多孔阳极氧化铝的制备、表征及其在氧化锌纳米结构制备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔阳极氧化铝(PAA: Porous Anodic Alumina)膜具有六角有序的孔排列、耐腐蚀性、良好的透明性及机械性能,在纳米材料制备和光子器件方面具有广泛的应用前景。PAA膜的制备工艺十分简单而且价格低廉,并且通过控制阳极氧化条件,可以得到孔间距在几十到几百纳米范围内的有序PAA膜,因而深受人们的欢迎。本论文主要内容为高场阳极氧化制备PAA膜及其机理研究,以及基于PAA膜的ZnO纳米结构的制备、生长机理和性能研究。
     本文首先简单介绍了纳米技术的概念、发展历程和两种一般的实现方法。然后简单介绍了纳米材料的主要表征手段,如透射电子显微镜、扫描电子显微镜、扫描隧道显微镜、原子力显微镜和光致发光光谱仪等。接着详细介绍了多孔阳极氧化铝的研究进展,包括PAA膜的结构模型、形成机理、制备工艺和主要应用几个方面,力求对PAA膜有全面和精确的认识。
     接着,在对常规两步阳极氧化技术研究的基础上,我们首次实现了磷酸电解液中稳定的高场阳极氧化,高效地制备出高度有序的PAA膜。实现稳定高场阳极氧化的关键在于解决阳极氧化过程中的散热问题,防止PAA膜出现烧蚀现象。我们通过向磷酸电解液中添加适量的乙醇,使得电解液温度能降至-10℃而不结冰。我们发现,乙醇不仅起到了降低电解液凝固点的作用,还在阳极氧化过程中起到了制冷剂的作用。再借助强劲的低温恒温系统、高速的搅拌器和大容量的电解池,我们在磷酸-水-乙醇电解液体系中实现了195 V、1500-4000 A/m2的高场阳极氧化,制备出孔间距在320-380 nm、孔径为80-140 nm、有序区域高达4-6μm的高度有序PAA膜。在高场条件下,PAA膜的生长速率高达4-10μm/min,远远高于常规阳极氧化时PAA膜的生长速率(50-100 nm/min)。使用相同的方法,我们还分别实现了硫酸-水-乙醇和草酸-水-乙醇电解液中30-80 V、100-180 V的高场阳极氧化,制备出孔间距在70-450 nm内任意可控的高度有序PAA膜。利用高场阳极氧化制备的PAA膜,我们还制备出了氧化铝纳米线阵列、氧化铝纳米线金字塔结构和Y形分叉PAA膜。
     最后,使用具有不同表面形貌的PAA膜作为基底,采用简单的无催化热蒸发方法,我们还制备出了不同的ZnO纳米结构。利用化学刻蚀PAA膜得到的氧化铝纳米线金字塔结构作为热蒸发的基底,我们制备出了一种新颖的ZnO结构——类荷叶ZnO微纳结构。我们对其结构特征、生长机理进行了研究,并测试了这种结构的疏水性能。结果表明,这种结构不仅具有超疏水性,而且还对水滴有超强的粘附力。这种具有超强粘附力的超疏水表面在微流器件上有着重要的应用。使用高场阳极氧化制备的PAA膜具有针尖状结构的正面作为热蒸发的基底,我们还制备出了高密度的ZnO纳米棒网状结构。研究了ZnO纳米棒的生长机理和结构特征,并测试了其光致发光性能。通过对热蒸发初始阶段不同形貌的基底上ZnO形核情况的研究,我们发现PAA膜的形貌对形成不同的ZnO纳米结构起到了十分关键的诱导作用。
Porous anodic alumina (PAA) films have diverse applications in the fabrication of nanostructured materials and photonic devices due to their hexagonally ordered pore arrangement, anti-erosion, fine transparency and mechanical properties. The fabrication of PAA films is quite simple and of low cost, and ordered PAA films with inter-pore distances from tens to hundreds of nanometers can be obtained by controlling the anodizing conditions, which make them quite popular among scientific and business world. This dissertation focused on the fabrication and mechanism of highly ordered PAA films by high-field anodization, as well as the fabrication, growth mechanism, and properties of ZnO nanostructures based on PAA films.
     Firstly, we gave a brief introduction on the concept, history and two basic approaches of nanotechnology. The main apparatus used for characterizing nanostructured materials were also introduced, such as transmission electron microscope, scanning electron microscope, scanning tunneling microscope, atomic force microscope, and photoluminescence (PL) spectra. Then, the major research developments of PAA films were discussed in details to present a full and accurate knowledge about PAA, including the structure models, formation mechanisms, fabrication techniques, and main applications.
     Based on our knowledge learned from the normal two-step anodization, we firstly realized stable high-field anodization in phosphoric acid electrolyte, and highly ordered PAA films were achieved with high efficiency. The key factor to maintain stable electrolysis under high-filed conditions is to solve the serious heat dispersion problem in order to eliminate‘burning’of the PAA films. By adding adequate ethanol to the phosphoric acid electrolyte, the temperature of the electrolyte could be lowered to -10 oC without freezing. It was found that the ethanol not only lowered the freezing point of the electrolyte, but also served as coolant during anodization. By the aid of a powerful low-constant-temperature system, a vigorous stirrer, and a large electrolysis bath, stable high-field anodization (195 V, 1500-4000 A/m2) has been realized in H3PO4-H2O -C2H5OH electrolyte. Highly ordered PAA films with the inter-pore distances of 320-380 nm, pore sizes of 80-140 nm, and ordered regions of 4-6μm were obtained. The growth rates of the PAA films were as high as 4-10μm/min under high-field conditions, which were much higher than that of normal anodization (50-100 nm/min). Using the same strategy, we have realized high-field anodization in H2SO4-H2O-C2H5OH (30-80 V) and C2H2O4-H2O-C2H5OH (100-180 V) electrolytes, respectively. Highly ordered PAA films with arbitrary inter-pore distances in the range of 70-450 nm could be obtained by this simple method. Using PAA films formed by high-field anodization as starting materials, alumina nanowire arrays, alumina nanowire pyramids, and Y-branched PAA films were also achieved.
     Using PAA films with different surface configuration as substrates, different ZnO nanostructures were synthesized by non-catalytic thermal evaporation. Novel lotus-leaf-like ZnO micro-nanostructures were formed on the top of alumina nanowire pyramids by thermal evaporation. The structural characters and growth mechanism were studied, and the hydrophobicity of this surface was also measured. The results show that the surface not only is superhydrophobic, but also has ultra-strong adhesive force toward water droplets. This superhydrophobic surface with ultra-strong adhesive force may have applications in micro-fluidic devices. Using the top side of PAA films with tip-like structures as substrates, high-density ZnO nanorod networks were synthesized by the same thermal evaporation process. The structural characters and growth mechanism were studied, and the PL spectrum of the ZnO nanorod networks was also measured. By studying the ZnO nuclei on the PAA films with different surface morphology during the initial stage of the thermal evaporation, we found that the morphology of PAA films had an inducing effect on the formation of different ZnO nanostructures.
引文
1. Nanotechnology Definition: http://www.nano.gov/html/facts/whatIsNano.html
    2 . Encyclop?dia Britannica, "nanotechnology", Encyclop?dia Britannica 2007 Ultimate Reference Suite, Chicago, 2007.
    3. R. Rossetti, S. Nakahara, and L. E. Brus, J. Chem. Phys. 79, 1086 (1983).
    4. W. P. Halperin, Rev. Modern Phys. 58, 532 (1986).
    5. P. Ball and L. Garwin, Nature 355, 761 (1992).
    6. 张立德,牟季美,物理,27 (3),137 (1992).
    7. 岳兰平,何怡贞,光学学报,17 (12),1693 (1997).
    8. R. Feynman, Engineering & Science (Caltech) 23(5), 22 (1960).
    9. N. Taniguchi, “On the basic concept of nanotechnology”, Proc. ICPE, Tokyo, 1974.
    10.K. E. Drexler, Engine of Creation: http://www.e-drexler.com/d/06/00/EOC/ EOC_Cover.html
    11.Lux Research Inc., "Profiting from International Nanotechnology", New York, 2007.
    12.难波进、石原直、青柳克信等,纳米技术手册,科学出版社 (2005).
    13.P. D. Yang, Luzzi, and E. David "Nanotechnology" Microsoft? Student 2006 [DVD]. Redmond, WA: Microsoft Corporation, 2005.
    14.J. R. Arthur and J. J. Lepore, J. Vac. Sci. & Technol. 6, 945 (1969).
    15.M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    16.D. B. Williams and B. C. Carter, Transmission Electron Microscopy: A Textbook for Materials Science. New York: Plenum Press, 1996.
    17.R. Kaneko, S. Oguchi, S. Hara, R. Matsuda, T. Okada, H. Ogawa, and Y. Nakamura, Ultramicroscopy 42, 1542 (1992).
    18.G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1982).
    19.Scanning Probe Microscopy:http://www.physics.rutgers.edu/~bart/grouphome/ STM_RAB.htm
    20.G. Binning, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    21.沈学础,半导体光谱和光学性质,第二版,北京,科学出版社 (2002).
    1. J. D. Edwards and F. Keller, Trans. Electrochem. Soc. 79, 135 (1941).
    2.. J. D. Edwards and F. Keller, Trans. Am. Inst. Mining Met. Eng. 156, 288 (1944).
    3. G Hass, J. Opt. Soc. Am. 39, 532, (1949).
    4. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100, 411 (1953).
    5. J. F. Murphy and C. E. Michelson, Proceedings of the Conference on Anodizing Aluminium, Nottingham, England, 83 (1961).
    6. J. P. O'Sullivan and G. C. Wood, Proc. R. Soc. A 317, 511 (1970).
    7. G E. Thompson, R. C. Furneaux, J. S. Goode, and G C. Wood, Trans. Inst. Met. Finish. 56, 159(1978).
    8. K. Wada and T. Shimohira, J. Mater. Sci. 21, 3810 (1986).
    9. Y. Xu, G E. Thompson, and G C. Wood, Trans. Inst .Met. Finish. 63, 98 (1985).
    10. O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett. 72, 1173 (1998).
    11. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, Nano Lett. 2, 677 (2002).
    12. G K. Singh, A. A. Golovin, and I. S. Aranson, Phys. Rev. B 73, 205422 (2006).
    13. R. C. Furneaux, W. R, Rigby, and A. P. Davidson, Nature 337, 147 (1989).
    14. H. Masuda and K. Fukuda, Science 268, 1466 (1995).
    15. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, Appl. Phys. Lett. 71,2270 (1997).
    16. J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gosele, J. Appl. Phys. 94 4757 (2003).
    17. I. Mirkulskas, S. Juodkazis, R. Tomasiunas, and J. G Dumas, Adv. Mater. 13, 1574(2001).
    18. S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, and G A. Ozin, Adv. Mater. 16, 2193 (2004).
    19. Z. J. Sun and H. K. Kim, Appl. Phys. Lett. 81, 3458 (2002).
    20. C. Y. Liu, A. Datta, and Y. L. Wang, Appl. Phys. Lett. 78, 120 (2001).
    21. S. Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, Adv. Mater. 17, 2115(2006).
    22. Y. B. Li, M. J. Zheng, L. Ma, and W. Z. Shen, Nanotechnology 17, 5101 (2006).
    23. J. Siejka and C. Ortega, J. Electrochem. Soc. 124, 883 (1977).
    24. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D: Appl. Phys. 25, 1258 (1992).
    25.H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc. 144, L127 (1997).
    26. A. P. Li, F. MUller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys. 84, 6023 (1998).
    27. H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys. 37, L1340 (1998).
    28. J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gosele, J. Vac. Sci. Technol. B 21, 1071 (2003).
    29. Y. Matsui, K. Nishio, and H. Masuda, Small 2, 522 (2006).
    30. N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, Appl. Phys. Lett. 82, 1281 (2003).
    31.H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, Adv. Mater. 13,189(2001).
    32.S. Ono, M. Saito, and H. Asoh, Electrochem. Solid-State Lett. 7, B21 (2004).
    33. W. Lee, R. Ji, U. Gosele, and K. Nielsch, Nat. Mater. 5, 741 (2006).
    34.T. Yanagishita, K. Nishio, and H. Masuda, Adv. Mater. 17, 2241 (2005).
    35. H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, and A. Fujishima, Adv. Mater. 12, 444 (2000).
    36.D. Almawlawi, K. A. Bosnick, A. Osika, and M. Moskovits, Adv. Mater. 12, 1252 (2000).
    37.J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gosele, J. Appl. Phys. 94, 4757 (2003).
    38. G Q. Ding, W. Z. Shen, M. J. Zheng, and D. H. Fan, Appl. Phys. Lett. 88, 103106(2006).
    39. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, J. Appl. Phys. 91, 3243 (2002).
    40.S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, and Y. Du, J. Magnestism MagneticMater. 222, 97 (2000).
    41.D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J. M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996).
    42.M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R.D. Kirby, and D. J. Sellmyer, Phys. Rev. B 62, 12283 (2000).
    43. K. Nielsch, F. Miiller, A. P. Li, and U. Gosele, Adv. Mater. 12, 582 (2000).
    44. X. F. Wang, J. Zhang, H. Z. Shi, Y. W. Wang, G. W. Meng, X. S. Peng, L. D. Zhang, and J. Fang, J. Appl. Phys. 89, 3847 (2001).
    45. M. S. Sander, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, Adv. Mater. 14, 665 (2002).
    46. G Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature 393, 346 (1998).
    47. J. Li, C. Papadopoulos, J. M. Xu, and M. Moskovits, Appl. Phys. Lett. 75, 367 (1999).
    48. J. Li, C. Papadopoulos, and J. M. Xu, Nature 402, 253 (1999).
    49. C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, Phys. Rev. Lett. 85, 3476 (2000).
    50. J. S. Suh and J. S. Lee, Appl. Phys. Lett. 75,2047 (1999).
    51. M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, and C. P. Tripp, Adv. Mater.
    16, 2052 (2004).
    52. H. Masuda, K. Yasui, and K. Nishio, Adv. Mater. 12, 1031 (2000).
    53. T. Gao, J. C. Fan, G W. Meng, Z. Q. Chu, and L. D. Zhang, Thin Solid Films, 401, 102(2001).
    54. K. Liu, J. Nogues, C. Leighton, H. Masuda, K. Nishio, I. V. Roshchin, and I. K. Schuller,Appl. Phys. Lett. 81, 4434 (2002).
    55. X. Mei, D. Kim, H. E. Ruda, and Q. X. Guo, Appl. Phys. Lett. 81, 361 (2002).
    56. J. Liang, H. Chik, and A. Yin, J. Xu, J. Appl. Phys. 91, 2544 (2002).
    57. Y. Lei and W. K. Chim, Chem. Mater. 17, 580 (2005).
    58. N. V. Gaponenko, J. A. Davidson, B. Hamilton, P. Skeldon, G. E. Thompson, X. Zhou, and J. C. Pivin, Appl. Phys. Lett. 76, 1006 (2000).
    59.G. Shi, C. M. Mo, W. L. Cai, and L. D. Zhang, Solid State Comm. 115, 253(2000).
    60. Y. H. Wang, Y. Q. Xu, W. L. Cai, and J. M. Mo, Acta Physico-Chim. Sinica 18, 943 (2002).
    61. G. S. Cheng, L. D. Zhang, X. G. Zhu, S. H. Chen, Y. Li, Y. Zhu, and G. T. Fei, Nanostruct. Mater. 11, 421 (1999).
    62.Y. Du, W. L. Cai, C. M. Mo, J. Chen, L. D. Zhang, and X. G. Zhu, Appl. Phys. Lett. 74,2951 (1999).
    63. Y. Yamamoto, N. Baba, and S. Tajima, Nature 289, 572 (1981).
    64. T. Gao, G W. Meng, and L. D. Zhang, J. Phys.: Condens. Matter 15, 2071 (2003).
    65. W. L. Xu, M. J. Zheng, S. Wu, and W. Z. Shen, Appl. Phys. Lett. 85, 4364 (2004).
    66. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    67. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    68. H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, and K. Nishio, Adv. Mater. 18,213 (2006).
    69. H. Masuda, M. Ohya, H. Asoh, and K. Nishio, Jpn. J. Appl. Phys. Part 2 40, L1217(2001).
    70. H. Masuda, M. Ohya, K. Nishio, H. Asoh, M. Nakao, M. Nohtomi, A. Yokoo, and T. Tamamura, Jpn. J. Appl. Phys. Part 2 39, L1039 (2000).
    71. J. S. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gosele, J. Appl. Phys. 94, 4757 (2003).
    72. A. A. Lutich, M. B. Danailov, S. Volchek, V. A. Yakovtseva, V. A. Sokol, and S. V. Gaponenko, Appl. Phys. B-Lasers and Optics 84, 327 (2006).
    73. N. V. Gaponenko, Synthetic Metals 124,125 (2001).
    74. Q. X. Guo, T. Tanaka, M. Nishio, H. Ogawa, X. Y. Mei, and H. Ruda, Jpn. J. Appl. Phys. Part 2 41, L118 (2002).
    75. S. Yokoyama, T. Nakahama, S. Mashiko, M. Nakao, M. Yamada, K. Nishio, and H. Masuda, Appl. Phys. Lett. 87, 191101 (2005).
    1. H. Masuda and M. Satoh, Jpn. J. Appl. Phys. 35, L126 (1996).
    2. S. Ono, M. Saito, and H. Asoh, Electrochem. Solid-State Lett. 7, B21 (2004).
    3. S. Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, Adv. Mater. 17, 2115 (2006).
    4. H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys. Part 2 37, L1340 (1998).
    5. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100, 411 . (1953).
    6. G E. Thompson, Thin Solid Films 297, 192 (1997).
    7. O. Jessensky, F. Muller, and U. Gosele, Appl. Phys. Lett. 72, 1173 (1998).
    8. W. L. Xu, M. J. Zheng, S. Wu, and W. Z. Shen, Appl. Phys. Lett. 85, 4364 (2004).
    9. Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, W. K. Kwok, G. A. Willing, J. M. Hiller, R. E. Cook, D. J. Miller, and G. W. Crabtree, Nano Lett. 2, 1293 (2002).
    10. J. Kim, Y. C. Choi, K.-S. Chang, and S. D. Bu, Nanotechnology 17, 355 (2006).
    11. J. Li, C. Papadopoulos, and J. M. Xu, Nature 402, 253 (1999).
    12. C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, Phys. Rev. Lett. 85,3476(2000).
    1. C. W. Bunn, Proc. Phys. Soc. London 47, 835 (1935).
    2.' E. Mollwo, Z Angew. Phys. 6,257 (1954).
    3. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142,570 (1966).
    4. G. Galli and J. E. Coker, Appl. Phys. Lett. 16,439 (1970).
    5. M. Shiloh and J. Gutman, J. Cryst. Growth 11,105 (1971).
    6. D. F. Croxall, R. C. C. Ward, C. A. Wallace, and R. C. Kell, J. Cryst. Growth 22, 117(1974).
    7. C. A. Mead, Phys. Lett. 18, 218 (1965).
    8. I. T. Drapak, Semiconductors 2, 624 (1968).
    9. T. Minami, M. Tanigava, M. Yamanishi, and T. Kawamura, Jpn. J. Appl. Phys. 13,1475(1974).
    10. A. E. Tsurkan, N. D. Fedotova, L. V. Kicherman, and P. G. Pas'ko, Semicond. Semimetals 6, 1183(1975).
    11. L. J. Brillson, J. Vac. Sci. Technol. 15,1378 (1978).
    12. Z. L. Wang, Mater. Today 7,26 (2004).
    13. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
    14. Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
    15. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, Mater. Sci. Eng, R. 47, 1 (2004).
    16. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409,66 (2001).
    17. M. H. Huang et al, Science 292,1897 (2001).
    18. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science 303,1348 (2004).
    19. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003).
    20. V. A. L. Roy, A. B. Djurisic, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, Appl. Phys. Lett. 83,141 (2003).
    21. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, Appl. Phys. Lett. 84, 3241(2004).
    22. T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoto, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 81, 3651 (2001).
    23. X. J. Feng and L. Jiang, Adv. Mater. 18, 3063 (2006).
    24. A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G Yamauchi, and A. Fujishima, Langmuir 16, 7044 (2000).
    25. C. M. Henry, Chem. Eng. News 79, 35 (2001).
    26. H. Gau, S. Herminghaus, P. Lenz, and R. Lipowsky, Science 283, 46 (1999).
    27. M. H. Jin, X. J. Feng, L. Feng, T. L. Sun, J. Zhai, T. J. Li, and L. Jiang, Adv. Mater. 17, 1977(2005).
    28. X. Hong, X. F. Gao, and L. Jiang, J. Am. Chem. Soc. 129, 1478 (2007).
    29. X. Y. Song, J. Zhai, Y. L. Wang, and L. Jiang, J. Phys. Chem. B 109, 4048 (2005).
    30. X. J. Feng, L. Feng, M. H. Jin, J. Zhai, L. Jiang, and D. B. Zhu, J. Am. Chem. Soc. 126,62(2004).
    31. R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B105,1984(2001).
    32. X. Zhang, O. Sato, and A. Fujishima, Langmuir 20, 6065 (2004).
    33. J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gosele, J. Appl Phys. 94, 4757 (2003).
    34. G. Q. Ding, W. Z. Shen, M. J. Zheng, and D. H. Fan, Appl. Phys. Lett. 88, 103106(2006).
    35. Y. B. Li, M. J. Zheng, L. Ma, and W. Z. Shen, Nanotechnology, 17, 5101 (2006).
    36. M. Li, J. Zhai, H. Liu, Y. L. Song, L. Jiang, and D. B. Zhu, J. Phys. Chem. B 107, 9954 (2003).
    37. K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, Nature 405, 681 (2000).
    38. A. K. Geim, S. V. Dubonos, I. V. Grigorieva, K. S. Novoselov, A. A. Zhukov, and S. Y. Shapoval, Nat. Mater. 2, 461 (2003).
    39. J. S. Jie, G. Z. Wang, Q. T. Wang, Y. M. Chen, X. H. Han, X. P. Wang, and J. G.Hou, J. Phys. Chem. B 108, 11976 (2004).
    40. S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and J. Lee, Chem. Mater. 15, 3294 (2003).
    41. Y. B. Li, Y. Bando, T. Sato, and K. Kurashima, Appl. Phys. Lett. 81, 144 (2002).
    42. A. Umar, B. Karunagaran, E.-K. Suh, and Y. B. Hahn, Nanotechnology, 17, 4072 (2006).
    43. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, and T. Yao, J. Cryst. Growth 185, 605(1998).
    44. K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade,./. Appl. Phys. 19, 7983 (1996).
    45. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).
    46. S. A. Studenikin and M.Cocivera, J. Appl. Phys. 91, 5060 (2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700