Analytical Sciences, 2001,17(supplement):i419-i422.
    [242]Uslu B, Topal B D, Ozkan S A. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes [J].Talanta,2008,74(5): 1191-1200.
    [243]Omanovic D, Kwokal Z, Goodwin A, et al. Trace metal detection in Sibenik bay, Croatia:cadmium, lead and copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. a case study [J].Journal of the Iranian Chemical Society,2006,3(2):128-139.
    [244]Prado C, Wilkins S J, Marken F, et al. Simultaneous electrochemical detection and determination of lead and copper at boron-doped diamond film electrodes [J].Electroanalysis,2002,14(4):262-272.
    [245]孙宗光,齐文启.废水CODCr排污总量控制监测[J].中国环境监测,1998,14(2):29-31.
    [246]朱万森.COD自动分析仪器的研制[J].环境科学,1989,10(4):13-16.
    [247]范世华,方肇伦.环境水中化学需氧量的FI分光光度法自动在线检测[J].分析科学学报,1996,12(2):103-106.
    [248]刘学文,Line M P一种新型的COD在线自动监测仪[J].分析仪器,2002,(2):15-17.
    [249]Matsumoto S, Sato Y, Kamo M. Vapor deposition of diamond paticals from methane [J].Japanese Journal of Applied Physics,1982, (4B):L183-1185.
    [250]Matsumoto S, Sato Y, Tsutsumi M, et al. Growth of diamond particles from methane-hydrogen gas [J].Journal of Mateials Science,1982,17(4):3106-3122.
    [251]Canizares P, Saez C, Lobato J, et al. Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes [J].Industrial and Engineering Chemistry Research.2004,43(9): 1944-1951.
    [252]Xu L, Wang W, Wang M, et al. Electrochemical degradation of tridecane dicarboxylic acid wastewater with tantalum-based diamond film electrode [J].Desalination.2008,222(1):388-393.
    [253]Ammar S, Abdelhedi R, Flox C et al. Electrochemical degradation of the dye indigo carmine at boron-doped diamond anode for wastewaters remediation. [J].Environmental Chemistry Letters,2006,4(4): 229-233.
    [254]Panizza M, Delucchi M, Cerisola G. Electrochemical degradation of anionic surfactants [J].Journal of Applied Electrochemistry,2005,35(4):357-361.
    [255]Polcaro A M, Mascia M, Palmas S, et al. Electrochemical degradation of diuron and dichloroaniline at BDD electrode [J].Electrochimica Acta,2004,49(4):649-656.
    [256]Li S, Bejan D, Mcdowell M S, et al. Mixed first and zero order kinetics in the electrooxidation of sulfamethoxazole at a boron-doped diamond (BDD) anode [J].Journal of Applied Electrochemistry,2008, 38(2):151-159.
    [257]Holt K B, Forryan C, Compton R G et al. Anodic activity of boron-doped diamond electrodes in bleaching processes [J].New Journal of Chemistry,2003,27(4):698-703.
    [258]Fisher V, Gandini D, Laufer S et al. Prepareation and characterization of Ti/diamond electrode [J].Electrochimica Acta,1998,44(2):521-524.
    [259]张玲,赖起邦,崔万国.拉曼光谱表征无氢类金刚石薄膜的新方法[J].表面技术,2010,39(4):103-105.
    [260]鹏仕魁.金刚石膜成分、微结构和力学性能的表征[J].硬质合金,2001,18(4):221-224.
    [261]Chen X, Chen G, Gao F, et al. High-performance Ti/BDD electrodes for pollutant oxidation [J].Environmental Science and Technology,2003,37(21):5021-5026.
    [262]Swain G M, Ramesham R. The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes [J].Analystical chemistry,1993,64(4):245-351.
    [263]Rao T N, Fujishima A. Recent advances in electrochemistry of diamond [J].Diamond and Related Materials,2000,9(3):384-389.
    [264]Beck F, Krohn H, Kaiser W et al. Boron doped diamond/titanium composite electrodes for electrochemical gas generation from aqueous electrolytes [J].Electrochimica Acta,1998,44(2):525-532.
    [265]Modestov A D, Evstefeeva Y E, Pleskov Y V. Synthetic semiconductor diamond electrodes:kinetics of some redox reactions [J].Jouranl of Electroanalytical,1997,431(2):211-218.
    [266]Bard A J.电化学原理方法及应用[M].北京:化学工业出版社,2005.
    [267]Deslouis C, Sanoit J D, Saada S, et al. Electrochemical behaviour of (111) B-Doped Polycrystalline Diamond:Morphology/surface conductivity/activity assessed by EIS and CS-AFM [J].Diamond and Related Materials,2011,20(1):1-10.
    [268]胡晓君,曹华珍,郑国渠.掺硼浓度对金刚石薄膜电极电化学性能影响的研究[J].高校化学工程学报,2006,20(6):932-937.
    [269]Ferreira N G, Silva L L G, Corat E J. Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems [J].Diamond and Related Materials,2002,11(8):1523-1531.
    [270]魏俊俊,贺琦,高旭辉.硼掺杂金刚石薄膜研究[J].人工晶体学报,2007,36(3):569-572.
    [271]Tian R H, Tata N, Yasuaki E. et al. Construction of two-dimensional arrays gold nanoparticles monolayer onto Boron doped Diamond Electrode Surfaces [J].Chemistry of Materials,2006,18(4): 939-945.
    [272]Takeshi K, Shinsuke A, Kensuke H, et al. Fabrication of covalent SAM/Au nanoparticle boron doped diamond configurations with a Sequential Self-Assembly Method [J].Journa of Physical Chemistry C,2007,111(43):12650-12657.
    [273]Yu L Z, Anupam M, Zhaoyue N, et al. Diamond-based molecular platform for photoelectrochemistry [J].Journal of the American Chemical Society,2008,130 (51):17218-17219.
    [274]Tribidasari A, Ivandini, R S, Yoshihiro M. Electrochemical detection of arsenic(Ⅲ) using Iridium-implanted boron-doped diamond Electrodes [J].Analytical Chemistry,2006,78(18):6291-6298.
    [275]Suryanarayanan V, Nakazawa I, Yoshihara S, et al. The influence of electrolyte media on the deposition/dissolution of lead dioxide on boron-doped diamond electrode-A surface morphologic study [J].Journal of Electroanalytical Chemistry,2006,592 (2):175-182.
    [276]Michael E H, Robert M J J, Richard G C. An AFM study of the correlation of lead dioxide electrocatalytic activity with observed Morphology [J].Journa of Physical Chemistry,2004,108(20): 6381-6390
    [277]Chen X M, Gao F R, Chen G H. Comparison of Ti/BDD and Ti/SnO2-Sb2O5 electrodes for pollutant oxidation [J].Journal of Applied Electrochemistry,2005,35 (2):185-191.
    [278]Suni I I. Impedance methods for electrochemical sensors using nanomaterials [J].TrAC Trends in Analystical chemistry,2008,27 (7):604-611.
    [279]Zhou M, Zhai Y M, Dong S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide [J].Analystical chemistry,2009,81(14):5603-5613.
    [280]Cong Y Q, Wu Z C. Electrocatalytic generation of radical intermediates over lead dioxide electrode dopedwith fluoride [J]. Journa of Physical Chemistry C,2007,2006,111(8):3442-3446.
    [281]Chailapakul O, Amatatongchai M, Wilairat P, et al. Flow injection determination of iodide ion in nuclear emergency tablets, using boron-doped diamond thin film electrode [J].Talanta,2004,64(15): 1253-1258.
    [282]Cong Y Q, Wu Z C. Electrocatalytic generation of radical intermediates over lead dioxide electrode doped with fluoride [J].The Journal of Physical Chemistry C,2007,111(8):3442-3446.
    [283]Adams B, Tian M, Chen A C. Design and electrochemical study of SnO2-based mixed oxide electrodes [J].Electrochimica Acta,2009,54(5):1491-1498.
    [284]Yang X P, Zou R Y, Huo F, et al. Preparation and characterization of Ti/SnO2-Sb2O3-Nb2O5/PbO2 thin film as electrode material for the degradation of phenol [J].Journal of Hazardous Materials,2009, 164(1):367-373.
    [285]Zhu K J, Zhang W C, Wang H F, et al. Electro-catalytic degradation of phenol organics with SnO2-Sb2O3/Ti electrodes [J].Clean,2008,36(1):97-102.
    [286]Vyrides I, Stuckey D C. A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics [J].Bioresource Technology,2009,100(2):979-982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700