电动车用铅酸蓄电池二氧化铅电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保护环境,节约能源,电动车的发展势在必行。阀控式铅酸蓄电池以其优良的性能价格比成为近期及过渡时期电动车用动力电源的理想选择,因此对铅蓄电池的控制电极一二氧化铅(PbO_2)电极的研究对提高铅蓄电池性能,促进铅蓄电池在电动车上的应用具有重要的意义。本文综述了PbO_2电极的发展研究概况,分析了PbO_2电极存在的主要问题,从板栅合金和正极活性物质(PAM)的性质变化着手,在基础理论和应用方面对PbO_2电极进行了系统深入的研究,以提高对PbO_2电极活性物质微观结构的再认识,改善PbO_2电极性能。
     本文系统地研究了Bi对Pb—Ca合金腐蚀行为的影响。Bi通常作为杂质存在于铅中,Bi的去除过程非常困难,因此Bi对板栅合金及PbO_2电极性能的影响引起人们极大的关注。通过恒电流阳极失重法,扫描电镜(SEM)观察,腐蚀电阻测定及充放电循环实验,得出在Bi含量为0.0025—0.0648wt.%范围内,随Bi含量增加,Pb—Ca—Sn—Al合金耐蚀性能提高,同时Bi对PbO_2电极充放循环特性具有良好影响。
     在对一些无机及有机添加剂进行筛选的基础上,采用扫描电镜(SEM)观察、X射线衍射(XRD)、差热—热重(DTA—TG)分析和X射线光电子能谱(XPS)等方法对失效电极中正极活性物质形貌及有关特性进行了研究,探讨了影响PbO_2电极的两种失效机理,即含添加剂A的电极(容量一般,寿命较长)失效是由于PbO_2由电化学活性变为非电化学活性引起的;含紫脲酸胺和添加剂B的电极(容量高,寿命较短)失效是由于PbO_2粒子间失去导电联系而引起容量损失、寿命终止的。XPS分析表明,添加剂对PbO_2电极的作用并非是通过增加凝胶区水含量而实现的。
     开发出两种新型的正极活性物质添加剂B和A,研究了复合添加剂(B+A)对PbO_2电极性能的影响。B具有提高电极容量的作用,良好作用表现在前、中期;A具有延长循环寿命的作用,良好作用表现在中、后期。B和A的联合使用使电极显示了优良性能,中高倍率(3h率)放电容量可提高8—15%,寿命延长7%。
The development of electric vehicles(EV) is imperative in order to protect environment and save energy. In the interim and near future the most promising candidate of power sources for EV is a certain type of valve—regulated lead/acid (VR-LA) batteries due to their high performance — cost ratio. Therefore, studies of PbO_2 electrode as the performance determining electrode of lead/acid batteries are of great importance to improve their performance and applications to EV. Recent researches on PbO_2 electrodes were reviewed and the main problems arising were analysed in this dissertation. It started with positive grid alloys and the property change of positive active materials (PAM), made a systematic and thorough study on PbO_2 electrodes in the respect of basic theories and applications to deepen our understanding of microstructure of their PAM and improve their performance.
    The influences of bismuth on the corrosion behavior of Pb — Ca alloys were systematically studied. Bismuth is usually present in metallic lead as an impurity, and debismuthising of lead is difficult. Consequently, the effect of residual bismuth on the performance of grids and PbO_2 electrodes has been the matter of great interest. Experimental results from the weight loss by constant current polarization, SEM observation, corrosion resistance determination and charge — discharge cycling showed that the corrosion — resistivity of Pb — Ca — Sn — Al alloys were increased with the increase of bismuth content in the range of 0. 0025 — 0. 0648 wt. %, and bismuth presented good effect on the cycling performance of PbO_2 electrodes.
    On the basis of screening some inorganic and organic additives, the morphology and some related characteristics of PAM from the failed positive plates were examined by SEM observation, XRD, DTA — TG and XPS. Two failure mechanisms of PbO_2 electrodes were proposed, namely, the failure of the electrodes with additive A (with ordinary capacity and longer cycle life) was due to the conversion
引文
1 张纪元.铅蓄电池作电动车电源的可能性.电池.1996,26(2):96
    2 宇杰.“绿色汽车”即将驶入快车道.汽车运用.1997,(2):5
    3 商国华.批量生产电动车已不再是梦.汽车情报.1996,(3):23
    4 戴佳兵.电动轿车离我们有多远.广州日报.1997,11,28
    5 毕道治.电动汽车及电池的过去、现在和未来.中国第二十二届化学与物理电源学术年会论文集.湖南邵阳,1996:13—15
    6 陈立英.汽车排气的污染危害及治理.环境保护.1997,(7):45
    7 张小虞.中国汽车工业与可持续发展战略.汽车情报.1997,(1):3—4
    8 徐冠华.大力发展新型能源汽车 促进中国的可持续发展.汽车情报.1997,(1):1—2
    9 汪兴涛,张利鸣.论ISO14000的冲击和我国企业的应有态度与对策.中国环境管理.1997,(1):7
    10 马九秋.推行ISO14000环境管理系列标准刍见.环境保护.1997,(8):28
    11 解晶莹.清洁能源氢镍电池镍氢氧化物电极材料的研究.哈尔滨工业大学工学博士学位论文.1997:2
    12 马紫峰,林维明.电动汽车动力电源研究现状与展望.电源技术.1994,18(3):39—42
    13 李玉香.高性能IZA电动汽车.汽车情报.1997,(2):21—23
    14 J. Alzieu, P. Gagnol, H. Smimite. Development of an On-Board Charge and Discharge Management System for Electric-Vehicle Batteries. J. Power Sources. 1995,53:327
    15 许香泉.电动汽车与电动汽车用电池.电池.1995,25(2):89
    16 永野貢.电気自动车用电池开发现状.化学工业 1996,3:1—6
    17 D.A.J. Rand. The Lead/Acid Battery—a Key Technology for Global Energy Management. J. Power Sources. 1997,64:157—174
    18 Sid M egahed, Bruno Scrosati. Lithium-Ion Rechargeable Batteries. ibid.??1994,51:79—104
    19 M. TadoRoro. Development of Hydrogen-Absorbing Alloys for Nickel-Metal Hydride Secondary Battery. J. Alloys and Compounds. 1993,192: 179—181
    20 Klaus—Dieter Merz, J.M. Stevenson. Progress in the Design and Develop- ment of Improved Lead/Acid Batteries for Electric Buses and Vans. J. Power Sources. 1995,53:317—321
    21 Jerome F. Cole. The Advanced Lead/Acid Battery Consortium. J. Power Sources. 1992 , 40:1—15
    22 詹锋,蒋利军.电动汽车用动力型MH—Ni电池开发动向.电源技术.1997,21(1):36
    23 宋丰章,田茂荣,韩启宝.赴日考察电动车技术纪实.电池.1994,24(3):125—126
    24 A.J. Appleby. Electrochemical Energy—Progress towards a Cleaner Future: Lead/Acid Batteries and the Competition. J. Power Sources. 1995, 53:187 —197
    25 Zhong Shi, Hui Zhan, Yunhong Zhou et al. Effect of PFAS on the Discharge Behaviour of PbO_2 Electrodes in Sulfuric Acid Solution. ibid. 1996, 62:135
    26 李享.回收性最好的产品—铅酸电池.电源信息情报.1996,8
    27 王军荣.阀控式密封铅酸蓄电池结构对性能影响的研究.哈尔滨工业大学硕士学位论文.1996:17—18
    28 S.V. Baker, P.T. Moseley, A. D. Turner. The Role of Additives in the Positive Active Mass of the Lead/Acid Cell. J. Power Sources. 1989,27: 128
    29 N.E. Bagshaw. Grid Alloys for Maintenance-Free Deep-Cycling Batteries. ibid. 1991,33:3—11
    30 M.G. Mayer, D. A. J. Rand. Leady Oxide for Lead/Acid Battery Positive Plates: Scope for Improvement? ibid. 1996,59:17—24
    31 W.R. Kitchens, R.C. Osten, D.W.H. Lambert. Advances in Manufacturing Systems for the Production of Pastes for Lead/Acid Battery Plates. ibid.??1993,53:263—267
    32 F. Vallat—Joliveau, A. Delahaye—Vidal, M. Figlarz. New Preparation Methods and Accurate X-Ray Powder Diffraction Date for Tribasic Lead Sulfate Hydrate, Precursor of the Active Material in Lead/Acid Batteries. ibid. 1995,55:97—100
    33 R. Kiessling, J. Mills. A Battery Model for the Monitoring of, and Corrective Action on, Lead/Acid Electric-Vehicles Batteries. ibid. 1995,53:339—340
    34 Eckhard Karden, Peter Mauracher, Friedhelm Schope. Electrochemical Modelling of Lead/Acid Batteries under Operating Conditions of Electric Vehicles, ibid. 1997,64:175—180
    35 Robert L. Galyen, Michael K. Carpenter. AC Delco Systems' Advanced Valve-Regulated Lead/Acid Battery for Electric Vehicles. ibid. 1995, 53:323—326
    36 P. Lenain, M. Kechmire, J. P. Smaha. Monitoring Fleets of Electric Vehicles: Optimizing Operational Use and Maintenance. ibid. 1995,53:335—338
    37 A. Cooper. Collaboration in Research—the ALABC: Brite-EuRam Lead/Acid Electric-Vehicle Battery Project. ibid. 1996,59:161—170
    38 J.E. Manders, L.T. Lain, K. Peters et al. Lead/Acid Battery Technology. ibid. 1996,59:199—207
    39 P.T.Moseley. Lead/Acid Battery Myths. ibid. 1996,59:81—86
    40 D.A.J. Rand, L.S. Holden, G.J. May. Valve-Regulated Lead/Acid Batreties, ibid. 1996,59:191—197
    41 史鹏飞等.化学电源工艺学.哈工大出版社,1988:58—109
    42 D. Pavlov. A Theory of the Grid/Positive Active—Mass(PAM) Interface and Possible Methods to Improve PAM Utilization and Cycle Life of Lead/Acid Batteries. J. Power Sources. 1995,53:9—21
    43 Paul Rüetseh. Influence of Crystal Structure and Interparticle Contact on the Capacity of PbO_2 Electrodes. J. Electrochem. Soc. 1992, 139(5):1347—135144 L.A. Yolshina, V. Ya. Kudyakov, V. G. Zyryanov. Development of an Electrode for Lead-Acid Batteries Possessing a High Electrochemical Utilization Factor and Invariable Cycling Characteristics. J. Power Sources. 1997, 65:71—76
    45 C.V. D' Alkaine, A. Carubelli, H. W. Fava et at. Relation between Energetic and Utilization Coefficients in the Positive Plates of Automotive Lead/Acid Batteries. ibid. 1995,53:289—292
    46 B. Szczesniak, J. Kwasnik, J.D. Milewski et at. Performance of Valve-Regulated Lead/Acid Test Ceils for Float Operation Using Modified Positive Active MateriaLs. ibid. 1995,53:119—125
    47 卢元铎,邱德瑜,成凤英等.铅酸蓄电池正极容量的提高.电源技术.1996,20(1):12—15
    48 赵淑珍,卢元铎,张仲华.铅酸蓄电池正极活性物质的研究.电源技术.1994,18(3):5—10
    49 P.T. Moseley. Positive Plate Additives. J. Power sources. 1997,64:47—50
    50 徐品弟,柳厚田.铅酸蓄电池—基础理论和工艺原理:上海科学技术文献出版社,1996:139—145,577
    51 吕鸣祥,董长保,宋玉瑾.化学电源.天津大学出版社,1992:169—198
    52 朱松然,张勃然.铅蓄电池技术.机械工业出版社,1998:92—97
    53 朱松然,董为毅.铅酸蓄电池正极活性物质活性和失效模式.电池工业.1996,1(5):142—143
    54 C.V. D'Alkaine, A. Carubelli, M. C. Lopes. The Kinetic Mechanism of the PbO_2 Discharge of the Lead/Acid Positive Plates. J. Power Sources. 1997, 64:111-—115
    55 D. Pavlov, A. Dakhouche, T. Rogachev. Influence of Antimony on the Electrochemical Behaviour and the Structure of the Lead Dioxide Active Mass of Lead/Acid Batteries. ibid. 1993,42:71—88
    56 韦国林,王家英.硫酸溶液中PbO_2电极的电化学行为.电池.1994,24(6):280—283
    57 D. Pavlov. Premature Capacity Loss (PCL) of the Positive Lead/Acid Bat-??tery Plate: a New Concept to Describe the Phenomenon. J. Power Soures. 1993,42:349
    58 D. Pavlor, E. Bashtavelova. Processes at the Mirco-Level in the Oxidation of PbSO_4 to PbO_2 during Charging of Lead/Acid Battery Positive Plates. ibid. 1990,30: 77—97
    59 B. Monahov, D. Pavlov. Hydrated Structures in the Anodic Layer Formed on Lead Electrodes in H_2SO_4Solution. J. Appl. Electrochem. 1993,23:1249 —1250
    60 咸春颖.铅酸蓄电池正极板栅合金对电池性能的影响.哈尔滨工业大学硕士学位论文.1996:4
    61 李同家.低锑多元合金在汽车蓄电池中的应用.电池.1994,24(2):61
    62 宋玉瑾,朱松然.密封铅酸蓄电池板栅材料的研究.蓄电池.1989,(4):2—6
    63 P. Rakin. Modern Lead/Acid Battery Technology: New Materials. J. Power Sources. 1991,36:461—472
    64 A.F. Hollenkamp, K. K. Constanti, A. M. Huey et al. Premature Capacity Loss Mechanisms in Lead/Acid Batteries. ibid. 1992,40:125—136
    65 T. Isoi, Y. Nakayama,S. Nakao et al. Sealed Lead/Acid Battery for motorcycle Use. ibid. 1991,33:117—126
    66 G. Clerici. Thirteen Years' Experience with Expanded Lead-Calcium-Tin Grids for Automotive Battery Plates. ibid. 1997,33:67—75
    67 K. Fuchida, W.F. Gillian, L.E. Gardiner. Towards Improved Manufacture of Lead/Acid Batteries—Panel Discussion. ibid. 1992,38: 197—227
    68 J. Garche. Corrosion of Lead and Lead Alloys : Influence of the Active Mass and of the Polarization Conditions. ibid. 1995,53:85—92
    69 L. Muras, P.R. Munroe, S. Blairs et al. Transmission Electron Microscopic Observation of Precipitates in an Aged Pb-0.1wt.%Ca-0.3wt.%Sn Alloy. ibid. 1995,55:119—122
    70 N.E. Bagshaw. Lead Alloys:Past, Present and Future. ibid. 1995,53:25—3071 J.P. Hilger. Hardening Process in Ternary Lead-Antimony-Tin Alloys for Battery Grids. ibid. 1995,53:45—51
    72 L.T. Lam, H. Ozgun, O.V. Lim et al. Pulsed-Current Charging of Lead/Acid Batteries—a Possible Means for Overcoming Premature Capacity Loss? ibid. 1995,53:215
    73 伍元鹏.板栅合金概述.电源技术.1994,18(1):32—38
    74 柴树松.铅酸蓄电池早期容量衰减的研究.电源技术.1997,21(4):163—166
    75 A.G. GAD Allah, H.A. ABd E1-Rahman. Role of Minor Alloying Elements on the Performance of Lead-Acid Battery Grids. J. Appl. Eleetrochem. 1995,25:682—689
    76 D. Pavlor, M. Dimitrov, G. Petkova. The Effect of Selenium on the Electrochemical Behavior and Corrosion of Pb-Sn Alloys Used in Lead-Acid Batreties. J. Electrochem. Soc. 1995,142: 2919
    77 刘黎.铅酸蓄电池板栅合金的研究进展.电源技术.1994,18(4):29—35
    78 A.F. Hollenkamp. Premature Capacity Loss in Lead/Acid Batteries: a Discussion of the Antimony-Free Effect and Related Phenomena. J. Power Sources. 1991,36:567—568
    79 J. Yamashita, H. Nakashima, Y. Kasai. Technological Progress in Sealed Lead/Acid batteries, ibid. 1991,36: 479
    80 赵禹唐.Pb—Ca合金及其板栅的研究.蓄电池.1994,(4):11—17
    81 R. De Marco. Influence of Lead (Ⅱ) Carbonate Films of Non-antimonal Grids on the Deep Discharge Cycling Behaviour of Maintenance-Free Lead/Acid Batteries. J. Appl. Electroehem. 1997,27:93
    82 C. Brissaud, G. Reurnont, J. P. Smaha et al. Structural and Morphological Study of Damage in Lead/Acid Batteries during Cycling and Floating Tests. J. Power Sources. 1997,64:117
    83 K.K. Constanti, A.F. Hollenkamp, M.J. Koop et al. Physical Change in Positive-Plate Material—an Underrated Contributor to Premature Capacity Loss. ibid. 1995,55:269—27584 M. Calabek, K. Mieka, P. BaCa et al. Study of Resistance Changes Related to Premature Capacity Loss in Lead Battery Plates. ibid. 1997,64:123
    85 张罡,江祖建,蔡永甜.解决铅钙蓄电池早期容量降的研究.电池.1994,24(5):219
    86 H.G. Burghoff, G. Richter. Reliability of Lead—Calcium Automotive Batteries in Practical Operations. J. Power Sources. 1995,53: 343—350
    87 R. David Prengaman. Wrought Lead-Calcium-Tin Alloys for Tubular Lead/Acid Battery Grids. ibid. 1995,53:207—214
    88 R. Miraglio, L. Albert, A. El Ghachcham. Passivation and Corrosion Phenomena on Lead-Calcium-Tin Alloys of Lead/Acid Battery Positive Electrodes. ibid. 1995,53: 53—61
    89 Herbert Giess. The Influence of Calcium, Tin and Grid Thickness on Corrosion-Indueeded Grid Growth. ibid. 1995,53:31—43
    90 S. Brinie, M. Metikos-Hukovic, R. Babic. Characterization of Anodic Films on Lead and Lead Alloys by Impedance Spectroscopy. ibid. 1995,55: 19—24
    91 Robert F. Nelson, David M. Wisdom. Pure Lead and the Tin Effect in Deep-Cycling Lead/Acid Battery Applications. ibid. 1991,33:165—185
    92 D. Pavlov, B. Monakhov, M. Maja et al. Mechanism of Action of Sn on the Passivation Phenomena in the Lead-Acid Battery Positive Plate (Sn-Free Effect). J. Electrochem. Soc. 1989,136(1):27—33
    93 K. Takahashi, H. Yasuda, N. Takami et al. Analysis of the Conditions that Promote Passivation on Calcium-Alloy Grids in Lead/Acid Batteries. J. Power Sources. 1991,36:451—460
    94 崔荣龙.低锑多元合金和铅—钙—锡—铝四元合金的研制.电源技术.1991,15(5):35—41
    95 杭瑚.铅酸蓄电池科学技术的新发展.蓄电池.1993,(1):18—24
    96 张继泉.浅谈免维护铅酸蓄电池.电源技术.1993,17(2):29—34
    97 柳厚田,徐品弟,周伟舫.铅酸蓄电池的正极板栅合金.蓄电池.1992,(2):4—898 T. Rogachev, D. Pavlov. Influence of Cycling on the Nature of the Positive Active Mass of Lead/Acid Batteries and Effect of CaSO_4 on the Behaviour of the Positive Plates. J. Power Sources. 1997,64:51—56
    99 K. Mc Gregor. Active-Material Additives for High-Rate Lead/Acid Batteries:Have There Been Any Positive Advances? ibid. 1996,59:31—43
    100 敖建平,孙国忠.添加剂和极板结构对铅酸蓄电池冷起动性能的影响.蓄电池.1996,(3):32—34
    101 吕国金,张曼,吴三械.双极性铅酸蓄电池轻型导电基底的研究.电源技术.1997,21(4):156—159
    102 董为毅,朱松然.铅酸蓄电池正极添加剂综述.蓄电池.1995,(4):3—10
    103 Suqin Wang, Baojia Xia, Geping Yin et al. Effects of Additives on the Discharge Behaviour of Positive Electrodes in Lead/Acid Batteries. J. Power Sources. 1995,55:47—52
    104 罗一帆,彭永元.铝酸蓄电池氟塑粘正极中聚四氟乙烯的作用.电源技术.1989,13(4):16—19
    105 史鹏飞,尹鸽平,夏保佳.碳素材料对二氧化铅电极性能的影响.蓄电池.1991,(4):2—4
    106 华寿南,王士勋,金光正.添加剂对正极循环容量影响的初步研究.蓄电池.1993,(4):2—4
    107 韦国林,朱雷平,王桦等.密封铅酸电池中K_2SO_4的作用.电池.1995,25(2):65—68
    108 朱松然,朱兵.磷酸与铅蓄电池寿命.蓄电池.1990,(3):6—8
    109 W.A. Badawy. S.S. El—Egamy. Improvement of the Performance of the Positive Electrode in the Lead/Acid Battery by Addition of Boric Acid. J. Power Sources. 1995,55:11—17
    110 M.A.达索扬,U.A.阿古夫.铅蓄电池现代理论.机械工业出版社,1981:109—154
    111 喜多英明等,李国维译.铅蓄电池正极板的微观结构及其电化学特性.蓄电池.1987,(2):21—25112 Toji Yamashita. Studies on the Microstructure of the Positive Lead-Acid Battery Plate and Its Electrochemical Reactivity. J. Appl. Electrochem. 1988,8(4): 596—600
    113 D. Parlor. Processes at the Micro-Level in Oxidation of PbSO_4 to PbO_2 during Charging of Lead/Acid Battery Positive Plates. J. Power Sources. 1990,30:77—94
    114 Herron Maura E. A Combined Electrochemical and in-situ X-Ray Diffraction Study of the Cycling of Well Defined Lead Dioxide Layer on Platinum. J. Electroanal. Chem. 1992,332:183—197
    115 L.T. Lam. Conversion of Tetrabasic Lead Sulfate to Lead Dioxide in Lead/Acid Battery Plates. J. Power Sources. 1992,38:87—102
    116 D. Parlor, I. Balkanov, T. Halachev et al. Hydration and Amorphization of Active Mass PbO_2 Particies and Their Influence on the Electrical Properties of the Lead-Acid Battery Positive Plate. J. Electrochem. Soc. 1989,136(11):3189—3196
    117 A. Winsel, E. Voss, U. Hullmeine. The Aggregate-of-Spheres (Kugelhaufen) Model of the PbO_2/PbSO_4 Electrode. J. Power Sources. 1990,30: 209—226
    118 Eberhard Meissner. Reversible Capacity Decay of PbO_2 Electrode Influence of High Rate Discharges and Rest Times. ibid. 1992,40:157—167
    119 J. Yamashita. Crystal Growth of PbO_2 and Its Relation to the Capacity Loss of Positive Plates in Sealed Lead/Acid Batteries. ibid. 1990,30:13—21
    120 D. Parlor. Influence of Crystal and Gel Zones on the Capacity of Lead Dioxide Active Mass (Extended Abstract). ibid. 1992,40:169—173
    121 T.G. Chang. Structural Changes of Positive Active Material in Lead-Acid Batteries in Deep-Discharge Cycling. J. Electrochem. Soc. 1984,131 (8): 1755—1762
    122 A.C. Simon. Morphological Changes in the Lead Dioxide Electrode during Its Reduction and Reoxidation. ibid. 1970,117:987—992
    123 A.C. Simon. Structural Transformation of the PbO_2 Active Material during??Cycling. ibid. 1975,122(4):461—466
    124 D. Pavlov. Premature Capacity Loss (PCL) of the Positive Lead/Acid Battery Plate: a New Concept to Describe the Phenomenon. J. Power Sources. 1993,42(3): 345—363
    125 A.F. Hollenkamp. Premature. Capacity Loss Mechanism in Lead/Acid Batreties, ibid. 1992,40(1—2):125—136
    126 Don Hosking. Dovelopments in Lead/Acid Stationary Batteries. ibid. 1993,45(1): 111—117
    127 Toyoda Myuki. JP 04, 206, 150[92,206,150](C1. H01 M4/14)
    128 B. Culpin. The Effect of Tin on the Performance of Positive Plates in LeadAcid Batteries. J. Power Sources. 1992,38:63—74
    129 Takami Nobuyuki. JP 03, 291, 853[91,291,853](C1. H01 M4/68)
    130 Kao Wen Hong. Corrosion Resistant Coating for a Positive Lead/Acid Battery Electrode. J. Electrochem. Soc. 1992,139(11): 105—107
    131 王定华.小型密封铅蓄电池容量恢复性能的研究.蓄电池.1992,(4):23
    132 Shimoi Masaaki. JP 03, 216, 561[91, 216, 561](C1. H01 M4/14)
    133 D. Pavlov, E. Bashtavelova. A Model of the Structure of the Positive LeadAcid Battery Active Mass. J. Electrochem. Soc. 1984,131(7): 1468—1476
    134 D. Pavlov. The Lead-Acid Battery Dioxide Active Mass: A Gel-Crystal System with Proton and Electron Conductivity. ibid. 1992,139 (11): 3075—3085
    135 印永嘉.大学化学手册.山东科技出版社,1985:25,43
    136 北师大等编.无机化学.人民教育出版社,1981,772—773
    137 郭贻诚,王震西.非晶态物理学.科学出版社,1984:95
    138 桐山良一著,周孝棣译.结构无机化学.人民教育出版社,1981
    139 Paul Ruetsch. Influence of Crystal Structure and Interparticle Contact on the Capacity of PhO_2 Electrodes. J. Electrochem. Soc. 1992, 139: 1345—1351
    140 D. Pavlov, I. Balkanov. The PbO_2 Particle: Exchange Reactions between??Ions of the Electrolyte and the PbO_2 Particles of the Lead-Acid Battery Positive Active Mass. ibid. 1992,139(7):1830—1835
    141 游兆高.电动车铅蓄电池特性及发展趋势.电池.1995,25(4):184
    142 K. Suzuki, K. Nishida, M. Tsubota. Valve-Regulated Lead/Acid Batteries for Electric Vehicles: Present and Future. J. Power Sources. 1996,59:171—175
    143 R.H. Newnham. Advantages and Disadvantages of Valve-Regulated Lead/Acid Batteries. J. Power Sources. 1994,52:149—153
    144 柴树松.我国铅酸蓄电池工业概况.电池.1996,26(6):286
    145 L. T. Lam, H. Ozgun, O.V.Lim et al. Pulsed-Current Charging of Lead/Acid Batteries: a Possible Means for Overcoming Premature Capacity Loss? ibid. 1995,53:215
    146 P. Simon, N. Bui, F. Dabosi. X-Ray Photoelectrospectroscopy Study of Passive Layers Formed on Lead-Tin Alloys. ibid. 1994,52:31
    147 P. Simon, NoBui, N. Pebere. Characterization by Electrochemical Impedance Spectroscopy of Passive Layers Formed on Lead-Tin Alloys, in Tetraborate and Sulfuric Acid Solutions. ibid. 1995,55:63
    148 S. Zhong, H.K. Liu, S.X. Dou et al. Evaluation of Lead-Calcium-Tin-Aluminium Grid Alloys for Valve-Regulated Lead/Acid Batteries. ibid. 1996,59:123—129
    149 S.G. Hibbins, B. Closset, M. Bray. Advance in the Refining and Alloying of Low-Bismuth Lead. ibid. 1995,53:75—83
    150 M.J. Koop, D.A.J. Rand. A Guide to the Influence of Bismuth on Lead/Acid Battery Performance. ibid. 1993,45:365—377
    151 D. Parlor, A. Dakhouche, T. Rogachev. Influence of Arsenic,Antimony and Bismuth on the Properties of Lead/Acid Battery Positive Plates. ibid. 1990,30:117—129
    152 L.T. Lain, T.D. Huynh, N.P. Haigh et al. Influence of Bismuth on the Age-Hardening and Corrosion Behaviour of Low-Antimony Lead Alloys on Lead/Acid Battery Systems. ibid. 1995,53:63—74153 华寿南.铅蓄电池正极板中α—PbO_2和β—PbO_2的X射线衍射及差热分析研究.蓄电池.1986,(2):3—8
    154 A. F. Hollenkamp. When is Capacity Loss in Lead/Acid Batteries 'Premature'. J. Power Sources. 1996,59:87—98
    155 S. M. Caulder, A. C. Simon. Thermal Decomposition Mechanism of Formed and Cycled Lead Dioxide Electrodes and Its Relationship to Capacity Loss and Battery Failure. J. Electrochem. Soc. 1974,121: 1546—1550
    156 山下让二,油布宏等.徐红译.密封蓄电池中PbO_2结晶生长与正极板容量下降的关系.蓄电池.1992,(1):32—37
    157 D. Pavlov. Suppression of Premature Capacity Loss by Methods Based on the Gel-Crystal Concept of the PbO_2 Electrode. J. Power Sources. 1993, 46:171—190
    158 D. Pavlov, A. Dakhouehe, T. Rogachev. Influence of Antimony Ions and PbSO_4 Content in the Corrosion Layer on the Properties of the Grid/Active Mass Interface in Positive Lead-Acid-Battery Plates. J. Appl. Electrochem. 1997,27:728
    159 徐品弟,柳厚田.掺杂的PbO_2电极性能的研究.蓄电池.1994,(2):2—6
    160 S. Grugeon-Dewaele, J. B. Leriche, J. M. Tarascon. Soaking and Formation of Tetrabasic Lead Sulfate. J. Power Sources. 1997,64: 71—80
    161 D. Parlor, E. Bashtavelova. A Study of the Oxidation of 4PbO·PbSO_4 Crystals in Cured Paste to PbO_2 Agglomerates during Formation of Positive Plates for Lead/Acid Batteries. ibid. 1990,31:243—254
    162 B. Culpin. Discussions on the Lead/Acid Battery. No. 1—The Role of Tetrabasie Lead Sulphate in the Lead/Acid Positive Plate. ibid. 1989,25:305—311
    163 K. R. Bullock, B. K. Mahato, W. J. Wruck. Use of Conductive Materials to Enhance Lead/Acid Battery Formation. J. Electrochem. Soc. 1991,138: 3545—3549
    164 D. Parlov, N. Kapkov. Lead—Acid Battery Pastes Containing 4PbO·Pb-??SO_4 and PbSO_4. ibid. 1990, 137:16—21
    165 L. Torcheux, J. P. Vaurijoux, A. de Guibert. Improvement of the Formation Efficiency of the Tetrabasic Lead Sulfate for Lead/Acid Batteries. ibid. 1997,64: 81—89
    166 Zen—ichiro Takehara. Oxidation Mechanism of Lead Sulphate in Sulphuric Acid—Overview. ibid. 1990,30:55—75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700