以铝为支撑体的新型阳极氧化铝膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔阳极氧化铝膜具有孔密度高、孔径分布均匀、孔与孔间相互平行等特点,可制成新型的超精密分离膜,在分离领域有较大的应用潜力。但由于氧化铝膜较脆,缺少支撑体,在去除铝基体及分离的过程中极易破裂,所以很难大面积生产,只有在实验室有部分应用。
     本文采用正交实验方案,用一次阳极氧化法制得阳极氧化铝膜,研究了阳极氧化时温度、时间、电压对氧化铝膜厚度、孔径和孔有序度的影响。实验结果表明,氧化时间对膜厚影响最大,其次是温度和电压,而对膜孔径和有序度的影响主次因素依次为电压、温度和时间;正交实验获得的最佳工艺条件为氧化温度13℃、氧化时间2h、氧化电压130V;用数学方法定量的分析了氧化工艺对孔有序度的影响。
     本文在一次阳极氧化铝膜的基础上以电化学的方法制得了两面贯通以大孔铝为支撑体的多孔阳极氧化铝膜,研究了多种影响因素对膜结构的作用。结果表明,该膜具有较好的机械强度和韧性,可弯曲180°、在0.3MPa下不破裂,从而使膜的脆性问题在一定程度上得以改善。膜平均孔径和纯水通量随浸蚀时间的增加而增大,而PEG20000的截留率随之减小,浸蚀时间对膜的孔隙率影响不大。随着氧化时间的增加,膜的纯水通量降低而膜的截留率升高,膜的纯水通量和PEG20000的通量随着过滤时间的增加而减少。相比磷酸膜,草酸膜具有更小的孔径和更大的厚度,在同样压力下,草酸膜的稳定纯水通量小于磷酸膜,但截留率却大于磷酸膜。随着阳极反应时间的增加,膜的稳定纯水通量增大,但膜的截留率变化不大。随着操作压力的增加,膜的纯水通量和PEG20000通量都变大。
     本文通过膜的耐蚀性实验,用扫描电镜、X射线衍射仪进行了膜的表面形貌及成分分析,研究了膜在退火前后的耐蚀性。结果表明,未经高温下退火的膜在中性环境中是完全耐蚀的,相比碱性溶液,膜在酸性溶液中耐蚀性较好,而在pH值大于12时膜不耐蚀。膜在800℃及910℃下退火5h后,由非晶态的氧化铝转变成为晶态的α-Al_2O_3,但同时也有铝单质和无定形结构的氧化铝存在,膜在800℃下退火5h后的正面没有太大变化,背面由无规则的分布变为簇状分布。经高温下退火的膜在中性和强酸性溶液中完全耐蚀,在强碱性溶液中膜的耐蚀性也有较大提高。
Porous anodic alumina membrane enjoys a number of advantages such as uniform diameter, higher pore density, parallel aperture, so it can be made of new type of ultra-precision membrane, and it has great potential applied value in separation filed. But the anodic alumina membrane is easily broken in the process of removing back aluminum and separation for its brittleness and lack of support. So it is very difficult to produce with large area, and it has only been used in laboratory.
     In this paper, we chose orthogonal experiment, and anodic alumina membranes were fabricated by one-step anodizing process. The effects of oxidation temperature, time and voltage on membrane thickness, pore diameter and orderly degree were investigated. Experimental result showed that the maximum influencing factor on membrane thickness was oxidation time, followed by temperature and voltage, and the maximum influencing factor on pore diameter and orderly degree was voltage, followed by temperature and time. The best parameters of the techniques were obtained as follows: 13℃, 2 hours , 130V. The effect of oxidation processes on orderly degree was analyzed quantitatively by mathematical method.
     In this paper, we fabricated through-hole porous anodic alumina membranes supported by macropore aluminum by electrochemical method, which based on one-step anodic alumina membranes. We studied the effects of several influencing factors on membrane. The results showed that the membrane had better mechanical intensity and tenacity, which could be curved to 180 degree and was not broken under 0.3MPa and brittleness of membrane was improved in a certain extent. Mean pore diameter of membrane and pure water flux increased with the increase of etching time, while rejection of membrane for PEG 20000 decreased, which had little effect on porosity. Pure water flux of membrane decreased with the increase of oxidation time, while rejection of membrane increased; Pure water flux and PEG flux of membrane decreased with the increase of filter time. Compared with phosphoric acid membrane, the pore diameter of oxalic acid membrane was smaller, and the thickness of oxalic acid membrane was thicker; Under the same pressure, the stable pure water flux of oxalic acid membrane was smaller than phosphoric acid membrane, while the rejection of oxalic acid membrane was higher than the latter. The stable pure water flux of membrane increased with the increase of anodic reaction time, while it had little effect on the rejection of membrane. The pure water flux and PEG 20000 flux increased with the increase of operation pressure.
     In this paper, we studied the anticorrosion property of membranes with and without annealing by anticorrosion experiment, and investigated the surface morphology and composition of membranes by using SEM and XRD. The results showed that the membranes were completely anticorrosion in neutral environment without annealing, and they had better anticorrosion property in acid environment than alkaline environment. When pH was above 12, the membranes could be corrupted. The membranes were transformed from amorphous phase toα-Al_2O_3 crystalline phase by 5 hours annealing at 800℃and 910℃. At the same time, aluminum and amorphous alumina were found by XRD patterns. The membrane had little change in front side after 5 hours annealing at 800℃, while the back side was transformed from ruleless distributing to cluster distributing. The membranes were completely anticorrosion in neutral and violent acid environment with annealing at 800℃, and the anticorrosion property of membranes had greater improved in violent alkaline solution.
引文
[1] 王学松.现代膜技术及其应用指南.北京:化学工业出版社,2005.
    [2] 郑领英,袁权.展望21世纪的膜分离技术.水处理技术,1995,21(3):125-131.
    [3] 刘茉娥.膜分离技术.北京:化学工业出版社,1998.
    [4] 黄仲涛,曾昭槐.无机膜技术及其应用.北京:中国石化出版社,1999.
    [5] 李发永,李阳初,孔瑛等.无机膜及无机膜反应器研究进展.膜科学与技术,2002,22(6):48-53.
    [6] Huck W T S, Stroock A D, Whitesides G M. Synthesis of Geometrically Well-Defined, Molecularly Thin Polymer-Films. Angewandte Chemie International Edition, 2000, 39(6): 1058-1064.
    [7] Louis C, Andre A, Jwan D, et al. Inorganic membranes and solid state sciences, 2000, (2): 313-334.
    [8] McCooh B, Xomeritakis G, Lin Y S. Composition control and permeation properties of sputter deposited palladium silver membranes. Journal of Membrane Science, 1999, 161:67-76.
    [9] Vos R M de, Maier W F, Verweij H. Hydrophobic silica membranes for gas separation. Journal of Membrane Science, 1999, 158:277-288.
    [10] Michaela K. Synthesis and characterization of silica membranes exhibiting an ordered mesoporosity Control of the porous texture and effect on the membrane permeability Separation and Purification Technology, 2001, 25: 71-78.
    [11] Mendez J, Golnez J, Gavino R. Spectroscopic study of SiO_2-TiO_2 Sols prepared using stabiling agenes. Sol-Gel Scitechnol, 1997, 8:235-241.
    [12] Xu O, Anderson M A. Sol-gel route to synthesis of microporous ceramic membranes:Thermal stability of TiO_2-ZrO_2 mixed oxides. American Ceramic Society bulletin, 1993, 76:2093-2097.
    [13] Zeng Z, Xiao X, Gui Z, Liafm L. Study on surface morphology of Al_2O_3-SiO_2-TiO_2 compoite ceramic membranes. Membrane Science, 1997, 136:153-159.
    [14] 苏毅,胡亮,刘谋盛.无机膜的特性、制造及应用.化学世界,2001,43(11):604-607.
    [15] 徐卫军.Al_2O_3及其复合膜的制备与改性研究:(硕士学位论文).福州:福州大学,2004.
    [16] Keller F, Hunter M S, Robinson D L. Structural features of oxide coating on aluminum. Journal of Electrochemistry Society, 1953, 100:411-419.
    [17] 王华.阳极氧化铝膜的制备与性能测试:(硕士学位论文).大连:大连理工大学,2000.
    [18] 赫荣晖.阳极氧化铝膜的制备及影响因素研究:(硕士学位论文).大连:大连理工大学,2001.
    [19] 叶凌碧,刘大真.孔径为2μm以下的微孔测定方法.膜分离科学与技术,1983,3(11):55-59.
    [20] 张华民,王志群.无机分离膜的现状与发展前景Ⅱ.无机材料学报,1993,8(2):139-145.
    [21] 王祝堂。铝材及表面处理手册。南京:江苏科学技术出版社,1992.
    [22] 王爱华,管获华,周维亚等.多孔氧化铝有序膜的制备研究.无机化学学报,2002,18 (5):447-450.
    [23] 江小雪.多孔氧化铝膜的制备与形成机理的研究概况.功能材料,2005,4:487-489.
    [24] Xu Y, Thompson G E, Wood G C. Mechanism of anodic film formation on aluminium. Transactions of the Institute of Metal Finishing, 1985, 63:98-103.
    [25] Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters. 1998. 72(10):1173-1175.
    [26] 李勇鹏,袁贵喜.阳极氧化膜形成机理探讨.轻金属.1997,(2):48-51.
    [27] 巩运兰,王为,王惠等.铝阳极氧化膜纳米孔阵列结构的自组织过程分析.物理化学学报.2004.20(2):199-201.
    [28] 郭鹤桐,王为.铝阳极氧化的回顾与展望.材料保护,2000,33(1):73-75.
    [29] Xia Y N, John A R, Kateri E et al. Unconventional methods for fabricating and patterning nanostructures. Chemical Reviews, 1999, 99(7): 1823-1848.
    [30] Pang Y T, Meng G W, Zhang Y et al. Copper nanowire arrays for infrared polarizer. Applied Physics A, 2003, 76: 533-536.
    [31] Xing Y J, Yu D P, Xi Z H et al. Silicon nanowire grown from Au-coated Si substrate. Applied Physics A, 2003, 76: 551-553.
    [32] Tseng Y K, Lin I N, Liu K S et al. Low-temperature growth of ZnO nanowires. Journal of Biomedical Materials Research, 2003, 18: 714-718.
    [33] Yu B Z, Li M K, Lu Met al. Mophologies and optical properties of poly (2,5-diethoxyphenylene) nanofibril arrys. Applied Physics A, 2003, 76: 593-598.
    [34] Pang Y T, Meng G W, Shah W J et al. Array of ordered Ag nanowires with different diameters in different areas embedded in one piece of anodic alumina membrane. Applied Physics A, 2003, 77: 717-720.
    [35] Forrer P, Schlottigf, Siegenthaler H et al. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. Journal of Applied Electrochemistry, 2000, 30: 533-541.
    [36] Xiao Z L, Man C Y, Wel P U et al. Nickey antidote array on anodic alumina substrates. Applied Physics Letters, 2002, 81: 2869-2871.
    [37] Zhou Y K, Li H L. Synthesis of high-order LiNi_(0.5)Co_(0.5)O_2nanowire arrays by AAO template and its structural properties. Journal of Materials Science, 2002, 37: 5261-5266.
    [38] Im W S, Cho Y S, Choi G S et al. Stepped carbon nanotubes synthesized in anodic aluminum oxide template. Diamond and Related Material, 2004, 13:1214-1217.
    [39] Preston C K, optical characterization of anodic oxide films containing electrochemically deposited metal particalso Journal of Physics and CHEMistry of Solids, 1993, 97: 84-95.
    [40] 王为,郭鹤桐.铝阳极氧化多孔膜功能化应用的新趋向.化工进展,1997,(4):43-48.
    [41] Patermarakis G, Mousssoutzanis K. Electrochemical kinetic study on the growth of porous anodic oxide films on aluminium. Electrochimica Acta, 1995, 40(6): 699-705.
    [42] One S, Masuko N. The duplex structure of cell walls of porous anodic films formed on aluminium. Corrosion Science, 1992, 33: 503-508.
    [43] Rigby W R, Cowieson D R, Davies N C et al. An anodizing process for the production of inorganic microfiltration membranes. Transactions of the Institute of Metal Finishing, 1990, 68(3): 95-99.
    [44] 徐金霞,黄新民,钱利华.二次阳极氧化法制备有序多孔氧化铝膜.化学物理学报,2003,16(3):223-226.
    [45] Thompson G E, Wood G C, Porous anodic film formation on aluminium. Nature, 1981, 290: 230-235.
    [46] Kyotani T. Chemical modification of carbon-coated anodic alumina films and their application to membrane filter. Journal of Membrane Science, 2002, 196: 231-239.
    [47] 张伟明,黄忠平,余建平等.血透氧化铝透析膜的生成及膜的特性实验研究.生物医学工程杂志,2005,22(5):1007-1010.
    [48] Itaya K, Sugawara S, Arai K et al. Properties of porous anodic aluminium oxide films as membranes. Journal of Chemical Engineering of Japan, 1984, 17(5): 514-520.
    [49] Itoh N, Kato K, Tsuji T et al. Preparation of a tubular anodic aluminum oxide membrane. Journal of Membrane Science, 1996, 117: 189-192.
    [50] Itoh N, Tomura N, Tsuji T et al. Strengthened porous alumina membrane tube prepared by means of internal anodic oxidation. Microporous Mesoporous Materials, 1998, 20: 333-337.
    [51] 旷亚非.铝阳极氧化多孔膜层的界面电性能研究.电化学,1998,4(2):168-170.
    [52] Burgosn, Paulism, Montesm. Preparation of Al_2O_3/Al monoliths by anodization of aluminum as structured catalytic supports. Journal of Materials Chemistry, 2003, 13: 1458-1467.
    [53] Vrublersky Ⅰ, Parkouna Ⅴ, Schreckenbach J. Analysis of porous oxide film growth on aluminum in phosphoric acid using re-anodizing technique. Applied Surface Science, 2005, 242(3-4): 333-338.
    [54] Bocchetta P, Sunseri C, Masi R et al. Influence of initial treatments of aluminum on the morphological features of electrochemically formed alumina membranes. Materials Science and Engineering, 2003, C23: 1021-1026.
    [55] 张允诚,胡如难,向荣.电镀手册.北京:中国国防工业出版社,1986.
    [56] 滕素珍.数理统计.大连:大连理工大学出版社,2002.
    [57] 朱祖芳.铝合金阳极氧化与表面处理技术.北京:化学工业出版社,2004.
    [58] O' Sullivan J P, Wood. G C. The morphology and mechanism of formation of porous anodic films on aluminum. Pro R Soc London, 1970, A(317): 511-518.
    [59] Jessensky O, Muller F, Gosele U. Self-organized formation of heragonal pore arrays in anodic alumina. Applied Physics Letters, 1998, 72(10): 1173-1175.
    [60] Thompson G E, Funeaux R C, Wood G C. Electron microscopy of ion beam thinned porous anodic films formed on aluminum. Corrosion Science, 1978, 18: 481-498.
    [61] 吴玉程,马杰,解挺等.氧化铝纳米有序阵列模板的制备工艺及应用.中国有色金属学报,2005,15,(5):680-687.
    [62] 徐金霞,黄新民.制备工艺对氧化铝阵列模板的影响.材料保护,2001,34(12):28-29
    [63] Masuda H, Yamada H, Satoh Met al. Highly Ordered Nannochannel-Array Architecture in Anodic Aluminum. Applied Physics Letters, 1997, 71(19): 2770-2775
    [64] 时钧,袁权,高从增.膜技术手册.北京:化学工业出版社,2001
    [65] 王国庆.杂萘联苯型聚芳醚腈酮及其磺化改性超滤膜研制:(博士学位论文)。大连:大连理工大学,2005
    [66] 李洪伟.超微孔 Al_2O_3膜的制备与性能研究:(硕士学位论文).北京:北京化工大学,2000.
    [67] 张璐,姚素薇,张卫国等.氧化铝纳米线的制备及形成机理.物理化学学报,2005,21(11):1254-1258.
    [68] 魏剑,李克智,李贺军等.多孔阳极氧化铝薄膜的制备.材料工程,2005,5:56-59.
    [69] 童金忠.强化陶瓷膜微滤过程的研究:(硕士学位论文).南京:南京化工大学,1999.
    [70] 邢卫红,范益群,徐南平.无机陶瓷膜应用过程研究的进展.膜科学与技术,2003,23(4):86-91.
    [71] 王为,巩运兰,王惠等.氧化铝薄膜纳米孔的孔径对电解电压的依赖性.天津大学学报,2005,38(3):229-232.
    [72] 徐南平,邢卫红,赵宜江.无机膜分离技术与应用.北京:化学工业出版社,2003.
    [73] 魏营,梁恒国,李齐全,无机膜液相分离技术及其应用.西南给排水,2006,28(2):26-29.
    [74] Yang S G, Li T, Huang L Set al. Stability of anodic aluminum oxide membranes with nanopores. Physics Letters A, 2003, 318: 440-444.
    [75] Xiao Z L, Han C Y, Welp U et al. Fabrication of Alumina Nanotubes and Nanowires by Etching Porous Alumina Membranes. Nano Letters, 2002, 11(2): 1293-1297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700