磁性金属纳米线及多层线的电化学制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以铝阳极氧化膜(AAO)为模板,通过电化学法制备一维磁性NiFe、NiAg纳米线及NiFe/Cu多层纳米线。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和振动样品磁强计(VSM)等对纳米线进行了表征和性能研究。
     通过二次铝阳极氧化制备了多孔铝阳极氧化膜,膜孔密度高、排布高度有序。利用逆电剥离技术将氧化膜从铝基体上剥离,并用磷酸去除阻挡层,得到贯通的纳米孔。将通孔后的AAO模板直接放入腐蚀液中进行溶解,可获得大量Al_2O_3纳米线。文中对Al_2O_3纳米线的形成机理进行了初步探讨。
     在AAO模板的纳米孔内交流电沉积镍铁磁性合金,获得Ni_(79)Fe_(21)合金纳米线阵列,纳米线长9.7μm,直径约60nm,长径比达160。XRD测试及选区电子衍射表明,Ni_(79)Fe_(21)纳米线为面心立方(fcc)、单晶结构。磁性能测量结果表明,Ni_(79)Fe_(21)纳米线易磁化轴沿纳米线的长轴方向,其矩形比(Mr/Ms)高达0.86,矫顽力约1203Oe;当外磁场垂直于纳米线的长轴方向时,矩形比减小为0.18,矫顽力降至620Oe,Ni_(79)Fe_(21)纳米线具有很好的垂直方向磁各向异性。随着退火温度的升高,沿纳米线轴向的矫顽力迅速增大,在500℃时出现最大值,水平方向的矫顽力没有类似的变化规律。
     采用直流电沉积在AAO模板内制备了高度有序的Ni_(79)Ag_(21)合金纳米线阵列,纳米线长约30μm,直径约为90nm,长径比高达300。电子衍射表明,Ni_(79)Ag_(21)纳米线具有单晶、面心立方(fcc)结构,磁滞回线显示Ni_(79)Ag_(21)纳米线具有超顺磁性。
     以AAO为模板,通过双槽法直流电沉积NiFe/Cu多层纳米线阵列。SEM和TEM测试结果表明:NiFe/Cu多层纳米线的直径约为90nm,与模板孔径一致;纳米线的多层结构中各子层厚度均匀,层与层之间的界限分明;周期为60层的NiFe(130nm)/Cu(30nm)多层纳米线阵列的易磁化轴垂直于AAO模板表面。当外加磁场垂直于膜面时,磁滞回线的矩形比(Mr/Ms)为0.90,远大于外加磁场平行于AAO膜面时测得的矩形比(0.25),表明NiFe/Cu多层纳米线阵列具有明显的垂直磁各向异性。当外加磁场垂直或平行于AAO膜面时,测得矫顽力分别为1320Oe和700Oe。
The magnetic NiFe and NiAg alloy nanowire arrays and NiFe/Cu multilayered nanowire arrays were prepared by electrochemical deposition into the nanoporous anodic alumina oxide (AAO) templates. The morphology, structure and magnetic properties of the nanowires were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), respectively.
     The anodic aluminum oxide membranes were prepared by two-step oxidation in the solution of oxalic acid, and stripped from the aluminum substrate adopting strip against electricity technique. The oxide barrier layer was chemically dissolved from bottom side of the film in phosphoric acid, and the free-standing AAO menbrane was obtained. The alumina nanowires were obtained by etching anodic aluminum oxide films in an aqueous sodium hydroxide solution and a mixed solution of 6wt% H2CrO4 and 1.8wt% H3PO4. A discussion of the possible mechanism for the formation of nanowires was given.
     Ordered Fe21Ni79 alloy nanowire arrays were prepared by AC electrochemical deposition into the nanoporous anodic alumina oxide (AAO) templates. The nanowires were about 60nm in diameter and 9.7μm in length. The results indicated that the nanowires in an array were very regular, with an aspect ration controllably. Such nanowire arrays were in fcc structure. The hysteresis loops showed that the nanowire arrays had excellent perpendicular magnetic anisotropy with their easy magnetization axis parallel to nanowire arrays, the as-deposited samples had high squareness(Mr/Ms) (about 0.86) and large coercivity (as high as 1203Oe) when the magnetic field was perpendicular to the membranes. which is larger than squareness(Mr/Ms) (about 0.18) and coercivity (as high as 620Oe) when the magnetic field was parallel to the membranes. Annealing can improve the coercivity and the squareness of nanowire arrays. Coercivity as high as 1315Oe was obtained in the samples annealing at 500℃, above 500℃, the coercivity and squareness decrease sharply.
     Highly ordered Ni_(79)Ag_(21) alloy nanowire arrays was fabricated successfully by electrodeposition into the pores of a porous anodic aluminum oxide(AAO). the nanowire arrays were regularly arranged, the length of nanowires was 30μm and thediameter of the nanowires was about 90nm,L/D was up to 300. Such nanowire arrays were in fcc structure. The hysteresis loops show that the nanowire arrays were superparamagnetic. Ordered NiFe/Cu multilayered nanowire arrays were prepared by DC electrochemical deposition into the nanoporous anodic alumina oxide (AAO) templates. The nanowires were about 90nm in diameter. and there was evident boundary between every sublayer. The hysteresis loops showed that the nanowire arrays which had 60 ciecles of NiFe(130nm)/Cu(30nm) had excellent perpendicular magnetic anisotropy with their easy magnetization axis parallel to nanowire arrays, the as-deposited samples had high squareness(Mr/Ms) (about 0.90) and large coercivity (as high as 1320Oe) when the magnetic field was perpendicular to the membranes. which was larger than squareness (Mr/Ms) (about 0.25) and coercivity (as high as 700Oe) when the magnetic field was parallel to the membranes.
引文
[1]马向东.纳米材料的进展及展望.水利电力机械,2004,26(2):35-37
    [2]Baibich M N, Broto J M, Fert A.et al.,Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Physical Review Letters,1988, 61(21):2472-2475
    [3]D.Imhoff, P.Etienne, O.Durand, S.Dubois, L.Piraux,J.M.George, P.Galtier, A.Fert Journal of Magnetism and Magnetic Materials,1998, 184(1):18
    [4]P.Llu, S.H.Charap, Thermal instability at 10 Gbit/in2 magnetic recording, IEEE Trans.Magn.,1994,30:4230
    [5]Fliesher R L, Price P B,Walker R M, Proportional inhibition in the cricket medial glant interneuron,Nuclear Tracks in Solid.,1975
    [6]Masuda H, Fukuda K, Change of hole size of Pd hole-array electrodes in a controlled fashion by cathodic polarization in acidic electrolyte Science,1995,268(9):1446
    [7]Marlne A M, Lieher C M, Interfacial mixing in sputtered Co/Si multilayers by ion beam assisted deposition, Semiconductor nanowires,Sciece,1998:279
    [8]C P eydon, S R Hoon, A N Fardey, Simultaneous phenomenon of particle deposition and reentrainment, Phys.D:Appl.Phys,1997 41/42:1083
    [9]Parthasarthy R V, Phani K L N, Martin C R, Electrostatic phenomena in particulate processes, Adv.Mater.,1995,7:896
    [10]S. Demoustier-Champagne, M. Delvaux, Preparation of polymeric and metallic nanostructures using a template-based deposition method Materials, Science and Engineering C,15,2001:269–271
    [11]Cuiying Wang, Maohui Chen, Guangming Zhu,and Zugeng Lin.A Novel Soft-Template Technique to Synthesize Metal Ag Nanawire,Journal of Colloid and Interface Science,2001,243: 362–364
    [12]Parthasarthy R V, Martin C R, Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model, Natrue,1994,369:298
    [13]Parthasarthy R V,Martin C R, Electrostatic phenomena in particulate processes,Chem Mater.,1994,6:1627
    [14]Brumlik C J, Menon V P, Martin C R, An application of the double Edgeworth expansion to a filtering model with Gaussian limit,J Mater.Res.,1994,9:1174
    [15]Chakarvarti S K, Vetter J, Micromech J, Female reproductive tract gene transfer by microbubble-enhanced sonoporation,Microeng.,1993,3:57
    [16]Chakarvarti S K, Vetter J, Micromech J, Electrochemical polymerization of pyrrole with water-soluble polymeric electrolyte, Nucl.Instrum.Methods. Phys, Res.B,1991, 62:109
    [17]Murray C B,Kagan C R,bawendi M G, Markedly increased unilateral intraocular pressure during hemodialysis in a patient with ipsilateral exfoliative glaucoma, Sciense,1995,270:1335
    [18]Andres R P, Bielefeld J D, Henderson JI, Thermal stability of amino acids in seafloor sediment in aqueous solution at high temperature, Science,1996, 273:1690
    [19]Yoon H.choo, Onen, F.Devereux,Barrier-Type Alumimum Oxide Films Formed under Prolonged Anodizing,J.Electrochem.Soc.,1975,122(12):1645
    [20]小野幸子,增子早,高分辨电子显微镜にょるァルミニウム酸化皮膜,の构造,金属表面技术,1982,32(5):256
    [21]永山政一,高橋英明,多孔质ァルミニウム?ァノード酸化皮膜一微细构造,おょび生成/封孔の机构,金属表面技术,1978,38(10)494
    [22]轻金属制品协会编,ㄗルヾ゛ゥム表面处理の理论と实物,轻金属通信社,1997
    [23]轻金属制品协会边,ㄗルヾ゛ゥム表面处理ハンゞバヴり轻金属出版,1971
    [24]土屋正一, ㄗルヾ表面处理,一ノトへ实物编へ东京, ㄗルうㄌ一フト研究会,1981
    [25]前岛正受,猿渡光一,石禾和夫等,ァルミニウム阳极酸化皮膜のソリ变形表面技术,1995,46(9):856
    [26]吉村长藏,牧之濑浩二。ァルミニウムの硫酸浴阳极酸化における增粘剂添加の影响,表面技术,1994,45(5):515
    [27]PLL.Cabot. Steady-State and Critical Potentials in the Galvanostate Anodization of Alumminum in Aqueous Propanedioic Acid Solutions.Electrochim Acta.1985, 30(11):1573
    [28]野口骏雄,有机酸盐添加有机ァルカリ性浴中でのァルミニウムの阳极酸化,表面技术,1997,48(1):76
    [29]大九保敬吾.交流法にょる高力及び快削ァルミニウム合金の阳极酸化,表面技术,1982,33(1):9
    [30]前岛政受,猿渡光一,平田昌範ァルミニウム阳极酸化皮膜の耐磨耗性と电解电流波形,表面技术,1995,46(9):846
    [31]王祝堂编,铝材及其表面处理手册,江苏:科技出版社,1991,294
    [32]徐源,G.E.Thompson, B.B.Bethune,壁垒型铝阳极氧化膜的成分及电解质离子在膜中的漂移,中国腐蚀与防护学报,1987,7(3):161
    [33]K.V.Heber, Studies on Porous Al2O3 Growthl. .Physical MODEL. Electrochim.Acta., 1978,23:127-135
    [34]G.E.Thompson, T.C.Turneaux,G.C.Wood,Nucleation and Growth of Porous Anodic Films on Aluminum. Nature,1978, 272(30):433
    [35]王为,曾曙,郭鹤桐.恒压阳极氧化 Al2O3 膜形成过程理论研究.电镀与精饰,1997,19(4):13-15
    [36]王为,郭鹤桐,高建平.铝阳极氧化多孔膜功能化应用的新趋向,化工进展,1997,4:43
    [37]星野重夫.阳极酸化皮膜を用いた分离膜の化成方法とその特性.表面技术协会第 89 回讲演大会要旨集,1994:120
    [38]Quarto F Di, Gentile C. ,Piazza S. ,et al.Photoelectrochemical Study on Anodic Aluminum Oxide Films,J.Electrochem.Soc.,1991,138(6):158
    [39]孙伯勤.铝阳极氧化膜的多功能应用.轻金属,1995(6):60
    [40]中村庆久.高密度磁氣记录メデ?∮τ梦锢?1994,63(3):240
    [41]K.I.Arai ana K.I.Shiyama, Magnetic Properties of Co-Fe Electrodeposited Aluminum Films, IEEE Trans.Magn.1991, MAG-27:4906
    [42]Preston C K and Moskovits M, Optical Characterization of Anodic Aluminum Oxide Film Containing Electrochemically Deposited Metal Particals.l.Gold in Phosphoric Acid Anodic Aluminum Oxide Film, J.Phys.Chem.1993,97:8495
    [43]Amderson A et al.Nickel Pigmented Anodic Aluminum Oxide for Selective Absorption of Solar Energy, J.Appl.Phys,1980,51:754
    [44]Uosaki K, Preparative Method for Fabricating a Microelectrode Ensemble:Electrochemical Response of Microporous Aluminum Anodic Oxide Film Modified Gold Electrode, Anal.Chem.,1990,62:652
    [45]Weber. S G.,Signal-to-Noise Ratio in Microeletrode-Array-Based Electrochemical Detetors. Anal.chem.1989, 61:295
    [46]龟山秀雄,村田究,寺井聪.ァルミニウム阳极酸化皮膜しニよろ连续触媒体の开发,表面技术.1995,46(5):425
    [47]徐洮,赵家政,陈建民.铝阳极氧化膜多孔质结构的电镜研究.电子显微学报,1994,(4):276
    [48]Gong Yunlan(龚运兰).Tianjin University Master Dissertation( 天津大学硕士学位论文),2000 :53
    [49]高云霞,任继嘉,宁福元 编译.《铝合金表面处理》,冶金工业出版社
    [50]Maurice, J.-L.; Imhoff, D.; Etienne, P.; Durand, O.; Dubois, S.; Piraux, L.; George,J.-M.; Galtier, P., Journal of Magnetism and Magnetic Materials,1998 184(4):1
    [51]Alper M., Aplin P. S., Attenborough K. et al., Preparation of regularly structured porous metal membranes with two different hole diameters at the two sides, J. Mag. Mag. Mater., 1993,126:8
    [52]J-L.Maurice,D.Imhoff, P.Etienne,O.Durand,Dubois, Data embedding algorithms for geometrical and non-geometrical targets in three-dimensional polygonal models, Jounal of Magnetism and Materials,1998,1:18
    [53]Hsu W K, Terronem M,Hare J P,Mot. Development of portable device for measuring accumulation rate of sea salt particles, Nanostruct,1997:381
    [54]Hsu W K, Terronem M, Terronem H, Local photocurrent detection on InAs wires by conductive AFM, Chem.Phys.Lett.,1998 284(3.4):177
    [55]Hsu W K, Terronem M, Terronem H, Scanning Hall probe microscopy with high resolution of magnetic field image, Proc.Int.Congr.1998 3:71
    [56]Marlne A M, Lieher C M, Detection of complex formation between binuclear iron(III)–peroxide adduct and oligonucleotide by electrospray mass spectrometry, Semiconductor nanowires Sciece,1998:279
    [57]C P eydon, S R Hoon, A N Fardey, Electron beam doping of nitrogen into ternary system of ZnCdS epilayer, Phys.D:Appl.Phys,1997 41/42:1083
    [58]Masuda,Mitsutoahi,Hanada,Takeshi,Yase,Kiyoshi,Shimim,Toehimi, A cell-based approach for generating solid objects from orthographic projections, Macromolecules,1998, 31(26): 9404
    [59]Costa-Kramer.J-L, Garcia ,Garcia-MochaiesP, Cathepsin D-mediated yolk protein degradation is blocked by acid phosphatase inhibitors, Phys,Rev.B:condens.Matter,1997,55(8):5416
    [60]Baro A M, Electrostatic charge distribution of particles in gas–solids pipe flow, NATO AST SER,E,1997,340:211
    [61]Baohidd A,Terrler C,Kurger M, Tunnel Capillaries of Cardiac Myocyte in Pressure-Overloaded Rat Heart—An Ultrastructural Three-Dimensional Study, Microelectron.Eng,1998,41:571
    [62]Giroud M, Courtios H,Hasselbzch K, Structures and electrical properties of ferroelectric copolymer ultrathin films, Phys,Rev.B:condens.Matter Mater Phys,1998, 58(18):R11872
    [63]Liu Kai, Chuen C L, Season P C, Intermittent short-duration exposure to low wall shear stress induces intimal thickening in arteries exposed to chronic high shear stress, Phys, Rev.B:condens.Matter Mater Phys, 1998,58(22):R14681
    [64]Y W Wang,G Z Wang,S X Wang,etc.Fabrication and magnetic properties of highly ordered Co16Ag84 alloy nanowire array,.Appl.Phys.A,2002,74:577-580
    [65]D H Qin.C W Wang,Q Y Sun,etc.The effect of annealing on the structure and magnetic properties of CoNi patterned nanowires arrays,Appl.Phys.A,2002, 74: 761-765
    [66]X Y Yuan,G S Wu,T Xie,etc.Self-assembly synthesis and magnetic studies of Co-P alloy nanowire arrays,.Nanotechnoloy,2004,15:59-61
    [67]C Z Wang,G W Meng,Q Q Fang,etc.Structure and magnetic property of Ni-Cu alloy nanowires electrodeposited into the pores of anodic alumina membranes, J.Phys. D: Appl. Phys.,2002,35:738-741
    [68]Jun Zhou,S Z Deng,Jun Chen,etc.Synthesis of crystalline alumina nanowires and nanotrees, Chem. Phys. Lett., 2002,365:505-508
    [69]迟广俊,姚素薇,张卫国,等.多孔阳极氧化铝模板组装铜纳米线及其 TEM表征,材料科学与工艺,2003,11(3):233-236
    [70]迟广俊,姚素薇,张卫国,等.模板组装 Fe 纳米线阵列及其微结构[J].物理化学学报,2002,18(10):930-933
    [71]迟广俊,姚素薇,张卫国,等.银纳米线的 TEM 表征.物理化学学报,2002,18(6):532-535
    [72]迟广俊,冯钊永,赵瑾,等.纳米金属多层膜与多层纳米线的电化学制备及其表征[J].物理化学学报,2003,19(2):177-180
    [76]于冬亮,杨绍光,朱浩,都有为. 钴纳米线阵列的制备和磁性, 南京化工大学学报,2000, 22(6):69-71
    [77]刘青芳,崔作龙,肖君军,高存绪,铁纳米线阵列的结构与微观磁性, 薛德胜甘肃科学学报, 2003,15(1):26-29
    [78]Chi GuangJun, Yao SuWei. Fe Nanowire Arrays Embedded in Porous Anodic Aluminum Oxide Templates. Chinese Journal of Chemical Engineering, 2004, 12(2):315-318
    [79]Kazadi Mukenga Bantu A,Rivas J, G Zaragoza,Lopez-Quintela M A,Blanco M C. Influence of the synthesis parameters on the crystallization and magnetic properties of cobalt nanowire. Journal of Non-Crystalline Solids, 2001, 287:5-9
    [80]Jin C G,Liu W F,Jia C,Xiang X Q,Cai W L,Yao L Z Li X G.High-filling,large-area Ni nanowire arrays and the magnetic properties. Journal of Crystal Growth, 2003,258: 337-341
    [81]Qin D H, Wang C W,Sun Q Y,Li H L. The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays. Appl. Phys. A, 2002,74: 761-765
    [82]Guo Yun, Qin DongHuan,Ding JinBo Li HuLin. Annealing and morphology effects on the Fe0.39Co0.61 nanowire arrays. Applied Surface Science, 2003,218:106-112
    [83]Wang Y W,Wang G Z,Wang S X. Fabrication and magnetic properties of highly ordered Co16Ag84 alloy nanowire array. Appl. Phys. A 2002, 74:577-580
    [84]Miyazaki K., Kainuma S.,Hisatake K.,et al. Giant magnetoresistance in Co-Cu granular alloy films and nanowires prepared by pulsed-electrodeposition. Electrochi.Acta, 1999,44: 3713-3719
    [85]Wang C Z, Meng G W,Fang Q Q,Peng X S,Wang Y W,Fang Q and Zhang L D. Structure and magnetic properties of Ni-Cu alloy nanowires electrodeposited into the pores of anodic alumina membranes. J. Phys. D: Appl. Phys., 2002,35: 738-741
    [86]郭玉国,张亚利,郭国霖,徐东升. 铁镍镀层中铁镍组成的紫外—可见分光光度分析法. 分析测试学报,2002,21(3):21-24
    [87]何晓晓,王柯敏,谭蔚泓,刘斌,李杜,黄杉生.超顺磁性 DNA 纳米富集器应用于痕量寡聚核苷酸的富集.高等学校化学学报.2003,24(1):40-42
    [88]刘志坚,曹建,曲选辉,李志友,黄伯云.Ni-5%Ag 合金的显微组织与性能.粉末冶金技术.2004,22(2):80-82
    [89]S.Valizadeh, J.M George, P.Leisner, L. Hultman Electrochemical deposition of Co nanowire arrays;quantitative consideration of concentration profiles Electrochimica Acta.2001, 47:865-874
    [90]Brian D.Reiss, R.Griffith Freeman, Ian D.Walton, Scott M.Norton, Patrick C.Smith, Walter G.Stonas, Christine D.Keating, Michael J.Natan Electrochemical synthesis and optical readout of striped metal rods with submicron features Journal of Electroanalytical Chemistry.2002,522:95-103
    [91]Tench D M. White J.T., Considerations in electrodeposition of compositionally modulated alloys, J.Electrochem.Soc.,1990,137(10):3061-3066
    [92]Yamada A, Houga T, Ueda Y, Magnetism and magnetoresistance of Co/Cu multilayer films produced by pulse control electrodeposition method, Journal of Magnetism and Magnetic Materials, 2002, 239(1-3): 272-275
    [93]Mibu K, Nagahama T, Shinjo T, et al, Magnetoresistance of quasi-Bloch-wall induced in NiFe/CoSm exchange-spring bilayers, Journal of Magnetism and Magnetic Materials, 1998, 177-178:1267-1268
    [94]Blythe H J, Fedosyuk V M. An investigation of electrodeposited granular CuFe alloyed films, Phys. Status Solid(a), 1994, 13: 142
    [95]Dumpich G, Krome T P, Hausmanns B, Magnetoresistance of single Co anowires, Journal of Magnetism and Magnetic Materials, 2002, 248(2): 241-247
    [96]Valizadeh S, George J.M, Leisner P, et al, Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes, Thin Solid Films 2002,402 (1-2): 262-271
    [97]Liu K,Nagodawithana K,Searson P.C,et al,Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires Phys. Rev.,B 1995 51:7381-7384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700