铝阳极氧化多孔膜的光学性能测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将铝作为阳极在酸性溶液中(如硫酸、草酸、磷酸、铬酸等)进行电解,可在其表面形成一层微孔互相平行、孔型规整、孔径为纳米级的多孔氧化物膜。具有这种特殊纳米结构的氧化铝多孔膜为研制开发新型功能材料开辟了一条新的途径。
     在较长时期里,人们一直关注用途比较大且发展较快的多孔型氧化膜,其优点为:(1)阻挡层硬度高,可超过刚玉;(2)具有良好的耐磨性、耐蚀性及化学稳定性;(3)孔的形貌和大小可以随电解工艺的不同,在较大的范围内变化,而且膜的厚度可调;(4)制备工艺简单,对环境条件和设备的要求不高。
     本文在对国内外有关多孔氧化铝膜研究状况进行调研之后,从了解多孔铝膜本身的光学性能这一角度出发,对几种不同条件下制备的多孔铝氧化膜的光学特性进行了测试。为了能够对一个多孔氧化铝膜进行多次不同的测试,我们选择了透明区宽、光学性能好的BaF_2晶体作窗口材料,使用冷杉胶将多孔铝氧化膜胶合与两BaF_2光学平面镜之间进行测试,获得了大量的实验数据。本论文工作主要是对多孔氧化铝膜的透射光谱特性及偏光特性进行了测试研究。
     全文主要内容包括以下几个部分:
     第一章绪论部分,对多孔氧化铝膜的发展及作为模板或宿主研制开发的新型功能材料进行了概述,基于国内外的研究现状,提出了对多孔氧化铝膜自身的光学性能进行测试与研究。
     第二章多孔铝概述部分是关于多孔氧化铝膜的形态及形成机理的详述,分析得到酸性溶液中氧化膜的生成规律,生成曲线分为三个部分:即初始阶段的电流下降部分;随后电流密度又上升;最后趋于一个稳定值。本部分还对多孔铝膜的吸附性能、离子渗透能力、摩擦性能及声学性能等物理性质进行了介绍。
     论文第三章、第四章是本论文的核心部分,也是本论文的创新点。第三章是对多孔氧化铝膜的透射光谱测试部分。测试过程中,利用冷杉胶将多孔
    
    摘要
    第2页
    氧化铝膜固定于两块经过严格光学抛光、彼此平行的Ba凡晶体之间,凝固后
    即可进行测试。实验测试仪器为岛津UV一3101PC型分光光度计以及岛津IR
    一460红外分光光度计。实验分两个部分来完成:第一部分,对孔径一定、
    厚度不同的多孔铝样品进行测试,结果显示:当样品孔径一定(均为20nm)、
    厚度不同时,各透射光谱曲线的变化趋势一致:都是随着氧化铝膜厚度的增
    加,透射率逐渐降低。第二部分,对厚度一定、孔径不同的多孔铝样品进行
    测试,结果表明:当样品厚度一定、孔径各不相同时,变化规律较为复杂:
    孔径小于最佳透射孔径at时,透射率随a的增加而增大;孔径大于a,时,则
    相反。对于厚度为20娜的多孔铝而言,最佳透射孔径介于4onm一100nm之
    间。
     论文第四章是对多孔氧化铝膜的偏振特性测试部分。测试过程中,将多
    孔铝连同Ba凡晶体窗口一起固定于两块直角LaKZ玻璃棱镜之间。测试分两
    步进行:先是在激光光源上进行定点测量,然后再置于岛津UV一3101PC型
    分光光度计上进行连续光谱扫描。测试内容也是两个部分:第一部分,对孔
    径一定、厚度不同的多孔铝样品进行测试,结果显示:对于一定厚度的测试
    样品,消光比随波长的变化不呈现线性关系,而是具有一定的波动性;波长
    一定时,随着多孔铝膜厚度的增加,消光比随之增大;改变厚度,消光比测
    试曲线的变化趋势一致。第二部分,对厚度一定、孔径不同的多孔铝样品进
    行测试,发现:在多孔铝的消光比随孔径“的变化过程中,也存在一最佳消
    光比孔径a二:孔径小于a二时,消光比随a的增加而增大;孔径大于a二时,则
    相反。对于厚度为20脚的多孔铝而言,消光比最好的孔径是介于
    20nm一1 OOn二之间。
When been keep in acidic electrolysis bath (such as sulfuric acid, ethane diacid, phosphoric acid, chrome acid ect.), the surface of aluminun sheet will be generated a porous thin film, whose micropores are parallel pore geometry is regular and the diametral of micropore is in the nanometer class. This kind of oxide aluminum with the specific nanometer structure supplied a new path which can develop a late model functional material.
    For ages, people are always concerned with porous aluminum membrane in the aspect of its purpose and rapid development, whose advantages are: (1) degree of hardness of the barrier layer is higher than diamond spar ;(2) possess good wear-resisting property, excellent corrosion resistance and better chemical stability;(3) with the vary of electrolysis technology, the shape and the dimension of the micropore presented diversity, and the thickness of the membrane can be changed in a large range;(4)the method is simple, and has low request for facility and environmental.
    Have been researched about existing conditions of porous alumina, we want to know about optical property of itself, so we tests some kinds of porous alumina, which is in different preparation conditions.In order to test the same membrane for several time, we've been placed the porous aluminum membrane between the transparency window with Canada balsam before the test, the transparency window is consists of two BaF2 materials, which possessed good optical property and a rather large transparent extent. In this paper, we studied the character of the transmitted spectrum and the polarization of porous aluminum membrane.
    In the first section, we mainly introduce the developing process of the porous aluminum membrane and the late model functional material act as host or mother plate. Based on the general situation, it is an important subject to study the optical property of porous aluminum itself.
    The second section, firstly, the morphology , mechanism and process of formation are discussed in detail; then we have a summary to the generating rule
    
    
    of the aluminum membrane: fall of current in the beginning, current density rise subsequent and prone to stable value in the end. In this section, we also discussed some physical property, such as absorptive capacity, ion osmotic permeability, frictional behavior and acoustical behavior.
    The third section is one of the most important parts of this paper. In this part, we studied the character of the transmitted spectrum. The two BaF2 materials which are used for transparency windows are parallel to each other and undergo the optical polishing, then the porous aluminum membrane is fixed between the BaF2 with Canada balsam to test its' optical property. Test instrument contains UV-3101PC spectral photometer and ER-460 spectral photometer. Firstly, experimental result shown the similarity of the transmitted spectrum of each porous alumina with different thickness and same aperture about 20nm : transmission will be bring down with the increase of the thickness. Secondly, if the sample are in the different aperture and same thickness about 20um, the tendency of the transmitted spectrum will be more complexity: when the aperture is less than optimum aperture at, the transmission will be increased gradually; when greater than at, the result will be opposite. If we've qualified the thickness is 20um
     , the optimum aperture at will be between 40 nm ~ 100nm .
    The fifth section is discussed the character of the polarization of porous aluminum membrane. In the experiments, we've placed the BaF2 windows with the porous alumina fixed between the two right-angled prism. The testing are two-part: firstly, fixed-point measurement with laser; then, continuously scanning in the UV-3101PC spectral photometer. The results are two-part too: if the sample are in the different thickness and the same aperture about 20nm , the tendency of the transmitted spectrum present wave character: if the wavelength is constant, extinction ratio raised with the increase of the thickness. If the sample are in the differ
引文
1.王为,郭鹤桐,高建平.铝阳极氧化多孔膜功能化应用的新趋向.化工进展,1997,4:43-48.
    2. Keller F, Hunter M S, Robinsio D L. Structure Features of Anodic Oxide Films on Aluminum. J.Electrochem Soc, 1953,100(9): 411~419.
    3.星野重夫.表面技术协会第89回讲演大会要旨.1994,120.
    4. Quarto F.D, Gentile C., Piazza S et al. Photoelectiochenical Study on Anodic Aluminum Oxide Films. J. Electrochem. Soc, 1991, 138(6).
    5.孙伯勤。铝阳极氧化膜的多功能应用.轻金属,1995,6.
    6. Arail I, Shiyama K.I., Megnetic Properties of Co-Fe Electrodeposited Aluminum Films. IEEE Wrans Magn., 1991, 27.
    7. J. DeLaet, J. Vanhellemont, H. Terryn et al. Characterization of various aluminium oxide layers by means of spectroscopic ellipsometry. Appl. Phys. Lett., 1992, A54: 72~78.
    8. J. P. O'Sullivan and G. Wood. The morphology and mechanism of formation of porous anodic films on aluminum. Proc. Roy. Soc. Land. A., 1970, 317: 511~543.
    9. Patrick Holyer, Nobuyoshi Baba, and Hideki Masuda. Small quantum-sized CdS particles assembled to form a regularly nanostructured porous film. Appl. Phys. Lett., 1995, 66(20): 2700~2702.
    10.徐源,Thompson G.E.,Bethune B.B.壁垒型铝阳极氧化膜的成分及电解液离子在膜中的漂移.中国腐蚀与防护学报,1987,7(3).
    11. Thompson G.E, Furneaux R.C, Wood G. C., Neucleation and Growth on porous Anodic Films on Aluminum. Nature, 1978, 272(30).
    12. Heber K. V., Studies on porous Al_2O_3Growth (Physical Model), Electrochim Acta., 1978, 23(127).
    13. Xu Y, Thompson G. E, Wood G.C., Mechanism of Anodic Film Growth on Aluminum. Trans. Inst. Met. Fin., 1985(63).
    14.高云震,任继嘉,宁福元编译。《铝合金表面处理》.冶金工业出版社,
    
    1991.
    15.曾凌三编译。铝阳极氧化膜的表面电荷和离子的吸附与渗透,电镀与精饰,1997,19(6)。
    16.徐洮,陈建敏,赵家政。多孔质铝阳极氧化膜的结构及其摩擦学性能研究,摩擦学学报,1996,16(2)。
    17.程桂萍,陈宏灯,何德坪,舒光冀,肖今新。多孔铝的声学性能,东南大学学报,1998,28(6):169~172。
    18. Mitsunori Saito and Mitsunobu Miyagi., Micropolarizer using anodized alumina with implated metallic columns: theoretical analysis. Appl. Opt., 1989, 28(15): 3529~3533.
    19.程桂萍,陈锋,何德坪等。用渗流法制备多孔金属的孔结构及其控制,东南大学学报,1997,27(2)。
    20.袁淑娟,赵莉丽,潘志峰等。多孔氧化铝的阳极氧化初期形成阶段,曲阜师范大学学报,2001,27(1)。
    21.董艳锋,李清山。多孔铝纳米列阵模板的形成及其机理分析,曲阜师范大学学报,2002,28(3)。
    22.李家值编,《半导体化学原理》,北京:科学出版社,1980。
    23.李国华编,《偏振光学与技术实验》:44。
    24. Driscall W G., Handbook of Optics.(10): 31~47。
    25.李国华。OE双输出棱镜和90°双输出棱镜的设计与特性研究,曲阜师范大学学报(自然科学版),1984,10(4):35。
    26.吴福全,李国华,于德洪,宋连科.冰洲石紫外偏光镜研制.曲阜师范大学学报(自然科学版),1994,20(2):54。
    27.范洪雷,侯晓远,王迅等,用脉冲腐蚀制备发光多孔硅.半导体学报,1995,16(2):113-116.
    28. L.C.A. Vanden Ovetelaar, R.J.A. Vanden Ovetelaar, A. Partridge, C. F. J. Flipse, H. H. Brongersma, Reaction of nanometer-sized Cu particles with a SiO_2 substrate. Appl. Phys., 1999, 74:2954.
    29. N. M. Nahar, G. H. Mo and A. Ignatiev, Thin solid films, 1989, 172:19.
    30. J. P. Seguad, B. Drevillon, E. Pascual, R. Ossokovski, G. Monnier and L.
    
    Rimbougrg, ibid., 1993, 234:503.
    31. H. Yanamoto, H. Drevillon, K. Sguragasgu, M. Nakatani, A. Sasano, N. Konishi, K. Tsutsui and T. Tsukada, Technical Digest, 1990, IEEE IEDM: 851.
    32. Mitsunori Saito and Mitsunori Miyagi., Anistropic optical loss and birefringence of anodiczed alumina film. J. Opt. Soc. Am. A, 1989, 6:1890-1895.
    33. M. Saito, M. Kirihara, T. Taniguchi, M. Miyagi, Micropolarizer made of the anodized alumina film. Appl. Phys. Lett., 1989,55(7):607-609.
    34. Kuniyoshi Takano, Mitsunori Saito, and Mitsunoby Miyagi., Cube polarizers by the use of metal particles in anodic alumina films. Appl. Opt., 1994, 33(16): 3507~3512.
    35. R.W.Cohen, G.D.Cody, M.D.Coutts, and B.Abeles, Optical properties of granular silver and gold films., Phys. Rev. B8, 1973: 3689~3701.
    36. H.C.Van de Hulst, Light Scattering by Small Particles, New York, 1981: 71.
    37. E.D.Palik, ed., Handbook of Optical Canstants of Solids., Orlando,Fla., 1985, Part Ⅱ.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700