氧化铝一维纳米材料液相法制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝是一种非常重要的无机材料,其纳米材料广泛应用于催化剂或催化剂载体、陶瓷材料、复合材料增强物、生物医学材料、半导体材料和光学材料等领域。氧化铝一维纳米材料还具有高弹性模量、高电介质常数、低导磁性、高热传导性和独特的光学性能等特性。因此有关氧化铝纳米材料,特别是氧化铝一维纳米材料的制备成为材料科学界的研究热点。
     由于液相法具有反应条件容易实现、产物尺寸、结构和成分可控性好、能大量制备的特点,本论文主要研究新的液相制备方法制备几种典型的氧化铝一维纳米材料:如氧化铝纳米棒和纳米线、氧化铝纳米纤维、氧化铝/碳纳米管一维纳米复合材料,主要研究内容及结果如下:
     1、利用γ-AlOOH独特的层状结构合成γ-AlOOH前驱体纳米棒和纳米线,考察制备条件对产物形貌、物相、比表面积和孔体积的影响,重点研究反应溶液的pH值和反应温度对γ-AlOOH熟化过程的影响。
     在熟化过程中,反应溶液的pH值和反应温度的升高均加快熟化过程溶解-再结晶速度,使熟化过程进行得更充分。当反应溶液的pH值为4,γ-AlOOH的熟化过程进行得不充分;当反应溶液的pH值升高至5,γ-AlOOH的熟化过程进行得较充分。当反应温度为180℃,γ-AlOOH的熟化过程进行得不充分;当反应温度升高至200℃,γ-AlOOH的熟化过程进行得较充分。
     熟化过程进行得不充分,生成的产物是形状不规则、表面不光滑的γ-AlOOH条状物,有γ-AlOOH纳米片吸附在其表面,其择优取向不明显,比表面积和孔体积较大;熟化过程进行得较充分,生成的产物是形状规则、表面光滑的γ-AlOOH纳米棒,没有γ-AlOOH纳米片吸附在其表面,其择优取向明显,比表面积和孔体积较小。
     与γ-AlOOH纳米棒相比,大长径比的γ-AlOOH纳米线的生长初期,通过卷曲生长机制(rolling growth)形成的γ-AlOOH一维纳米结构长度较长,其方向附着机制(oriented attachment)的效应不明显。
     2、研究γ-AlOOH前驱体一维纳米材料的热分解过程。由于表面羟基的比例很大,γ-AlOOH前驱体一维纳米材料的热分解过程不能视为单速度控制的反应过程,其激活能不是恒定的,其化学吸附水脱出的激活能和其结构水脱出,并转变为氧化铝中间相的激活能分别为-17.71和-155.72kJ/mol。
     3、利用催化氧化反应合成氧化铝纳米纤维,分析催化氧化反应中汞的作用,考察制备条件对催化氧化反应速度、产物的比表面积和平均直径的影响,研究氧化铝纳米纤维的形核长大过程,并对催化氧化反应制备其他金属氧化物纳米材料进行探讨。
     在催化氧化反应中,汞不被消耗,它只是作为铝原子传输的媒介,充当催化剂的作用。随着反应温度、铝纯度、反应气氛中氧含量的升高,氧化铝纳米纤维的生长速度加快;随着反应温度、铝纯度、反应气氛中氧含量的升高,氧化铝纳米纤维的比表面积增大,平均直径减小;而HgCl2溶液浓度、铝浸入HgCl2溶液的时间对氧化铝纳米纤维的比表面积和平均直径没有明显影响。
     通过催化氧化反应还可以制备出其他金属氧化物纳米结构如:氧化锌纳米粒子和纳米片、立方或近立方形貌的氧化亚铜纳米粒子等。引入聚乙二醇胶束为模板,还可以制备出氧化锌纳米空心球、氧化亚铜空心结构等。
     4、对碳纳米管进行PVA改性,制备出氧化铝连续覆盖碳纳米管表面的氧化铝/碳纳米管一维纳米复合材料,为碳纳米管在复合材料中的应用做准备,研究PVA改性对氧化铝/碳纳米管一维纳米复合材料制备的影响。
     碳纳米管经过PVA改性,能在碳纳米管表面形成一层连续的PVA覆盖层,提高碳纳米管在水中的分散性,改善氧化铝与碳纳米管的结合。
     本论文通过对氧化铝一维纳米材料新的液相制备方法进行研究,为今后实现其可控制备,研究其新的物理化学性能提供材料基础,并为进一步完善一维纳米材料的液相制备方法提供新的思路。
Alumina is one of the most important inorganic materials. Nanostructured alumina has broad applications in catalysts, catalyst supports, ceramic materials, reinforces of composites, biological materials, semiconducting materials and optical materials. In the past decade, the synthesis of 1D alumina nanomaterials has received considerable interest due to their unique properties, such as high elastic modulus, high electric medium constant, low magnetic conductibility, and unique optical characteristics.
     Various methods have been employed for the preparation of 1D nanomaterials. Among them, solution-phase approaches are especially powerful synthetic routes due to their mild reaction condition, controllability of size, structure and component for products and large production. In this dissertation, novel solution-phase methods are investigated to synthesize several kinds of typical 1D alumina nanomaterials, such as alumina nanorods, nanowires, nanofibers and alumina/carbon nanotubes 1D nanocomposites. The results and discussion are shown as follows:
     1,γ-AlOOH precursor nanorods and nanowires were prepared by rolling ofγ-AlOOH layers. The effect of processing parameter on the morphology, phase, specific surface area and pore volume of theγ-AlOOH, and the effect of pH value and temperature on the velocity of dissolution–reprecipitation were studied.
     During Ostwald ripening, higher pH value and temperature enhance the velocity of dissolution–reprecipitation. Increasing of pH value and temperature will promote the Ostwald ripening of theγ-AlOOH. When the pH value increase from 4 to 5, or the temperature increase from 180℃to 200℃, the effect of Ostwald ripening become adequate.
     If the effect of Ostwald ripening is not adequate, the obtained products are needle-likeγ-AlOOH with irregular shape and unsmooth surface, someγ-AlOOH nanosheets are adsorbed on their surface, their preferred orientation is not apparent, their specific surface area and pore volume are biggish. If the effect of Ostwald ripening is adequate, the obtained products areγ-AlOOH nanorods with regular shape and smooth surface, noγ-AlOOH nanosheets are adsorbed on their surface, their preferred orientation is apparent, their specific surface area and pore volume are lesser.
     Compared withγ-AlOOH nanorods, the length ofγ-AlOOH nanowires with big aspect ratio is much longer. At the initial stage of their growth, the effect of oriented attachment is not apparent.
     3, Heat decomposition course of the 1Dγ-AlOOH nanomaterials was studied. Because the proportion of hydroxyl groups on the surface of 1Dγ-AlOOH nanomaterials is very large, their heat decomposition course can not be regarded as a single rate controlling process, their associated activation energy is not constant, the activation energy of desorption of chemisorbed water and conversion into transition alumina are -17.71 and -155.72, respectively.
     4, Alumina nanofibers were prepared by catalytic oxidation of Al. The function of Hg during catalytic oxidation, the effect of processing parameter on the velocity of catalytic oxidation, specific surface area and average diameter of the obtained products, the nucleation and growth of alumina nanofibers were investigated.
     During the oxidation of Al, Hg serves as a medium to transfer Al atoms. Increasing of temperature, purity of Al and content of oxygen will accelerate the oxidation of Al, raise the degree of supersaturation of alumina in liquid Hg, and then result alumina nanofibers with bigger specific surface area and smaller average diameter. The concentration of HgCl2 solution and the soaking time have no apparent effect on their specific surface area and average diameter.
     The catalytic oxidation was employed to fabricate other metal oxide nanostructures, such as ZnO nanoparticles and nanosheets, cube-like CuO2 nanoparticles, ZnO hollow spheres and CuO2 hollow structures, etc.
     5, Alumina/carbon nanotubes 1D nanocomposites with continuous alumina layers on the surface of carbon nanotubes were prepared with the carbon nanotubes modified by PVA. The modification of carbon nanotubes by PVA will increase dispersibility of carbon nanotubes, and improve combination of carbon nanotubes and alumina.
     In a word, in this dissertation, the preparation of 1D alumina nanomaterials by novel solution-phase methods are studied for their controllable synthesis, investigating their new properties in the future, and providing supplementary for solution-phase methods of 1D nanomaterials.
引文
[1] Feynman R. P., There is plenty of room at the bottom, Engineering and Science, 1960, 23: 22-23
    [2] Kubo R., Kawabata A., Kobayashi S., Electronic properties of small particles, Annu. Rev. Mater. Sci., 1984, 14: 49-66
    [3] Ball P., Garwin L., Science at the atomic scale, Nature, 1992, 355: 761-766
    [4] Halperin W. P., Quantum size effects in metal particles, Rev. Mod. Phys., 1986,58: 533-606
    [5] Wang Y., Suna A., McHugh J., Optical transient bleaching of quantum-confined CdS clusters: The effects of surface-trapped electron–hole pairs, J. Chem. Phys., 1990, 92(11): 6927-6939
    [6] Henglein A., Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev., 1989, 89: 1861-1873
    [7] Kubo R., Kawabata A., Kobayashi S., Electronic properties of small particles, Ann. Rev. Mater. Sci., 1984, 14: 49-66
    [8]张立德,牟季美,开拓原子和物质的中间领域—纳米颗粒和纳米固体,物理,1992,21: 167-173
    [9]卢嘉,Tinkhan M.,单电子晶体管,物理,1998,27: 137-140
    [10] Leon R., Petroff P. M., Leonard D., et al., Spatially resolved visible luminescence of self-assembled semiconductor quantum dots, Science, 1995, 267: 1966-1968
    [11] Ray H., Baughman A. A., Zakhidov, W., et al., Carbon nanotubes—the route toward applications, Science, 2002, 297: 787-792
    [12] Rao C. N. R., Deepak F. L., Gundiah G., et al., Inorganic nanowires, Prog. Solid State Chem., 2003, 31: 5-147
    [13] Rao C. N. R., Nath M., Inorganic nanotubes, Dalton Trans., 2003, 1: 1-24
    [14] Fert A., Piraux L., Magnetic nanowires, J. Magn. Magn. Mater., 1999, 200: 338-358
    [15] Pan Z. W., Dai Z. R., Wang Z. L., Nanobelts of semiconducting oxides, Science, 2001, 291: 1947-1949
    [16] Suenaga K., Colliex C., Demoncy N., Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon, Science, 1997, 278: 653-655
    [17] Zhang Y., Suenaga K., Colliex C., et al., Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon, Science, 1998, 281: 973-975
    [18] Li Q., Wang C. R., Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation, Appl. Phys. Lett., 2003, 82: 1398-1400
    [19] Li Y. B., Bando Y., Golberg D., SiC-SiO2-C coaxial nanocables and chains of carbon nanotube-SiC heterojunctions, Adv. Mater., 2004, 16: 93-96
    [20] Wu G. S., Xie T., Yuan X. Y., et al., Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process, Solid State Commun., 2005, 134: 485-489
    [21] Park W. I., Yi G. C., Kim M. Y., et al., Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures, Adv. Mater., 2003, 15: 526-529
    [22] Wu Y. Y., Fan R., Yang P. D., Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires, Nano. Lett., 2002, 2: 83-86
    [23] Huang W. J., Lin Y., Taylor S., et al., Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: catalyst-modified carbon-silica composite aerogels, Nano. Lett. 2003, 2: 235-240
    [24] Wagner R. S., Ellis W. C., Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 1964, 4: 89-98
    [25] Yang P. D., Wu Y. Y., Fan R., Inorganic semiconductor nanowires, Int. J. Nanosci., 2002, 1: 1-39
    [26] Wu Y., Yang P. D., Direct observation of vapor-liquid-solid nanowire growth, J. Am Chem. Soc., 2001, 123: 3165-3166
    [27] Xia Y. N., Yang R. D., Sun Y. G., et al., One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003,15(5): 353-389
    [28] Trentler T. J., Hickman K. M., Goel S. C., et al., Solution-liquid-solid growth of crystallineⅢ-Ⅴsemiconductors: an analogy to vapor-liquid-solid growth, Science, 1995, 270: 1791-1974
    [29] Buhro W. E., Hickman K. M., Trentler T. J., Turning down the heat on semiconductor growth: solution-chemical syntheses and the solution-liquid-solid mechanism, Adv Mater. 1996, 8: 685-688
    [30] Trentler T. J., Goel S. C., Hickman K. M., et al., Solution-liquid-solid growth of indium phosphide fibers from organometallic precursors: elucidation of molecular and nonmolecularcomponents of the pathway, J. Am. Chem, Soc. 1997, 119: 2172-2182
    [31] Markowitz P. D., Zach M. P., Gibbons P. C., et al., Phase separation in AlxGa1-xAs nanowhiskers grown by the solution-liquid-solid mechanism, J. Am. Chem. Soc., 2001, 123: 4502-4511
    [32]施尔畏,栾怀顺,仇海波等,水热法制备超细ZrO2粉体的物理—化学条件,人工晶体学报,1993,22 (1): 79-86
    [33] Dawson W. J., Hydrothermal synthesis of advanced. ceramic powders. Ceramic Bulletin, 1988, 67 (10): 1673-1678
    [34]施尔畏,夏长泰,仲维卓等,水热条件下钛酸钡粉体晶粒形成机理,硅酸盐学报,1996,24 (1): 45-52
    [35] Ballman A. A., Laudies R. A., The art and science of growing crystals, NewYork, London, Sydney: John Wileg&Sons. Inc., 1963
    [36]仲维卓,华素坤,晶体生长形态学,北京,中国科技大学出版社,1999
    [37]仲维卓,人工晶体,第二版,北京,科学出版社,1994
    [38]施尔畏,夏长泰,王步国等,水热法的应用与发展,无机材料学报,1996,11(2): 193-206
    [39] Yoshimura M., Somiya S., Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafria, Mater. Chem. Phys., 1999, 61: 1-8
    [40] Somiya S., Yoshimura M., Nakai Z., et al., Ceramic microstructural development of hydrothermal powder and ceramics [M]. In microstructure (1986), ed J A. Pask, and A. Evans. New York: Plenum Press, 1986, 465
    [41] Ajayan P. M., Stephan O., Redlich P., et al., Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures,Nature, 1995, 375(6532): 564-567
    [42] Sloan, J., Wright, D.M., Woo, H.G.., et al., Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun, 1999, 8: 699-700
    [43] Pradhan B. K., Kyotani T., Tomita A., Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes, Chem.Commun., 1999, 14: 1317-1318
    [44] Molares M. E. T., Buschmann V., Dobrev D., et al., Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes, Adv. Mater., 2001, 13(1): 62-65
    [45] Zhang Z. B., Gekhtman D., Mildred S., Processing and characterization ofsingle-crystalline ultrafine bismuth nanowires, Chem. Mater., 1999, 11(7): 1659-1665
    [46] Huber C. A., Huber T. E., Sadoqi M., et al., Nanowire array composites, Science, 1994, 263(5148): 800-802
    [47] Brinda B., Lakshmi C., Patrissi J., et al., Sol-gel template synthesis of semiconductor oxide micro- and nanostructures, Chem. Mater., 1997, 9(11): 2544-2550
    [48] Sch?nenberger C., Van der Zande B. M. I., Fokkink L. G. J., et al., Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology, J. Phys. Chem. B, 1997, 101(28): 5497-5505
    [49] Sch?nenberger C., Van der Zande B. M. I., Fokkink L. G. J., Nanowires grown electrochemically in porous templates (Materials Research Society Symposium– Proceedings), Electrochemical Synthesis and Modification of Materials, 1997, 451: 359-365
    [50]张亚利,郭玉国,孙典亭,纳米线研究进展(Ⅰ):生长与制备,材料科学与工程,2001,19 (2): 131-136
    [51] Yu Y. Y., Chang S. S., Lee C. L., et al., Gold nanorods: electrochemical synthesis and optical properties, Phys. Chem. B, 1997, 101: 6661-6664
    [52] El-Sayed M. A., Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 2001, 34: 257-264.
    [53] Huang L., Wang H., Wang Z., et al., Nanowire arrays electrodeposited from liquid crystalline phases, Adv. Mater., 2002, 14: 61-64
    [54] Zhao D. Y., Huo Q. S., Feng J. L., et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120: 6024-6036
    [55] Melosh N. A., Lipic P., Bates F. S., et al., Molecular and mesoscopic structures of transparent block copolymer-silica monoliths, Macromolecules, 1999, 32: 4332-4342
    [56] Kapoor M. P., Inagaki S., Synthesis of cubic hybrid organic-inorganic mesostructures with dodecahedral morphology from a binary surfactant mixture, Chem. Mater., 2002, 14: 3509-3514
    [57] Braun E., Eichen Y., Sivan U., et al., DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 1998, 391: 775-778
    [58] Eichen Y., Braun E., Sivan U., et al., Self-assembly of nanoelectronic components and circuits using biological templates, Acta Polym. 1998, 49(10-11): 663-670
    [59] Mertig M., Kirsch R., Pompe W., Biomolecular approach to nanotube fabrication, Appl. Phys. A, 1998, 66: 723-727
    [60] Zhang Y., Ago H., Liu J., The synthesis of In2O3 nanowires and In2O3 nanoparticles with shape-controlled, J. Cryst. Growth, 2004, 264(1-3): 363-368
    [61] Stupian, G.. W., Presser, N.; Leung, S. C.; et al., Fabrication of bismuth nanowires with a silver nanocrystal shadowmask, Journal of Vacuum Science and Technology, Part A, 2000, 18(4): 1326-1328
    [62] Cui Y., Lieber C. M., Functional nanoscale electronic devices assembled using silicon nanowire building blocks, Science, 2001, 291(5505): 851-853
    [63] Yu J. Y., Chung S. W., Heath J. R., Silicon nanowire: preparation, device fabrication, and transport properties, J. Phys. Chem. B, 2000, 104: 11864-11870
    [64] Holmes J. D., Johnston K. P., Doty R. C., et al., Control of thickness and orientation of solution-grown silicon nanowires, Science, 2000, 287(5457):1471-1473
    [65] Wang J. F., Gudiksen M. S., Duan X. F., et al., Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science, 2001, 293(5534): 1455-1457
    [66] Huang M. K., Mao S., Feick H., et al., Room temperature ultraviolet nanowire nanolasers, Science, 2001, 292(5523): 1897-1899
    [67] Johnson J. C., Choi H. J., Knutsen K. P., et al., Single gallium nitride nanowire lasers, Nature Mater., 2002, 1(2): 106-110.
    [68] Kind H., Yan H., Messer B., et al., Nanowire ultraviolet photodetectors and optical switches, Adv. Mater., 2002, 14(2): 158-160.
    [69] Ekimov A. I., Efroc A. I. L., Onushchenko A. A., Quantum size effect in semiconductor microcrystals, Solid State Commun.1985, 56: 921-924.
    [70] Roussignool R., Ricard D., Flytzanis C., Phonon broadening and spectral hole burning in very small semiconductor particles, Phys. Rev. Lett., 1989, 62: 312-315.
    [71] Law M., Kind H., Kim F., et al., Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angewandte Chemie International Edition, 2002, 41(13): 2405-2408
    [72] Johnson J., Yan H., Schaller R. D., et al., Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires, Nano. Lett., 2002, 2: 279-283.
    [73] Lee C. J., Lee T. J., Lyu S. C., et al., Field emission from well-aligned zinc oxide nanowires grown at low temperature, Appl. Phys. Lett., 2002, 81: 3648-3650
    [74]魏坤霞,赵昆渝,魏伟等,低温燃烧合成制备非晶氧化铝及其晶型转变,兵器材料科学与工程,2005,28(2): 41-44
    [75]尹衍升,张景德,氧化铝陶瓷及其复合材料,化学工业出版社,2001
    [76]温树林,材料结构科学(上册),科学出版社,1988
    [77] Formenti M., Huillet F., Meraudeau P., Preparation in a hydrogen-oxygen flame of ultrafine metal oxide particles, J. Colloid Interf. Sci., 1972, 39(1): 79 - 89.
    [78] Chen Y. J., Glumar N. G., Skandan G.., High rate production of nonagglomerated nanoparticle by flame synthesis [M], Chem. Phys. Nanostruct. Relat. Non-equlilb. Mater., 1997, 143-148.
    [79] Borsella E., Botli S., Lasers-driver synthesis of nanocrysalline alumina powders from gas-p hase precurors, Appl. Phys. Lett., 1993, 63(10): 1345-1347.
    [80]廖树帜,张邦维,徐仲榆等,合成方法对超纯纳米Al2O3粉末的影响研究,湖南教育学院学报,1998,16(2): 69-72.
    [81]李海波,王丽丽,华中,Al2O3纳米陶瓷粉末的制备及其表征,松辽学刊,1999,2: 30-32.
    [82]周曦亚,欧阳世翕,程吉平,液相共沉淀法制Al2O3超细粉过程及防团聚措施,华南理工大学学报(自然科学版),1996,24 (7): 78-82
    [83]张勤俭,张建华,李敏等,无机盐先驱体溶胶—凝胶法制备Al2O3薄膜的研究,机械工程材料,2002,26(3): 17-19.
    [84]赵秦生,余忠清,张启修,凝胶法制备超细球形氧化铝粉未,无机材料学报,1994,9 (4): 475-479
    [85] Felde B., Mehner A., Hoffmann F., et al., Synthesis of ultrafine alumina powder by sol-gel techniques, Adv. Sci. Technol., 1999, 14: 49-56
    [86] Pont hieu E., Payen E., Grimblot J., Ultrafine alumina powders via a sol-emulsion-gel method, J. Non-crystalline Solids, 1992, 147&148: 598-605.
    [87]甘礼华,岳天仪,李光明,微乳液法制备γ-Al2O3超细粉及其表征,同济大学学报,1996,24 (2): 194-197
    [88]周恩绚,胡学寅,用相转移分离法制备α-Al2O3超细粒子,化学通报,1997,4: 38-40
    [89]方佑龄,赵文宽,张蕾等,金属-EDTA螯合物法制备Pb(Zr,Ti)O3超细粉的研究,武汉大学学报(自然科学版),1996,42(2): 136-140
    [90]王志强,马铁城,蔡英骥等,超细α-Al2O3的低温燃烧合成及其烧结特性的研究,硅酸盐通报,2000,5: 28-31
    [91]李友风,周继承,氧化铝纳米材料的制备与应用,硬质合金,2003,20(4): 242-245
    [92] Kumagai M., Messiung G. L., Contrlled transformation and sintering of boehmite sol-gel byα-alumina seeding, J. Am. Ceram. Soc., 1985, 68(8): 1225-1230
    [93] Lippens B. C., Deboer J. H., Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffration, Acta Crystallogr., 1964, 17: 1151-1156
    [94]田明原,施尔畏,仲维卓等,纳米陶瓷与纳米陶瓷粉末,无机材料学报,1998,13(2): 129-137.
    [95]何巨龙,于栋利,刁玉强等,γ-Al2O3纳米粉对氧化铝、碳化硅陶瓷纤维烧结特性的影响,复合材料学报,2000,17(4): 80-82.
    [96]张凯峰,陈国情,王国峰等,氧化铝基纳米复相陶瓷的制备及超塑成形,中国机械工程,2004,925-927
    [97]马如璋,蒋尼华,徐祖雄,功能材料科学概论,冶金工业出版社,1999
    [98]何帅,陈吉华,苗鸿雁等,氧化锆陶瓷口腔修复材料复合粉体的研制,中国美容医学,2001,10(2): 92-94
    [99]赵克,杨世源,巢永烈等,牙科纳米氧化铝陶瓷粉体的制备,2002,20(1): 58-61
    [100]吴俊辉,郭建平,朱青等,硅衬底阳极氧化铝膜的荧光发射研究,发光学报,2000,21(1): 53-56.
    [101]王铀,田伟,刘刚,热喷涂纳米结构Al2O3/TiO2涂层及其应用,2006,14(3): 254-257
    [102]陈元春,艾兴,黄传真,溶胶-凝胶法制作陶瓷涂层硬质合金刀具,硅酸盐学报,2000,28(4): 352-356.
    [103]张贤利,李福生,方道腴,荧光粉层—氧化铝保护膜层光学特性的研究,灯与照明,2001,12(1): 9-12
    [104]李庆丰,戴遐明,艾德生等,高纯氧化铝制备新方法及其应用研究,中国粉体技术,2000,6: 263-266
    [105]邹建平,吴俊辉,朱青等,硅基底电子束蒸发铝膜阳极氧化特性,半导体学报,2000,21(8): 770-773.
    [106]巩运兰,王为,高俊丽等,氧化铝多孔膜红外吸波性能的研究,材料工程,1999,97(1): 32-36.
    [107]曹光伟,罗锡辉,刘振华等,加氢处理催化剂的制备和表征Ⅰ.MoNiP/Al2O3催化剂的制备及助剂的作用,催化学报,2001,22(2): 143-144.
    [108] Park J. H., Lee M. K., Rhee C. K., et al., Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers, Mat. Sci. Eng. A, 2004, 375–377: 1263–1268
    [109] Lee J. S., Min B., Cho K., et al., Al2O3 nanotubes and nanorods fabricated by coating and filling of carbon nanotubes with atomic-layer deposition, J. Cryst. Growth, 2003, 254: 443–448.
    [110] Zhou J., Deng S. Z., Chen J., et al., Synthesis of crystalline alumina nanowires and nanotrees, Chem. Phys. Lett., 2002, 365: 505–508.
    [111] Tang C. C., Fan S. S., Li P., et al., In situ catalytic growth of Al2O3 and Si nanowires, J. Cryst. Growth, 2001, 224: 117–121.
    [112] Valcarcel V. V., Souto A., Guitian F., Development of single-crystalα-Al2O3 fibers by vapor-liquid-solid deposition (VLS) from aluminum and powdered silica, Adv. Mater., 1998, 10(2): 138-140.
    [113] Jin Y. Z., Zhu Y. Q., Brigatti K., et al., Catalysed growth of novel aluminium oxide nanorods, Appl. Phys. A, 2003, 77: 113-115
    [114] Zhao Q., Xu X., Zhang H., et al., Catalyst-free growth of single-crystalline alumina nanowires arrays, Appl. Phys. A, 2004, 79(7), 1721-1724
    [115] Zhu H.Y., Riches J. D., Barry J. C., et al.,γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant, Chem. Mater., 2002, 14: 2086-2093.
    [116] Li Y. Y., Liu J. P., Jia Z. J., Fabrication of boehmite AlOOH nanofibers by a simple hydrothermal process, Mater. Lett. 2006, 60: 3586–3590
    [117] Lee H. C., Kim H. J., Rhee C. H., et al., Synthesis of nanostructuredγ-alumina with a cationic surfactant and controlled amounts of water, Micropor. Mesopor. Mat., 2005, 79: 61-68.
    [118] Cao H. Q., Zhu M. F., Li Y. G., Decoration of carbon nanotubes with iron oxide, J. Solid State Chem. 2006, 179: 1208–1213.
    [119] Bayrakceken A., Kitkamthorn U., Aindow M., et al., Decoration of multi-wall carbon nanotubes with platinum nanoparticles using supercritical deposition with thermodynamiccontrol of metal loading , Scripta Mater. 2007, 56: 101–103.
    [120] Ang L. M., Hor T. S. A., Xu G. Q., et al., Decoration of activated carbon nanotubes with copper and nickel, Carbon, 2000, 38: 363–372.
    [121] Zhao D., Han E., Wu X., et al., Hydrothermal synthesis of ceria nanoparticles supported on carbon nanotubes in supercritical water , Mater. Lett., 2006, 60: 3544–3547.
    [122] Xia X. H., Jia Z. J., Yu Y., et al., Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O, Carbon, 2007, 45: 717–721.
    [1] Lawrence Berkeley Laboratory (LBL) internal report 1996.
    [2] Zhou J., Deng S. Z., Chen J., et al., Synthesis of crystalline alumina nanowires andnanotrees, Chem. Phys. Lett., 2002, 365: 505–508.
    [3] Tang C. C., Fan S. S., Li P., et al., In situ catalytic growth of Al2O3 and Si nanowires, J. Cryst. Growth, 2001, 224: 117–121.
    [4] Valcarcel V. V., Souto A., Guitian F., Development of single-crystalα-Al2O3 fibers by vapor-liquid-solid deposition (VLS) from aluminum and powdered silica, Adv. Mater., 1998, 10(2): 138-140.
    [5] Jin Y. Z., Zhu Y. Q., Brigatti K., et al., Catalysed growth of novel aluminium oxide nanorods, Appl. Phys. A, 2003, 77: 113-115
    [6] Zhao Q., Xu X., Zhang H., et al., Catalyst-free growth of single-crystalline alumina nanowires arrays, Appl. Phys. A, 2004, 79(7): 1721-1724
    [7] Hou H. W., Xie Y., Yang Q., et al., Preparation and characterization ofγ-AlOOH nanotubes and nanorods, Nanotechnology, 2005, 16: 741–745.
    [8] Ma M. G., Zhu Y. J., Xu Z. L., A new route to synthesis ofγ-alumina nanorods, Mater. Lett., 2007, 61: 1812–1815
    [9] Yu Z. Q., Wang C.X., Gu X.T., et al., Photoluminescent properties of boehmite whisker prepared by sol-gel process, J. Lumin., 2004, 106: 153-157.
    [10] Sing K. S. W., Everett D. H., Haul R. A. W., et al., Commission on colloid and surface chemistry including catalysis, Pure & App. Chem., 1985, 57: 603-619
    [11] Tsukada T., Segawa H., Yasumorib A., et al., Crystallinity of boehmite and its effect on the phase transition temperature of alumina, J. Mater. Chem. 1999, 9: 549-553
    [12] Okada K., Nagashima T., Kameshima Y., et al., Relationship between formation conditions, properties, and crystallite size of boehmite, J. Colloid Interf. Sci., 2002, 253: 308–314.
    [13]刘昌华,Sol-Gel水热偶合法制备纳米AlOOH及性能的研究,[学位论文],广西大学硕士学位论文,2001
    [14] Zhang W. X., Wen X. G., Yang S. H., et al., Single crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature, Adv. Mater. 2003, 15: 822-825
    [15] Li Y. D., Li X. L., He R. R., et al., Artificial lamellar mesostructures to WS2 nanotubes, J. Am. Chem. Soc., 2002, 124(7): 1411-1416.
    [16] Deng Y., Nan C. W., Guo L., A novel approach to Bi2Te3 nanorods by controlling oriented attachment, Chem. Phys. Lett., 2004, 383: 572-576
    [17] Zhang Y. G., Wang S. T., Li X. B., et al., CuO shuttle-like nanocrystals synthesized by oriented attachment, Journal of Crystal Growth, 2006, 291: 196-201
    [18] Chen J. D., Wang Y. J., Wei K., et al., Self-organization of hydroxyapatite nanorods through oriented attachment, Biomaterials, 2007, 28: 2275-2280
    [19] Kalyanikutty K. P., Nikhila M., Maitra U., et al., Hydrogel-assisted synthesis of nanotubes and nanorods of CdS, ZnS and CuS, showing some evidence for oriented attachment, Chem. Phys. Lett., 2006, 432: 190–194.
    [20] Alikakos N. D., Fusco G., Karali G., et al., Ostwald ripening in two dimensions—the rigorous derivation of the equations from the Mullins–Sekerka dynamics, J. Differential Equations, 2004, 205: 1–49.
    [21] Marsh S. P., Glicksman M. E., Ostwald ripening in non-spherical morphologies, Mater. Sci. Eng. A, 1997, 238: 140-147.
    [22] Fan W. L., Zhao W., You L. P., et al., A simple method to synthesize single-crystalline lanthanide orthovanadate nanorods J. Solid State Chem., 2004, 177(12): 4399-4403
    [23] Wu L. L., Wu Y. S., LüW., Preparation of ZnO nanorods and optical characterizations, Phys. E, 2005, 28(1): 76-82
    [24] Li Y. Y., Liu J. P., Jia Z. J., Fabrication of boehmite AlOOH nanofibers by a simple hydrothermal process, Mater. Lett. 2006, 60: 3586–3590.
    [1] Zhou R. S., Snyder R. L., Structures and transformation mechanisms of the , and transition aluminas, Acta Crystallographica Section B, 1991, 47: 617–630
    [2] Bagwell R. B., Messing G. L., Critical factors in the production of sol–gel derived porous alumina, in: D.-M. Liu (Ed.), Porous Ceramic Materials, Key Eng. Mater. 1996, 115: 45–64
    [3] Tettenhorst R. T., Hofmann D. A., Crystal-chemistry of boehmite, Clays Clay Miner. 1980, 28: 373–380
    [4] Bellotto M., Rebours B., Euzen P., Proceedings of the fifth european powder diffraction conference 1997, Material Science Forum, 1998, pp. 572–577
    [5] Gobichon A. E., Rebours B., Euzen P., Mater. Sci. Forum, 2001, (378–381): 523–528
    [6]刘昌华,Sol-Gel水热偶合法制备纳米AlOOH及性能的研究,[学位论文],广西大学硕士学位论文,2001
    [7] Simon C., Bredesen R., Grondal H., et al., Synthesis and characterization of Al2O3 catalyst carriers by sol-gel, J. Mater. Sci. 1995, 30: 5554–5560
    [8] Tsukada T., Segawa H., Yasumori A., et al., Crystallinity of boehmite and its effect on the phase transition temperature of alumina, J. Mater. Chem. 1999, 9: 549–553
    [9] Tsuchida T., Furuich R., Ishii T., Kinetics of the dehydration of boehmites prepared under different hydrothermal condition, Thermochim. Acta, 1980, 39: 103–115
    [10] Stacey M. H., Kinetics of decomposition of gibbsite and boehmite and the characterization of the porous products, Langmuir, 1987, 3: 681–686
    [11] Bokhimi X., Toledo-Antonio J. A., Guzman-Castillo M. L., et al., Relationship between Crystallite Size and Bond Lengths in Boehmite, J. Solid State Chem. 2001, 159: 32–40
    [12] Raybaud P., Digne M., Iftimie R., et al., Morphology and surface properties of boehmite (γ-AlOOH): a density functional theory study, J. Catal., 2001, 201: 236–246
    [13] Wickersheim K. A., Korpi G. K., Interpretation of the Infrared Spectrum of Boehmite, J. Chem. Phys., 1965, 42: 579-583
    [14] Ram S., Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and AlO(OH)?αH2O bulk crystals, Infrared Phys. Technol., 2001, 42: 547-560
    [15] Colomban Ph, Raman study of the formation of transition alumina single crystal from protonicβ/β″aluminas, J. Mater. Sci. Lett. 1988, 7: 1324-1326
    [16] Priya G. K., Padmaja P., Warrier K. G. K., et al., Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy, J. Mater. Sci. Lett. 1997, 16: 1584-1587
    [17]张长拴,赵峰,张继军等,纳米尺寸氧化铝的红外光谱研究,化学学报,1999, 57: 275-280
    [18]胡荣祖,史启祯主编,热分析动力学,北京,科学出版社,2001: 47-148.
    [19]李士平,周闻戈,谢鸿森等,矿物热分解动力学的研究方法探讨,矿物岩石地球化学通报,2001,20 (3): 194-197
    [20] Zeng W. M., Gao L., Guo J. K., A new sol-gel route using inorganic salt for synthesizing Al2O3 nanopowders, Nanostructured Materials. 1998, 10(4): 543-550
    [21] Rafiq R. A., Anthony P. S., Thermal analysis of reactions and transformations in the solid state, Experimental evaluation of published kinetic methods using hermogravimetry, Thermochimica Acta, 1978, 26: 67-88
    [22] Yue L. H., Jin D. L., Lu D. Y., The non-isothermal kinetic analysis of thermal decomposition of Mg(OH)2, Acta Physics-Chemistry Science, 2005, 21 (7): 752-757
    [23]景殿策,王宝和,张伟等,纳米氢氧化镁粉体的制备及热分解动力学研究,粉体纳米技术,2006,5: 24-27
    [1] Rastetter C., Symes W. R., Alumina fibre– a polycrystalline refractory fiber for use up to 1600 degree C, Interceramics 1982, 3: 215-220
    [2] ?hman L. O., Paul J., Materials aspects of titanium-doped aluminas: 14%Ti/γ-Al2O3/Cu and sulfided Al2O3–TiO2/NiMo, Mater. Chem. Phys., 2002, 73: 242-251
    [3] Peng H. X., Fan Z., Mudher D. S., et al., Microstructures and mechanical properties of engineered short fibre reinforced aluminium matrix composites, Mat. Sci. Eng. A, 2002, 335: 207-216
    [4] Kurlov V. N., Kiiko V. M., Kolchin A. A., et al., Sapphire fibres grown by a modified internal crystallisation method, J. Cryst. Growth 1999, 204(4): 499-504
    [5] Greenwood R., Kendall K., Bellon O., A method for making alumina fibres by co-extrusion of an alumina and starch paste, J. Eur. Ceram. Soc. 2001, 21(4): 507-513
    [6] Okada K., Motohashi T., Kameshima Y., et al., Sol–gel synthesis of YAG/Al2O3 long fibres from water solvent systems, J. Eur. Ceram. Soc. 2000, 20(5): 561-567
    [7] Venkatash R., Ramanan S. R., Effect of organic additives on the properties of sol-gel spun alumina fibres, J. Eur. Ceram. Soc. 2000, 20(14-15): 2543-2549
    [8] Venkatash R., Chakrabarty P. K., Siladitya B., et al., Preparation of alumina fibre mats by a sol–gel spinning technique, Ceram. Inter. 1999, 25(6): 539-543
    [9] Zhu H. Y., Riches J. D., Barry J. C.,γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant, Chem. Mater. 2002, 14: 2086-2093
    [10] Li Y. Y., Liu J. P., Jia Z. J., Fabrication of boehmite AlOOH nanofibers by a simple hydrothermal process, Mater. Lett., 2006, 60: 3586–3590
    [11] Lee H. C., Kim H. J., Rhee C. H., et al., Synthesis of nanostructuredγ-alumina with a cationic surfactant and controlled amounts of water, Micropor. Mesopor. Mat. 2005, 79: 61-68
    [12]张长拴,赵峰,张继军等,纳米尺寸氧化铝的红外光谱研究,化学学报,1999, 57: 275-280
    [13] Shek C. H., Lai J. K. L., Gu T. S., et al., Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders, Nano structured Materials, 1997, 8: 605-610
    [14] Sing K. S. W., Everett D. H., Haul R. A. W., et al., Commission on colloid and surface chemistry including catalysis, Pure & App. Chem., 1985, 57: 603-619
    [15] Bessone J. B.,The activation of aluminium by mercury ions in non-aggressive media Corrosion Science 2006, 48: 4243–4256
    [16]夏树屏,刘志宏,高世扬,盐卤硼酸盐化学——ⅩⅤ.氯柱硼镁石在30℃水中的溶解和相转化过程,无机化学学报,1993,9(3): 279-285
    [17]洪显兰,夏树屏,高世扬,钾光卤石溶解动力学,应用化学,1994,11(3): 26-31
    [18]陈忠琪,戴闽光,胶体化学,北京,高等教育出版社,1984
    [19]魏坤霞,赵昆渝,魏伟等,低温燃烧合成制备非晶氧化铝及其晶型转变,兵器材料科学与工程,2005,28(2): 41-44
    [20]张长拴,赵峰,张继军等,不同制备因素对超细纳米氧化铝结构的影响,1999,12(3): 321-325
    [21]张立岩,张鹏远,陈建峰,纳米纤维状γ-Al2O3粉体的制备与表征,石油化工,2004,33(3): 240-243
    [22]吴玉程,宋振亚,杨晔等,氧化铝α相变及其相变控制的研究,稀有金属,2004,28(6): 1043-1048
    [23]吴玉程,杨晔,李勇等,氧化铝胶体的添加对氧化铝γ→α相变的影响,2005,21(1): 79-83
    [24] Chang P. L., Yen F. S., Cheng K. C., et al. Examinations on the critical and primary crystallite sizes duringθ- toα- phase transformation of ultrafine alumina powders, Nano Lett., 2001, 1(5): 253-261
    [25] Yen F. S., Wen H. L., Hsu Y. T., Crystallite size growth and the derived dilatometric effect duringθ- toα- phase transformation of nanosized alumina powders, J. Cryst. Growth, 2001, 233(4): 761-773
    [1] Iijima S., Helical microtubules of graphitic carbon, Nature, 1991, 354: 56-58
    [2] Calvert P., Strength in disunity, Nature, 1992, 357: 365-366
    [3] Heer W. A. D., Chatelain A., Ugarte D., A carbon nanotube field-emission electron source, Science, 1995, 270: 1179-1181
    [4] Kong J., Franklin N. R., Zhou C., et al., Nanotube molecular wires as chemical sensors, Science, 2000, 287: 622-625
    [5] Dai H., Hafner J. H., Rinzler A. G., et al., Nanotubes as nanoprobes in scanning probe microscopy, Nature, 1996, 384: 147-150
    [6] Wong E. W., Sheehan P. E., Lieber C. M., Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes, Science, 1997, 277: 1971-1975
    [7] Salvetat J. P., Briggs G. D., Bonard J. M., et al., Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett. 1999, 82: 944-947
    [8] Sun Z. Y., Zhang X. R., Han B. X., et al., Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide–ethanol solution, Carbon, 2007, 45: 2589–2596
    [9] Cao H. Q., Zhu M. F., Li Y. G., Decoration of carbon nanotubes with iron oxide, J. Solid State Chem. 2006, 179: 1208–1213
    [10] Bayrakceken A., Kitkamthorn U., Aindow M., et al., Decoration of multi-wall carbon nanotubes with platinum nanoparticles using supercritical deposition with thermodynamic control of metal loading , Scripta Mater. 2007, 56: 101–103
    [11] Ang L. M., Hor T. S. A., Xu G. Q., et al., Wang, Decoration of activated carbon nanotubes with copper and nickel, Carbon, 2000, 38: 363–372
    [12] Zhao D., Han E., Wu X., et al., Hydrothermal synthesis of ceria nanoparticles supported on carbon nanotubes in supercritical water , Mater. Lett., 2006, 60: 3544–3547
    [13] Xia X. H., Jia Z. J., Yu Y., et al., Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O, Carbon, 2007, 45: 717–721
    [14] Li Y. H., Wang S. G., Cao A. Y., et al., Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes, Chem. Phys. Lett., 2001, 350: 412-416
    [15] Hernadi K., Ljubovic′E., Seo J. W., et al., Synthesis of MWNT-based composite materials with inorganic coating, Acta Mater., 2003, 51: 1447–1452
    [16] Lee J. S., Min B., Cho K., et al., Al2O3 nanotubes and nanorods fabricated by coating and filling of carbon nanotubes with atomic-layer deposition, J. Cryst. Growth, 2003, 254: 443-448
    [17] Badr Y., Mahmoud M. A., Effect of PVA surrounding medium on ZnSe nanoparticles: Size, optical, and electrical properties, Spectrochim. Acta A, 2006, 65: 584–590
    [18] Tawansi A., El-Khodary A., Abdelnaby M. M., A study of the physical properties of FeCl3 filled PVA, Current Appl. Phys., 2005, 5: 572–578
    [19] Li J. Z., Tang T., Zhang X. B., Li S. Y., et al., Dissolution, characterization and photofunctionalization of carbon nanotubes, Mater. Lett., 2007, 61: 4351–4353
    [20] Li Y. H., Ding J., Chen J. F., et al., Preparation of ceria nanoparticles supported on carbon nanotubes, Mater. Res. Bull., 2002, 37(2): 313-318
    [21] Priya G. K., Padmaja P., Warrier K. G. K., et al., Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy, J. Mater. Sci. Lett., 1997, 16: 1584-1587
    [22] Ram S., Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and AlO(OH)?αH2O bulk crystals, Infrared Phys. Technol., 2001, 42: 547-560
    [23] Shek C. H., Lai J. K. L., Gu T. S., et al., Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powders, Nanostruct. Mater., 1997, 8: 605-610
    [24]江琳沁,高濂,化学处理对碳纳米管分散性能的影响,无机材料学报,2003,18(5): 1135-1138
    [25] Sing K. S. W., Everett D. H., Haul R. A. W., et al., Commission on colloid and surface chemistry including catalysis, Pure & App. Chem., 1985, 57: 603-619

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700