功能化金刚石薄膜制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石薄膜材料具有极高的稳定性、极高的硬度、较宽的禁带宽度、传播声波速度快、负电子亲和势、以及化学惰性等性质,使得金刚石薄膜材料在场发射、微电子器件、电化学、生物医用器件、表声波器件以及微机电一体化等方面有广泛的应用前景。作为新型碳素电极材料,高掺杂硼复合多晶金刚石薄膜具有许多目前使用的电极材料所不可比拟的优异特性,如宽电化学势窗,低背景电流,极好的电化学稳定性,表面不易被污染以及良好的生物兼容性。本文在金刚石薄膜可控制备、电化学性质、表面功能化修饰钯纳米粒子和氧化锌纳米棒等方面开展了如下工作:
     1通过控制反应室中的生长压力,得到不同粒径大小的金刚石薄膜。金刚石晶粒大小随生长压力减小而减小,当压力为725 Pa时,可以得到粒径约为20-30 nm的金刚石薄膜。相对于掺硼微米金刚石薄膜电极而言,掺硼纳米金刚石薄膜电极表现出更优越的电化学性质。
     2制得的掺硼纳米和微米金刚石薄膜电极,不需要进行任何修饰,在碱性条件下有干扰物质如抗坏血酸和尿酸存在时可对葡萄糖进行选择性检测。同时具有很高的灵敏度、较宽的线性范围、很好的稳定性和重复性。
     3结合光刻技术通过化学镀方法,在金刚石薄膜表面实现了铜、镍和金微图形化。得到的金属镀层非常均匀、致密,且与基体结合力强,同时不会对金刚石薄膜表面造成任何破坏。此外,该方法操作简单、不需要昂贵的仪器设备。
     4通过化学镀方法在巯基功能化的金刚石薄膜表面得到了一层银纳米叶薄膜,银纳米叶薄膜厚度随着沉积时间增加而增加。与此同时调查了银纳米叶薄膜拉曼性质,结果表明得到的银纳米叶薄膜相对于通过银镜反应和自组装得到的银膜具有更强的拉曼增强性质。
     5采用沉淀法在掺硼纳米金刚石薄膜电极表面修饰一层氧化锌纳米棒束,并通过氧化锌与低等电点蛋白质酪氨酸酶之间的静电作用力,把酶固定到电极表面,构建了酪氨酸酶传感器。利用该传感器检测了对甲基苯酚,得到了较好的实验结果。
     6通过种子诱导法在纳米金刚石表面得到氧化锌纳米棒阵列,然后通过共缩聚方法使氧化锌纳米棒表面生物功能化,再把探针DNA固定到功能化氧化锌纳米棒表面,制成DNA荧光传感器。该传感器具有较好的荧光增强效果以及稳定性。
Owing to its chemical stability, high heat conductivity, negative or slight electron affinity, high phase velocity and excellent biocompatibility, diamond film, especially nanocrystalline diamond film, has recently come to be seen as the promising material for the high-efficiency electron emitters used in flat panel displays, conventional electronics applications, high frequency surface acoustic wave (SAW) devices, biomedical devices, microelectromechanical systems (MEMS) and so on. Furthermore, boron-doped diamond (BDD) thin-film electrodes have been regarded as attractive new electrode materials because of their properties including: 1) low and stable voltammetric background current, 2) wide working potential window in aqueous electrolyte solutions, 3) extreme electrochemical stability and high resistance to deactivation by fouling, 4) excellent biocompatibility, so the BDD electrodes are widely used for a variety of electrochemical and biological sensing applications. We have done the following research work based on the functional diamond films.
     1 Different size grain of diamond films are prepared by controlling the pressure of reaction chamber using hot filament chemical vapor deposition (HFCVD) method. The grain size decreases with decreasing the pressure of reaction chamber and boron-doped nanocrystalline diamond films are obtained at 725 Pa. Furthermore, the electrochemical behaviours of as-prepared electrodes are investigated, and the results show that boron-doped nanocrystalline diamond film electrodes exhibit excellenter electrochemical properites than those of boron-doped microcrystalline diamond film electrodes.
     2 It is find that glucose can be directly oxidized and selectively detected in the presence of ascorbic acid (AA) and uric acid (UA) on the as-prepared BDD electrode surfaces, and the nonenzymatic glucose sensor based on as-prepared BDD electrode shows high sensitivity, good reproducibility and stability.
     3 The compact and favorable copper, nickel and gold micropatterns are successfully fabricated on as-grown and amino-modification diamond substrates by electroless deposition in combination with lithography. The adhesion interaction between metal films and diamond substrates are so great that the metal films are not obviously changed after sonication for 15 min. In contrast to other methods, the proposed method is facile and need not the expensive apparatus.
     4 An approach for simultaneously synthesizing and immobilizing silver nanoleaves (SNLs) onγ-mercaptopropyltrimethyoxysilane (MPTS)-modified diamond thin film surface has been developed. The thickness of SNL layer deposited onto the CVD diamond substrate increases with increasing the deposition time. Furthermore, compared with self-assembled silver nanoparticle film and silver film from the mirror reaction, the SERS signal of R6G is obviously improved on the SNL films.
     5 An approach for depositing ZnO nanorod clusters on the nanocrystalline diamond film has been developed. Tyrosinase is firstly immobilized on ZnO nanorod clusters by electrostatic force, and then p-cresol is detected with the tyrosinase-modified electrode and good results are obtained.
     6 Micropatterned ZnO/SiO2 core/shell nanorod arrays are successfully fabricated on nanocrystalline diamond (NCD) film surfaces, and the performance as the fluorescence signal enhancing platform for DNA hybridization detection is also investigated. The use of ZnO/SiO2 nanorod arrays not only greatly enhance the fluorescence signal collected but also decrease the nonspecific adsorption effect of ZnO nanomaterials after carrying out hybridization reaction.
引文
1. R.E.Clausing, L.L.Horton, J.C.Angus, and P.Koidl, Diamond and diamond-like films and coatings, New York, 1991, 1-16.
    2. K.E.Spear, Diamond-Ceramic Coating of the Future, J. Am. Ceram. Soc., 1989, 72: 171-191.
    3. Y Wang JC Angus, M Sunkara, Metastable growth of diamond and diamond-like phases, Annu. Rev. Mater. Sci., 1991, 221-248.
    4. YV Pleskov, AY Sakharova, M Krotova, LL Bouilov, BV Spitsyn, Photoelectrochemical properties of semiconductor diamond, J. Electroanal. Chem., 1987, 228: 19-27.
    5. A. B. Anderson and J. C. Angus G. M. Swain, MRS Bull., 1998, 23: 56.
    6. R. Tenne and C. Levy-Clement, Isr. J. Chem., 1998, 38: 57.
    7. Editor K. Kobashi, New Diamond Front. Carbon Technol., 1999, 9: 175-178.
    8. Editor K. Kobashi, New Diamond Front. Carbon Technol., 1999, 9: 189-191
    9. Y. V. Pleskov, Russ. Chem. Rev., 1999, 68: 381.
    10. T. N. Rao, A. Fujishima, Recent Advances in Electrochemistry of Diamond, Diam. Relat. Mater., 2000, 9: 384-389.
    11. A. Fujishima and T. N. Rao, New directions in structuring and electrochemical applications of boron-doped diamond thin films, Diam. Relat. Mater., 2001, 10: 1799-1803.
    12. C. Terashima T. N. Rao. T. A. Ivandini, B. V. Sarada and A. Fujishima, New Diamond Front. Carbon Technol., 2003, 13: 79.
    13. Fujishima A, Y. Einaga, T. N. Rao, Diamond Electrochemistry, Elsevier, 2005.
    14. S Alehashem, F Chambers, JW Strojek, Cyclic voltammetric studies of charge transfer rReactions at highly boron-doped polycrystalline diamond thin-film electrodes, Anal. Chem., 1995, 67: 2812-2821.
    15. H. B. Martin, A. Argoitia, U. Landau, Hydrogen and Oxygen Evolution on Boron-Doped Diamond Electrodes, J. Electrochem. Soc., 1996, 143: L133-L135.
    16. Rao T N Sarada B V, Tryk D A, New Diaond. Frontier Carbon Tech.nology, 1999, 9: 365-377.
    17. Y Maeda, K Sato, TN Rao, The electrochemical response of highly boron-doped conductive diamond electrodes to Ce3+ ions in aqueous solution, Electrochim. Acta., 1999, 44: 3441-3449.
    18. Z. Wu, T. Yano, D. A. Tryk, Observation of Electrochemical C60 Reduction of a Diamond Thin Film Electrode at Room Temperature, Chem. Lett., 1998, 6: 503-504.
    19. M. Panizza, I. Duo, P. A. Michaud, Electrochemical Generation of Silver (II) at Boron-Doped Diamond Electrodes, Electrochem. Solid-State Lett., 2000, 3: 550-551.
    20. PA Michaud, E Mahe, W Haenni, Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes, Electrochem. Solid-State Lett., 2000, 3: 77-79.
    21. N. Vinokur, B. Miller, Y. Avyigal, Cathodic and anodic deposition of mercury and silver at BDD Electrodes, J. Electrochem. Soc., 1999, 146: 125-130.
    22. M. C. Granger, G. M. Swain, The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes, J. Electrochem. Soc., 1999, 146: 4551-4558.
    23. Rao T N Sarada B V, Tryk D A, New Diaond. Frontier Carbon Tech.nology, 1999,
    5: 365-376.
    24. A Fujishima, TN Rao, DA Tryk, E Popa, Electroanalysis of dopamine and NADH at conductive diamond electrodes, J. Electroanal. Chem., 1999, 473: 179-185.
    25. D. Gandini, P. A. Michaud, I. Duo, New Diamond Front. Carbon Technol., 1999, 9: 303.
    26. S. Ferro, A. De Battisti, Electrocatalysis and Chlorine Evolution Reaction at Ruthenium Dioxide Deposited on Conductive Diamond, J. Phys. Chem. B., 2002, 106: 2249-2254.
    27. K. Honda, M. Yoshimura, Tata N. Rao, D. A. Tryk, A. Fujishima, K. Yasui, Y. Sakamoto, K. Nishio and H. Masuda, Electrochemical properties of Pt-modified nano-honeycomb diamond electrodes, J. Electroanal. Chem., 2001, 514: 35-50.
    28. TN Rao, C Terashima, BV Sarada, N Spataru, A Fujishima, Electrodeposition of hydrous iridium oxide on conductive diamond electrodes for catalytic sensor applications, J. Electroanal. Chem., 2003, 544: 65-74.
    29. T. Knickerbocker, T. Strother, M. P. Schwartz, DNA-Modified Diamond Surfaces,Langmuir, 2003, 19: 1938-1942.
    30. S. Hadenfeldt, Benndorf C, Adsorption of fluorine and chlorine on the diamond (100) surface, Sur. Sci., 1998, 402-404: 227-231.
    31. WS Yang, O Auciello, JE Butler, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates, Nat. Mater., 2003, 1: 253-257.
    32. J Xu, Q Chen, GM Swain, Anthraquinonedisulfonate electrochemistry: A comparison of glassy carbon, hydrogenated glassy carbon, highly oriented pyrolytic graphite, and diamond electrodes, Anal. Chem., 1998, 70: 3146-3154.
    33. N Spataru, BV Sarada, E Popa, DA Tryk, A Fujishima, Voltammetric determination of L-cysteine at conductive diamond electrodes, Anal. Chem., 2001, 73: 514-519.
    34. R.N.Adam, Electrochemistry at Solid Electrodes, Marcel Dekker, Inc.New York, 1969, 369.
    35 YD Li, YT Qian, HW Liao, YD, L Yang, CY Xu, A reduction-pyrolysis-catalysis synthesis of diamond, Science, 1998, 281(5374): 246-247.
    36 Gogotsi Y, Welz S, Ersoy DA, McNallan MJ, Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure, Nature, 2001, 411: 283-284.
    37 ZS Lou, QW Chen, YF Zhang, W Wang, YT Qian, Diamond formation by reduction of carbon dioxide at low temperatures, J. Am. Chem. Soc., 2003, 125(31): 9302-9303.
    38 P.W. May, The new diamond age?, Science, 2008, 319: 1490-1491.
    39 Miller J B, Brown D W., Amines and thiols on diamond surfaces, Diam. Relat. Mater., 1995, 4: 435-440.
    40 Ohtami B, Kim Y, Yano T, Surface functionalization of doped CVD diamond via covalent bond and XPS study on the formation of surface-bound quaternary pyridinium salt, Chem Lett, 1998, 27(9): 953-954.
    41 Tsubota T, Ida S, Hirabayashi O, Chemical modification of the diamond surface using diacyll peroxide as radical initiator and CN group-containing compounds for the introduction of the CN group, Phys Chem Chem Phys, 2002, 4: 3881-3886.
    42 Nakamura T, Suzuki M, Ishihara M, Photochemical modification of diamond films: introduction of perfluorooctyl functional groups on their surface, Langmuir, 2004, 20: 5846-5849.
    43 A Gruber, A Dr?benstedt, C Tietz. L Fleury, J Wrachtrup, C von Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single fluorescent defect centres in diamond, Science, 1997, 276: 2012-2014.
    44 Anke Krueger, The structure and reactivity of nanoscale diamond, J. Mater. Chem., 2008, 18: 1485–1492.
    45 Ida S, Tsubota T, Hirabayashi O, Chemical reaction of hydrogenated diamond surface with peroxide radical initiators, Diam. Relat. Mater., 2003, 12: 601-605.
    46 Ida S, Tsubota T, Tani S, Chemical modification of the diamond surface using benzoyl peroxide and dicarboxylic acids, Langmuir, 2003, 19: 9693-9698.
    47 W Yang, S. E. Baker, J. E. Butler, C.S. Lee, J. N. Jr. Russell, L. Shang, B. Sun, R. J. Hamers, Electrically addressable biomolecular functionalization of conductive nanocrystalline diamond thin films, Chem. Mater., 2005, 17(5): 938-940.
    48 W Jing, Q Yang, Mediator-free amperometric determination of glucose based on direct electron transfer between glucose oxidase and an oxidized boron-doped diamond electrode, Analytical and bioanalytical chemistry, 2006, 385(7): 1330-1335
    49 J Wang, John A. Carlisle, Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films, Diam. Relat. Mater., 2006, 15(2-3): 279-284.
    50 H. Olivia, BV Sarada, K Honda, A Fujishima, Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes, Electrochimica Acta, 2004, 49(13): 2069-2076.
    51 ZQ Xu, S Jeedigunta, A Kumar, A study of polyaniline deposited nanocrystalline diamond films for glucose detection, Journal of Nanoscience and Nanotechnology, 2007, 7(6): 2092-2095.
    52 L Su, XP Qiu, LH Guo, FS Zhang and Chenhe Tung, Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method, Sensors and Actuators B: Chemical, 2004, 99(2-3): 499-504.
    53 CE Troupe, IC Drummond, C Graham, J Grice, P John, JIB Wilson, MG Jubber, NA Morrison, Diamond-based glucose sensors, Diam. Relat. Mater., 1998, 7(2-5): 575-580.
    54. JG Ran, L Gou, Y Liu, CQ Zheng, FQ Tang, The process of immobilizing enzyme of glucose sensor based on diamond film, Supramolecular Science,1998, 5(5-6): 699-700.
    55. YL Zhou, JF Zhi, Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode, Electrochem. Commun., 2006, 8(12): 1811-1816.
    56. H Notsu, T Tatsuma, A Fujishima, Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives, J. Electroanal. Chem, 2002, 523(1-2): 86-92.
    57.YL Zhou, RH Tian, JF Zhi, Amperometric biosensor based on tyrosinase immobilized on a BDD electrode, Biosen. Bioelectron., 2007, 22(6): 822-828.
    58. Joowook Lee, Su-Moon Park, Direct electrochemical assay of glucose using boron-doped diamond electrodes, Analytica Chimica Acta, 2005, 545: 27–32.
    59 Koppang M. D., Witek M., Blau J., Swain G. M., Electrochemical Oxidation of Polyamines at Diamond Thin-Film Electrodes, Anal. Chem., 1999, 71(6): 1188-1195.
    60 O Chailapakul, E Popa, H Tai, BV Sarada, DA Tryk, A Fujishima, The electrooxidation of organic acids at boron-doped diamond electrodes, Electrochem. Commun., 2000, 2(6): 422-426.
    61. E Popa, H Notsu, T Miwa, Selective electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes, Electrochem. Solid-State Lett., 1999, 2: 49-51.
    62. E. Popa, Y. Kubota, D. A. Tryk, Selective Voltammetric and Amperometric Detection of Uric Acid with Oxidized Diamond Film Electrodes, Anal. Chem., 2000, 72: 1724-1727.
    63 S Haymond, GT Babcock, GM Swain, Direct electrochemistry of cytochrome c at nanocrystalline boron-doped diamond, J. Am. Chem. Soc., 2002, 124: 10634-10635.
    64 M. C. Granger, J. Xu, J. W. Strojek, Polycrystalline diamond electrodes: basic properties and applications as amperometric detectors in flow injection analysis and liquid chromatography, Anal. Chim. Acta., 1999, 397: 145-161.
    65 D. Shin, B. V.Sarada, D. A. Tryk, A. Fujishima, J. Wang, Application of Diamond Microelectrodes for End-Column Electrochemical Detection in Capillary Electrophoresis, Anal. Chem., 2003, 75: 530-534.
    66. T. N. Rao, B. V. Sarada, D. A. Tryk, Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection, J. Electroanal. Chem., 2000, 491: 175-181.
    67 Jingdong Zhang and Munetaka Oyama, Electroanalysis of myoglobin and hemoglobin with a boron-doped diamond electrode, Microchemical Journal, 2004, 78(2): 217-222.
    68. D. Bose A. Asthana, A. Durgbanshi, S. K. Sanghi and W. Th. Kok, Determination of aromatic amines in water samples by capillary electrophoresis with electrochemical and fluorescence detection, J.Chromatogr. A, 2000, 895: 197-203.
    69. N. S. Lawrence E. H. Seymour, E. L. Beckett, J. Davis and R. G. Compton, Electrochemical detection of aniline: an electrochemically initiated reaction pathway, Talanta, 2002, 57: 233-242.
    70. J. Wang, G. Chen, A. M. Jr, D. C. Shin and A. Fujishima, Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines, J Chromatogr A, 2004, 1022: 207-212.
    71 A Suzuki, TA Ivandini, K Yoshimi, A Fujishima, G Oyama, T Nakazato, N Hattori, S Kitazawa, Y Einaga, Fabrication, characterization, and application of BDD microelectrodes for in vivo dopamine detection, Anal. Chem. 2007, 79: 8608-8615.
    72 J Park, JJ Galligan, GD Fink, GM Swain, In vitro continuous amperometry with a diamond microelectrode coupled with video microscopy for simultaneously monitoring endogenous norepinephrine and its effect on the contractile response of a rat mesenteric artery, Anal. Chem. 2006, 78: 6756-6764.
    73 Takeshi Watanabe, Tribidasari A. Ivandini, Yoshihiro Makide, Akira Fujishima, and Yasuaki Einaga, Selective detection method derived from a controlled diffusionprocess at metal-modified diamond electrodes, Anal. Chem. 2006, 78: 7857-7860.
    74 Ohnishi K., Einaga Y., Notsu H., Terashima C., Rao T. N., Park S.G., Fujishima, A., Electrochemical glucose detection using nickel-implanted boron-doped diamond electrodes, Electrochem. Solid-State lett., 2002, 5: D1-D3.
    75 Ivandini TA, Sato R, Makide Y, Fujishima A., Einaga Y, Electroanalytical application of modified diamond electrodes, Diam. Relat. Mater., 2004, 13(11-12): 2003-2008.
    76 Andrew OS, Craig EB, Sarah WJ, Richard G. Compton, Boron-doped diamond microdisc arrays: electrochemical characterization and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu) via electrodeposition, Analyst, 2005, 130: 1303–1311.
    77 Yali Liu, and John H. T. Luong, Reusable platinum nanoparticle modified boron doped diamond microelectrodes for oxidative determination of arsenite sabahudin hrapovic, Anal. Chem. 2007, 79: 500-507.
    78 J Weng, Gold-cluster sensors formed electrochemically at boron-doped-diamond electrodes: detection of dopamine in the presence of ascorbic and thiols, Adv. Fun. Mater., 2005, 15(4): 639-647.
    79 Huiru Gu, Xiaodi Su and Kian Ping Loh, Conductive polymer-modified boron-doped diamond for DNA hybridization analysis, Chemical Physics Letters, 2004, 388(4-6): 483-487.
    80 Gu H, Su XD, Loh KP, Electrochemical Impedance Sensing of DNA hybridization on conducting polymer film-modified diamond, J. Phys. Chem. B., 2005, 109(28): 13611-13618.
    81 E Komarova, M Aldissi, A Bogomolova, Direct electrochemical sensor for fast reagent-free DNA detection, Biosensors and Bioelectronics, 2005, 21: 182–189.
    82 J Wu, CX Lei, HF Yang, XM Wu, GL Shen, RQ Yu, Ruthenium tris(2,2′)bipyridyl-modified oxidized BDD electrode for the determination of VB in the presence of VB and B ,
    61 2 Sensors and Actuators B: Chemical, 2005, 107(2): 509-515.
    83 PR Roy, MS Saha, T Okajima, SG Park, A Fujishima, T Ohsaka, Selectivedetection of dopamine and its metabolite, DOPAC, in the presence of ascorbic acid using diamond electrode modified by the polymer film, Electroanalysis, 2004, 16(21): 1777-1785.
    84. JS Gao, T Arunagiri, JJ Chen, P Goodwill, O Chyan, J Perez, D Golden, Preparation and characterization of metal nanoparticles on a diamond surface, Chem. Mater., 2000, 12: 3495-3500.
    85. A Manivannan, MS Seehra, DA Tryk, A Fujishima, Electrochemical Detection of Ionic Mercury at Boron-doped Diamond Electrodes, Anal. Lett., 2002, 35: 355-368.
    86. M. Panizza, I. Duo, P. A. Michaud, Electrochemical generation of silver (II) at boron-doped diamond electrodes, Electrochem. Solid-State Lett., 2000, 3: 550-551.
    87. HG Christiaan, F Marken, C Salter, Electron induced modification of the surface electrochemical properties of diamond electrodes, Chem. Commun., 1999, 1697-1698.
    88. Christ Jr Carey J J, Charles S, US patent 5399247, 1995-03-21.
    89. I Troster, M Fryda, D Herrmann, Electrochemical advanced oxidation process for water treatment using diamond electrodes, Diam. Relat. Mater., 2002, 11: 640-645.
    90. J. Iniesta, P. A. Michaud, M. Panizza, Electrochemical oxidation of phenol at boron-doped diamond electrode, Electrochim. Acta., 2001, 46: 3573-3578.
    91. L. Gherardini, P. A. Michaud, M. Panizza, Electrochemical Oxidation of 4-Chlorophenol for Wastewater Treatment: Definition of Normalized Current Efficiency, J. Electrochem. Soc., 2001, 148: D78-D82.
    92. M. Panizza, P. A. Michaude, G. Cerisola, Anodic oxidation of 2-naphthol at boron-doped diamond electrodes, J. Electroanal. Chem., 2001, 507: 206-214.
    93. J. Iniesta, P. A. Micaud, M. Panizza, Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: application to electroorganic synthesis and wastewater treatment, Electrochem. Commun., 2001, 3: 346-351.
    94. B. Marselli, G. J. Garcia, P. A. Michaud, Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes, J. Electrochem. Soc., 2003, 150: D79~D83.
    95. C. L. Clement, N. A. Ndao, A. Katty, Boron doped diamond electrodes for nitrate elimination in concentrated wastewater, Diam. Relat. Mater., 2003, 12: 606-612.
    96 P. Ca?izares, B. Louhichi, A. Gadri, B. Nasr, R. Paz, M.A. Rodrigo and C. Saez Electrochemical treatment of the pollutants generated in an ink-manufacturing process, Journal of Hazardous Materials, 2007, 146, (3): 552-557
    97 HB Yu, HW, X Quan, S Chen, YB Zhang, Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor, Electrochem. Commun., 2007, 9: 2280–2285.
    98 DC Shin, N Tokuda, B Rezek, CE Nebel, Periodically arranged benzene-linker molecules on boron-doped single-crystalline diamond films for DNA sensing, Electrochem. Commun., 2006, 8(5): 844-850
    99 S Szunerits, N Shirahata, P Actis, J Nakanishi, R Boukherrou, Photografting and patterning of oligonucleotides on benzophenonemodified boron-doped diamond, Chem. Commun., 2007, 2793–2795.
    100 K Ushizawa, Y Sato, T Mitsumori, T Machinami, T Ueda, T Ando, Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy, Chemical Physics Letters, 2002, 351(1-2): 105-108.
    101 Huang LC, Chang HC, Adsorption and Immobilization of Cytochrome c on Nanodiamonds, Langmuir, 2004, 20(14): 5879-5884.
    102 A Krüger, Y Liang, G Jarre, J Stegk, Surface functionalisation of detonation diamond suitable for biological applications, J. Mater. Chem., 2006, 16: 2322-2328.
    103 A Krüger, J Stegk, L Lu, G Jarre, Functionalised nanodiamond: Biotinylation of detonation diamond, Langmuir, 2008, ASAP Article, DOI: 10.1021/la703482v.
    104 Huang H., Pierstorff E., Osawa E., Ho D., Active nanodiamond hydrogels for chemotherapeutic delivery, Nano Lett., 2007, 7(11): 3305-3314.
    105 SJ Yu, MW Kang, HC Chang, KM Chen, YC Yu, Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity, J. Am. Chem. Soc., 2005, 127: 17604-17605.
    106 MS Chen, CS Dulcey, SL Brandow, DN Leonard, WJ Dressick, JM Calvert, CW Sims, Patterned metallization of diamond and alumina substrates, J. Electrochem. Soc., 2000, 147 (7): 2607-2610.
    107 A Hozumi, S Asakura, A Fuwa, Site-selectively electroless plating onamino-terminated diamond substrate patterned by 126 nm vacuum ultraviolet light lithography, J Vac Sci Technol A., 2005, 23(4): 1029-1033.
    108 S. M. Pimenov, G. A. Shafeev, V. I. Konov, E. N. Loubnin, Electroless metallization of diamond films, Diam. Relat. Mater., 1996, 5(9): 1042-1047.
    109 J. Wang, H. Chen, Y. Bai, X. Lu, Z. S. Lu, Pattern metallization on diamond thick film substrate, Diam. Relat. Mater., 2000, 9(9-10): 1632-1635.
    110 NL Jeon, PG Clem, DA Payne and RG. Nuzzo, A monolayer-based lift-off process for patterning CVD copper thin films, Langmuir, 1996, 12(22): 5350-5355.
    111 WC Shih, MJ Wang, N Lin, Characteristics of ZnO thin film surface acoustic wave devices fabricated using nanocrystalline diamond film on silicon substrates, Diam. Relat. Mater., 2008, 17(3): 390-395.
    112 JM Liu, YB Xia, LJ Wang, QF Su, P Zhao, Preparation of free-standing diamond films for high frequency SAW devices, Transactions of Nonferrous Metals Society of China, 2006, 16: s298-s301.
    113 ME Hakiki, O Elmazria, MB Assouar, V Mortet, L Le Brizoual, M Vanecek, P Alnot, ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient, Diam. Relat. Mater., 2005, 14(3-7): 1175-1178.
    114 T. Lamara, M. Belmahi, O. Elmazria, L. Le Brizoual, J. Bougdira, M. Remy and P. Alnot, Freestanding CVD diamond elaborated by pulsed-microwave-plasma for ZnO/diamond SAW devices, Diam. Relat. Mater., 2004, 13(4-8): 581-584.
    115 阮建锋, 夏义本, 王林军, 刘健敏, 蒋丽雯, 多层式金刚石薄膜的制备工艺研究, 功能材料与器件学报, 2006,12(2): 91-94.
    1 Grune DM, Nanecrystalline Diamond Films, Review Material Science,1999, 29: 211-259.
    2 Lin T, Loh PK, Wee S T A, High Resolution Transmission Electron Microscopy Study of the Initial Growth of Diamond on Silicon, Diamond and relative materials, 2000, 9: 1703-1707.
    3 Zmker C D, KrausA R, Gmne DM, Physical and Tribological Properties of Diamond FilmsGrowth in Argoncarbon Plasmas, thin solid films, 1996, 270: 154-161.
    4 张志明, 莘海维, 戴永兵, 孙方宏, 汪涛, 沈荷生, 热丝CVD法生长纳米金刚石薄膜的研究, 微细加工技术, 2003, 1: 27-31.
    5 犬冢直夫, 金刚石薄膜的新合成方法, 微细加工技术, 1990, 2: 41-44.
    6 Wang J, Cai X H, Rivas G, DNA electroche micalbiosensor for the detection ofshort DNA sequence related to the human immunodeficiency virus, Anal Chem., 1996, 68: 2629-2634.
    7 Wang Joseph, Gustavo Rivas, Cai Xiaohua, Sequence-specific electrochemical biosensing of M. tuberculosis DNA, Analytic Chimica Acta., 1997, 337: 41-48.
    8 Millan K M, Saraullo A, Mikkelsen S R., Voltemmetric DNA biosensor for eystic fibrosis based on a modified carbon paste electrode, Anal Chem, 1994, 66: 2943-2947.
    9 Wang J, Rivas G, Cat XH, Accumulation and trace measurements of phenoyhiaine drugs at DNA-modified electrodes, Analytic Chimica Acta.,1996, 332: 139-144.
    10 罗济文,张敏,张蓉颖,抗癌药物的电化学研究( Ⅱ) 道诺霉素在 DNA 修饰电极上的电化学行为及应用分析,分析科学学报,2002,18(l):1-5.
    11 孙星炎,徐春,刘盛辉,DNA 电化学传感器在 DNA 损伤研究中的应用,高等学校化学学报,1998,19:1393-1396.
    12 杜晓燕,陈文华,常东,电化学 DNA 传感器及其在环境和医学检验中的应用,传感技术学报,2002,12(4):347-352.
    13 Wang Chicharro, M Rivas G., DNA electrochemical biosensor for the detection of hydrazine, Anal Chem., 1996, 68: 2251-2255.
    14 Kerman K, Kobayashi M, Tamiya E, Recent trends in electrochemical DNA biosensor technology, Meas Sci Technol, 2004,15: Rl-Rl1.
    15 Cha J, Han JI, Choi Y, DNA hybridization dectrochemical sensor using conducting polymer, Biosens Bioelectron, 2003, l8(10): 1241-1247.
    16 Yan Zhang and Naifei Hu, Cyclic voltammetric detection of chemical DNA damage induced by styrene oxide in natural dsDNA layer-by-layer films using methylene blue as electroactive probe, Electrochemistry Communications, 2007, 9(1): 35-41.
    17 Dilsat Ozkan, Pinar Kara, Kagan Kerman, Burcu Meric, DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label, Bioelectrochemistry, 2002, 58(1): 119-126.
    18 Dilsat Ozkan, Arzum Erdem, Pinar Kara, Kagan Kerman, Electrochemical detection of hybridization using peptide nucleic acids and methylene blue onself-assembled alkanethiol monolayer modified gold electrodes, Electrochemistry Communications, 2002, 4(10): 796-802.
    19 Pinar Kara, Kagan Kerman, Dilsat Ozkan, Burcu Meric, Arzum Erdem, Electrochemical genosensor for the detection of interaction between methylene blue and DNA, Electrochemistry Communications, 2002, 4(9): 705-709.
    1 Chunyan Deng, Jinhua Chen, Xiaoli Chen, Chunhui Xiao, Lihua Nie and Shouzhuo Yao, Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode, Biosensors and Bioelectronics, 2008, 23(8): 1272-1277.
    2 E.M.I. Mala Ekanayake, D.M.G. Preethichandra and Keiichi Kaneto, Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors, Biosensors and Bioelectronics, 2007, 23(1): 107-113.
    3 Kang Wang, JingJuan Xu, DaCheng Sun, Hui Wei, XingHua Xia, Selective glucose detection based on the concept of electrochemical depletion of electroactive species in diffusion layer, Biosensors and Bioelectronics, 2005, 20: 1366–1372.
    4 Jue Lu, Lawrence T. Drzal, Robert M. Worden, and Ilsoon Lee, Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane, Chem. Mater., 2007, 19(25): 6240–6246.
    5 KianPing Loh, ShengLiang Zhao and WeiDe Zhang, Diamond and carbon nanotube glucose sensors based on electropolymerization, Diamond and Related Materials, 2004, 13(4-8): 1075-1079.
    6 Zhao W, Xu JJ, Qiu QQ, Chen HY, Nanocrystalline diamond modified gold electrode for glucose biosensing, Biosensors and Bioelectronics, 2006, 26(2): 649-655.
    7 Jian Wang and John A. Carlisle, Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films, Diamond and Related Materials, 2006, 15(2-3): 279-284.
    8 H. Olivia, B. V. Sarada, K. Honda and A. Fujishima, Continuous glucose monitoring using enzyme-immobilized platinized diamond microfiber electrodes, Electrochimica Acta, 2004, 49(13): 2069-2076.
    9 Xu, ZQ, Jeedigunta S, Kumar A, A study of polyaniline deposited nanocrystalline diamond films for glucose detection, Journal of Nanoscience and Nanotechnology, 2007, 7(6): 2092-2095.
    10 Lei Su, Xinping Qiu, Lianghong Guo, Fushi Zhang and Chenhe Tung, Amperometric glucose sensor based on enzyme-modified boron-doped diamond electrode by cross-linking method, Sensors and Actuators B: Chemical, 2004, 99( 2-3): 499-504.
    11 C. E. Troupe, I. C. Drummond, C. Graham, J. Grice, P. John, J. I. B. Wilson, M. G. Jubber and N. A. Morrison, Diamond-based glucose sensors, Diamond and Related Materials, 1998, 7(2-5): 575-580.
    12 Ran Junguo, Gou Li, Liu Yan, Zheng Changqiong and Tang Fangqiong, The process of immobilizing enzyme of glucose sensor based on diamond film, Supramolecular Science, 1998, 5(5-6): 699-700.
    13 Xin Zhang, Kwong-Yu Chan, Jin-Kua You, Zu-Geng Lin and Alfred C. C. Tseung, Partial oxidation of glucose by a Pt/WO3 electrode, Journal of Electroanalytical Chemistry, 1997, 430(1-2): 147-153.
    14 Xin Zhang, Kwong-Yu Chan and Alfred C. C. Tseung, Electrochemical oxidation of glucose by Pt/WO3 electrode, Journal of Electroanalytical Chemistry, 1995, 386(1-2): 241-243.
    15 Xinhuang Kang, Zhibin Mai, Xiaoyong Zou, Peixiang Cai, Jinyuan Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode, Analytical Biochemistry, 2007, 363: 143-150.
    16 Wei Zhao, Jing-Juan Xu, Chuan-Guo Shi, Hong-Yuan Chen, Fabrication, characterization and application of gold nano-structured film, Electrochemistry communications, 2006, 8: 773-778.
    17 Masato Tominaga, Toshihiro Shimazoe, Makoto Nagashima, Isao Taniguchi,Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions, Electrochemistry Communications, 2005, 7: 189-193.
    18 Sejin Park, Taek Dong Chung, and Hee Chan Kim, Nonenzymatic glucose detection using mesoporous platinum, Anal. Chem., 2003, 75: 3046-3049.
    19 Hui-Fang Cui, Jian-Shan Ye, Wei-De Zhang, Chang-Ming Li, John H.T. Luong, Fwu-Shan Sheu, Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites, Analytica Chimica Acta, 2007, 594: 175-183.
    20 Sejin Park, Hankil Boo, Taek Dong Chung, Electrochemical non-enzymatic glucose sensors, Analytica Chimica Acta, 2006, 556: 46-57.
    21 In-Hyeong Yeo, Dennis C. Johnson, Anodic response of glucose at copper-based alloy electrodes, Journal of Electroanalytical Chemistry, 2000, 484: 157–163.
    22 Abdollah Salimi, Mahmoud Roushani, Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode, Electrochemistry Communications, 2005, 7: 879-887.
    23 Keith B. Male, Sabahudin Hrapovic, Yali Liu, Dashan Wang, John H.T. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes, Analytica Chimica Acta, 2004, 516: 35-41.
    24 Ri Qiu, Xiao Li Zhang, Ru Qiao, Yan Li, Yeong Kim, and Young Soo Kang, CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor, Chem. Mater., 2007, 19 (17): 4174-4180.
    25 Joowook Lee, Su-Moon Park, Direct electrochemical assay of glucose using boron-doped diamond electrodes, Analytica Chimica Acta, 2005, 545: 27–32.
    26 Takeshi Watanabe, Tribidasari A. Ivandini, Yoshihiro Makide, Akira Fujishima, and Yasuaki Einaga, Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes, Anal. Chem. 2006, 78: 7857-7860.
    27 Ohnishi K., Einaga Y., Notsu H., Terashima C., Rao T. N., Park S.G., Fujishima A., Electrochemical glucose detection using nickel-implanted boron-doped diamondelectrodes, Electrochem. Solid-State lett. 2002, 5: D1-D3.
    28 Ivandini T. A., Sato R., Makide Y., Fujishima A., Einaga Y., Electroanalytical application of modified diamond electrodes, Diamond & Relat. Mater. 2004, 13(11-12): 2003-2008.
    29 Fujishima A., Einaga, Y., Rao T. N., Tryk D. A., Diamond Electrochemistry, Elsevier/BKC: Tokyo, 2005.
    30 Miles D. Koppang, Malgorzata Witek, John Blau, and Greg M. Swain, Electrochemical oxidation of polyamines at diamond thin-film electrodes, Anal.Chem., 1999, 71: 1188-1195.
    1 G. A. Shafeev, S. M. Pimenov, and E. N. Loubnin, Laser-assisted selective metallisation of diamonds by electroless Ni and Cu plating Appl. Surf. Sci. 1995, 86: 392-397.
    2 Mu-San Chen, Charles S. Dulcey, Susan L. Brandow, Donovan N. Leonard, Walter J. Dressick, Jeffrey M. Calvert, and Christopher W. Sims, Patterned metallization of diamond and alumina substrates, J. Electrochem. Soc., 2000, 147(7): 2607-2610.
    3 Hozumi, A, Asakura, S, Fuwa, A, Site-selective electroless plating on amino-terminated diamond substrate patterned by 126 nm vacuum ultraviolet light lithography, J Vac Sci Technol A., 23 (4): 1029-1033.
    4 S. M. Pimenov, G. A. Shafeev, V. I. Konov, and E. N. Loubnin, Electroless metallization of diamond films, Diamond Relat. Mater. 1996, 5: 1042-47.
    5 J. Wang, H. Chen, Y. Bai, X. Lu, and Z. S. Lu, Pattern metallization on diamondthick film substrate, Diamond Relat. Mater. 2000, 9: 1632-1635.
    6 Jeon, N. L., Clem, P. G., Payne, D. A., Nuzzo, R. G., A monolayer-based lift-off process for patterning chemical vapor deposition copper thin films, Langmuir, 1996, 12(22): 5350-5355.
    7 Practical Electroless Plating Techonology, N. Li, 2004, January, Beijing: Chemical Industry Press, 2004. First Edition.
    8 M. Gulla, W.A. Conlan, US patent 3874882, 1975.
    9 Tian R. H., Rao T. N., Einaga Y., Zhi J.F., Construction of Two-Dimensional Arrays Gold Nanoparticles Monolayer onto Boron-Doped Diamond Electrode Surfaces, Chem. Mater., 2006, 18(4): 939-945.
    10 Yan Li Zhou, Ru Hai Tian and Jin Fang Zhi, Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode, Biosens. Bioelectron., 2007, 22(6): 822-828.
    11. Ruhai Tian and Jinfang Zhi, Gold-nanoparticles-induced pattern metallization on high-roughness diamond film surfaces, Applied Physics Letters., 2006, 88: 203102-203104.
    12. Xu D., Kang E. T., Neoh K. G., Tay A. A. O., Reactive coupling of 4-vinylaniline with hydrogen-terminated Si(100) surfaces for electroless metal and “synthetic metal” dDeposition, Langmuir, 2004, 20(8): 3324-3332.
    13. Mu-San Chen, Susan L. Brandow, Charles S. Dulcey, Walter J. Dressick, Gary N. Taylor, Channel-constrained electroless metal deposition on ligating self-assembled film surfaces, J. Electrochem. Soc., 1999, 146(4):1421-1430.
    14 Noriko Saito, Hajime Haneda, Takashi Sekiguchi, Naoki Ohashi, Isao Sakaguchi, and Kunihito Koumoto, Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers, Adv. Mater. 2002, 14(6): 418-421.
    15 Noriko Saito, Hajime Haneda and Kunihito Koumoto, Pattern-deposition of light-emitting ZnO particulate film through biomimetic process using self-assembled monolayer template, Microelectronics Journal, 2004, 35(4): 349-352.
    16 Y. Masuda, N. Kinoshita, F. Sato, K. Koumoto, Site-selective deposition of nanostructured ZnO thin films from solutions containing polyvinylpyrrolidone, Cryst.Growth Des., 2006, 6: 75-79.
    17 Peixin Zhu, Yoshitake Masuda and Kunihito Koumoto, Seedless micropatterning of copper by electroless deposition on self-assembled monolayers, J. Mater. Chem., 2004, 14: 976-981.
    18 Hidber P. C., Helbig W., Kim E., Whitesides G. M., Microcontact printing of palladium colloids: micron-scale patterning by electroless deposition of copper, Langmuir, 1996, 12(5): 1375-1380.
    19 Masuda Y., Jinbo Y., Yonezawa T., Koumoto K., Templated site-selective deposition of titanium dioxide on self-assembled monolayers, Chem. Mater., 2002, 14(3): 1236-1241.
    20 N. Saito, H. Haneda, M. Komatsu, and K. Koumoto, Time-of-flight secondary ion mass spectrometry study of zinc oxide micropatterning on self-assembled monolayer template, J. Electrochem. Soc., 2006, 153(3): C170-C175.
    1 R Griffith Freeman, Katherine CG, Self-assembled metal colloid monolayers: an approach to SERS substrates, Science, 1995, 267: 1629-1632.
    2 Lu L., Eychmuller A., Kobayashi A., Hirano Y., Yoshida K., Kikkawa Y., Tawa K., Ozaki Y., Designed fabrication of ordered porous Au/Ag nanostructured films for surface-enhanced Raman scattering substrates, Langmuir, 2006, 22(6): 2605-2609.
    3 Anderson DJ, Moskovits M, A SERS-active system based on silver nanoparticles tethered to a deposited silver film, J. Phys. Chem. B.; 2006, 110(28): 13722-13727.
    4. Kadir Aslan, Patrick Holleya and Chris D. Geddes, Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates, J. Mater. Chem., 2006, 16: 2846-2852.
    5. Aslan K., Leonenko Z., Lakowicz J. R., Geddes C. D., Fast and slow deposition ofsilver nanorods on planar surfaces: Application to metal-enhanced fluorescence, J. Phys. Chem. B., 2005, 109(8): 3157-3162.
    6. Doering W. E., Nie S. J., Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement, J Phys. Chem. B., 2002, 106(2): 311-317.
    7. Sun Y., Mayers B., Xia Y., Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett., 2003, 3: 675-679.
    8. Me′traux, G. S.; Mirkin, C. A. Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness, Adv. Mater., 2005, 17, 412-415.
    9. Lehui Lu, Atsuko Kobayashi, Keiko Tawa and Yukihiro Ozaki, Silver Nanoplates with Special Shapes: Controlled Synthesis and Their Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Properties, Chem. Mater., 2006, 18: 4894-4901.
    10. Chen S., Fan Z., Carroll DL.. Silver nanodisks: synthesis, characterization, and self-assembly, J. Phys. Chem. B, 2002, 106: 10777-10781.
    11. Maillard M, Giorgio S, Pileni M P, Silver Nanodisks, Adv. Mater., 2002, 14: 1084-1086.
    12. XW Lou, CL Yuan, LA. Archer, An unusual example of hyperbranched metal nanocrystals and their shape evolution, Chem. Mater., 2006, 18: 3921-3923.
    13 Y He, XF Wu, GW Lu, GQ Shi, A facile route to silver nanosheets, Mater. Chem. Phys., 2006, 98: 178-182.
    14. Chen A., Kamata K., Nakagawa M., Iyoda T., Haiqiao W., Li X., Formation process of silver-polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone), J. Phys. Chem. B., 2005, 109(39): 18283-18288.
    15. D. Roy, Z. H. Barber, Ag nanoparticle induced surface enhanced Raman spectroscopy of chemical vapor deposition diamond thin films prepared by hot filament chemical vapor deposition, J Appl Phys, 2002, 91: 6085-6088.
    16. Perevedentseva E, Karmenyan A, Chung PH, Surface-enhanced Raman spectroscopy of nanodiamond particles on silver, J Vac Sci Technol B, 2005, 23(5): 1980-1983.
    17. S. Kostrewa, W. Hill and D. Klockow, Silver films on diamond particles as substrates for surface-enhanced Raman scattering, Sens. Actuators, B: Chemical, 1998, 51(1-3): 292-297.
    18. Simm AO, Banks CE, Ward-Jones S, Davies TJ, Lawrence NS, Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals via electrodeposition, Analyst, 2005, 130(9): 1303-1311.
    19. Gao JS, Arunagiri T, Chen JJ, Goodwill P, Chyan O, Perez J, Golden D, Preparation and characterization of metal nanoparticles on a diamond surface, Chem. Mater, 2000, 12(11): 3495-3500.
    20. Saito Y, Wang JJ, Smith DA, Batchelder DN, A simple chemical method for the preparation of silver surfaces for efficient SERS, Langmuir, 2002, 18: 2959-2961.
    21. R.H Tian, T.N. Rao, Y. Einaga, J.F. Zhi, Construction of two-dimensional arrays gold nanoparticles monolayer onto boron-doped diamond electrode surfaces, Chem. Mater. 2006, 18: 939-945.
    22. SJ park, TA Taton, CA Mirkin, Array-based electrical detection of DNA with nanoparticles probes, Science, 2002, 295: 1503-1506.
    23. P. C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J. Phys. Chem., 1982, 86(17): 3391-3395.
    24. Paul E Laibinis, George M Whitesides, Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, and Au, J. Am. Chem. Soc., 1991, 113(19): 7152-7167.
    25. ZC Liu, QG He, PF Xiao, B Liang, JX Tan, NY He, Self-assembly monolayer of mercaptopropyltrimethoxysilane for electroless deposition of silver, Mater. Chem. Phys., 2003, 82: 301-305.
    26 C. L. Cleveland, U. Landman, The energetics and structure of nickel clusters size dependence, J. Chem. Phys., 1991, 94: 7376-7396.
    27 F. J. Garcia-Vidal, J. B. Pendry, Collective theory for surface-enhanced Raman scattering, Phys.Rev. Lett., 1996, 77: 1163-1166.
    1 Zhang CL, Liu MC, Li P, Xian YZ, Cheng YX, Fabrication of ZnO nanorod modified electrode and its application to the direct electrochemical determination of hemoglobin and cytochrome c, Chinese Journal of Chemistry, 2005, 23(2): 144-148.
    2 Topoglidis E, Cass A E G, O’Regan B, Durrant J F, Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films, J.Electroanal.Chem., 2001, 517(1-2): 20-27.
    3 A Wei, XW. Sun, J X Wang, Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition, Appl. Phys. Lett. 2006, 89: 123902-123904.
    4 JX Wang, XW Sun, A Wei, Zinc oxide nanocomb biosensor for glucose detection, Appl. Phys. Lett. 2006, 88: 233106-233109.
    5 JF Zang, CM Li, XQ Cui, JX Wang, XW Sun, H Dong, CQ Sun, Tailoring zinc oxide nanowires for high performance amperometric glucose sensor, Electroanalysis, 2007, 19(9): 1008-1014.
    6 ZW Zhao, XJ Chen, BK Tay, JS Chen, ZJ Han, KA Khor, A novel amperometricbiosensor based on ZnO:Co nanoclusters for biosensing glucose, Biosensors and Bioelectronics, 2007, 23: 135-139.
    7 FF Zhang, XL Wang, SY Ai, ZD Sun, Q Wan, ZQ Zhu, YZ Xian, LT Jin, K Yamamoto, Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor, Analytica Chimica Acta, 2004, 519: 155-160.
    8 ZM Liu, YL Liu, HF Yang, Y Yang, GL Shen, RQ Yu, A Mediator-Free Tyrosinase Biosensor Based on ZnO Sol-Gel Matrix, Electroanalysis, 2005, 17: 1065-1070.
    9 YF Li, ZM Liu, YL Liu, YH Yang, GL Shen, RQ Yu, A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles, Analytical Biochemistry, 2006, 349: 33-40.
    10 YL Liu, YH Yang, HF Yang, ZM Liu, GL Shen, RQ Yu, Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing Journal of Inorganic Biochemistry, 2005, 99: 2046-2053.
    11 Jorge RR, Jorge H, Beatriz LR, Andreas H, Doris S, Martin S, Enrique LC, and José AG, Synthetic nanocrystalline diamond as a third-generation biosensor support, Langmuir, 2006, 22 (13): 5837-5842.
    1 Knickerbocker T., Strother T., Schwartz M. P., Russell J. N. Jr., Butler J., Smith L. M., Hamers R. J., Langmuir, DNA-Modified Diamond Surfaces, 2003, 19(6): 1938-1942.
    2 Yang W., Auciello O., Butler J.E., Cai W., Carlisle J.A., Gerbi J.E., Gruen D., Knickerbocker T., Lasseter T.L., Russell J.N., Smith, L.M. and Hamers R.J., DNA-modified nanocrystalline diamond thin films as stable, biologically active substrates. Nature Materials, 2002, 1(4): 253-257.
    3 Zhang G.J., Song K.S., Nakamura Y., Ueno T., Funatsu T., Ohdomari I., Kawarada H., DNA micropatterning on polycrystalline diamond via one-step direct amination, Langmuir, 2006, 22(8): 3728-3734.
    4 Granger M. C., Mermoux M., Strojek J. W., Swain G. M., Standard electrochemical behavior of high-quality boron-doped polycrystalline diamond thin-film electrodes, Anal. Chem., 2000, 72(16): 3793-3804.
    5 Y.L Zhou, R.H Tian, J.F Zhi, Amperometric biosensor based on tyrosinase immobilized on a BDD electrode, Biosens. Bioelectron., 2007, 22(6): 822-828.
    6 JK Luo, YQ Fu, HR Le, JA Williams, SM Spearing WI Milne, Diamond and diamond-like carbon MEMS, J. Micromech. Microeng. 2007,17: S147–S163.
    7. JX Wang, XW Sun, A. Wei, Y Lei, Zinc oxide nanocomb biosensor for glucose detection, Appl. Phys. Lett. 2006, 88: 233106-233108.
    8. A Wei, XW Sun, JX Wang, Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition, Appl. Phys. Lett. 2006, 89: 123902-123904.
    9. YL Liu, YH Yang, HF Yang, ZM Liu, GL Shen, RQ Yu, Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing, J. Inorg.Biochem., 2005, 99(10): 2046-2053.
    10. Kumar N, Dorfman A, Hahm, J.I, Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays, Nanotechnology, 2006, 17(12): 2875-2881.
    11 Kumar N, Dorfman A, Hahm, J.I, Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms, Langmuir, 2006, 22(11): 4890-4895.
    12. Liu T.Y., Liao H.C., Lin C.C., Hu S.H., Chen S.Y., Biofunctional ZnO nanorod arrays grown on flexible substrates, Langmuir, 2006, 22(13): 5804-5809.
    13. Nie L, Gao L, Feng P, Zhang J, Fu X, Liu Y, Yan X, Wang T., Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery, , 2006, 2(5): 621-625. Small
    14. Leng Nie, Lizeng Gao, Xiyun Yan and Taihong Wang, Functionalized tetrapod-like ZnO nanostructures for plasmid DNA purification, polymerase chain reaction and delivery, Nanotechnology, 2007, 18: 015101-015106.
    15. R. Yakimova, G. Steinhoff, R.M. Petoral, Jr., C. Vahlberg, V. Khranovskyy, G.R. Yazdi, K. Uvdal and A. Lloyd Spetz, Novel material concepts of transducers for chemical and biosensors, Biosens. Bioelectron., 2007,22(12): 2780-2785.
    16. Multifunctional biosensor based on ZnO nanostructures, U.S. Patent, 6914279, 2005, July 5.
    17 Lori E. Greene, Matt Law, Joshua Goldberger, Franklin Kim, Justin C. Johnson, Low-temperature wafer-scale production of ZnO nanowire arrays, Angew. Chem., Int. Ed. 2003, 42: 3031-3034.
    18 S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, Photoresponse of sol-gel-synthesized ZnO nanorods, Appl. Phys. Lett., 2004, 84(24): 5022-5024.
    19 Ravinder kaur, A V Singh, R.M. Mehra, Sol-gel derived highly transparent and conducting doped ZnO films, Journal of non-crystalline solids, 2006, 352: 2335-2338.
    20 ZR Dai, ZW Pan, ZL Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation, Adv. Funct. Mater. 2003,13(1): 9-24.
    21 Lee SJ., Park SK, Park CR., Lee J Y, Park J., Do YR., Spatially separated ZnO nanopillar arrays on Pt/Si substrates prepared by electrochemical deposition, J. Phys. Chem. C., 2007, 111(32): 11793-11801.
    22 Boeckler C., Oekermann T., Feldhoff A., Wark M., Role of the critical micelle concentration in the electrochemical deposition of nanostructured ZnO films under utilization of amphiphilic molecules, Langmuir; 2006, 22(22): 9427-9430.
    23 A. Chatterjee and J. Foord, Electrochemical deposition of nanocrystalline zinc oxide at conductive diamond electrodes, Diamond and Related Materials, 2006, 15(4-8): 664-667.
    24 Aixue Li, Fan Yang, Ying Ma and Xiurong Yang, Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode, Biosens. Bioelectron., 2007, 22(8): 1716-1722.
    25 J.A Streifer, H. Kim, B.M Nichols, R.J Hamers, Covalent functionalization and biomolecular recognition properties of DNA-modified silicon nanowires, Nanotechnology, 2005, 16: 1868-1873.
    26. Tian R H., Rao T.N., Einaga Y., Zhi J.F., Construction of two-dimensional arrays gold nanoparticles monolayer onto boron-doped diamond electrode surfaces, Chem. Mater., 2006, 18(4): 939-945.
    27. Ruhai Tian and Jinfang Zhi, Gold-nanoparticles-induced pattern metallization on high-roughness diamond film surfaces, Appl. Phys. Lett., 2006, 88: 203102-203104.
    28. Soumya Krishnamoorthy, Thaleia Bei, Emmanouil Zoumakis, George P. Chrousos and Agis A. Iliadis, Morphological and binding properties of interleukin-6 on thin ZnO films grown on (1 0 0) silicon substrates for biosensor applications, Biosens. Bioelectron., 2006, 22 (15): 707-714.
    29. Lin Z, Strother T, Cai W, Cao X., Smith LM, Hamers R J, DNA Attachment and Hybridization at the Silicon (100) Surface, Langmuir, 2002, 18(3): 788-796.
    30. JR. Lakowicz, J Malicka, S D’Auria, I Gryczynski, Release of the self-quenching of fluorescence near silver metallic surfaces, Anal. Biochem., 2003, 320: 13-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700