分子氧选择性氧化醇为醛、酮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由醇选择性氧化制备相应的醛或酮是有机合成中一个非常重要的官能团转换。传统的氧化工艺大多采用化学计量氧化剂如CrO_3/H_2SO_4、CFO_3(Py)_2、PCC、DMSO/(COCl)_2、MnO_2和SeO_2等,这些氧化剂存在影响环境和成本较高等问题,并且反应要消耗大量有机溶剂。为了解决这一问题,近年来开发绿色、温和、经济、高效的反应催化体系,以H_2O_2、O_2或空气作为清洁氧化剂液相催化氧化醇类至醛酮化合物成为研究热点,特别是氧气或空气,因为氧气(空气)是所能得到的最丰富、廉价、安全及环境友好的氧化剂。因此,深入研究此类氧化反应不但对于实验室范围内很有价值,而且对于工业生产也有重要意义。本论文在以分子氧为氧化剂的醇选择性氧化体系方面作了一些有益的探索。
     制备了离子液体固定化TEMPO(TEMPO-IL),并将其应用于TEMPO-IL/CuCl催化体系,以离子液体[bmim][PF_6]为溶剂或无溶剂条件下催化醇类的氧化,该体系对苄醇和烯丙醇的氧化均有较好的催化效果,但对于脂肪醇和杂环醇的催化效果较差,即使延长反应时间也很难完全反应。研究还发现,该催化体系的选择性很高,各种醇类均未发现氧化到酸的情况,且烯丙醇的双键也不会被氧化。TEMPO-IL/CuCl催化体系在离子液体中和无溶剂条件下都有很好的循环使用性能,经多次循环使用转化率和收率无明显下降。探讨了TEMPO-IL/CuCl催化体系的催化机理,铜离子是反应的活性中心。
     针对TEMPO/CuCl催化体系反应速度较慢的问题,研究了碱对TEMPO/CuCl体系的促进作用。研究发现,除了碳酸氢钠以外,其他碱无论是无机碱和有机碱都对TEMPO/CuCl催化体系有促进作用,其中吡啶、N-甲基咪唑、NaOH的醇溶液的促进效果较好。研究发现,碱类能起促进作用的原因之一是其碱性,在碱性环境中可能有利于醇上氢的离去;另一个原因可能是有些碱如吡啶和N-甲基咪唑具有一定的配位能力,与Cu离子形成的络合物与醇的结合能适中,更有利于反应的进行。将TEMPO/CuCl/pyridine催化体系应用于多种醇的分子氧氧化发现,该体系能高效、选择性地将苄醇、杂环醇和烯丙醇氧化为醛或酮,对于一些活泼醇(如肉桂醇),反应体系中存在吡啶情况下,反应速率比不加吡啶快近十倍。由于TEMPO和碱的流失,TEMPO/CuCl/pyridine催化体系难以回收和循环使用,为了解决此问题,改用3A分子筛(MS3A)与TEMPO-IL分别代替碱与TEMPO也能很好的提高氧化反应的速度,且具有很好的回收和循环使用性能。
     在离子液体[bmim][PF_6]中,TEMPO/Cu(NO_3)_2体系能催化各种醇的氧化,研究了该体系的反应机理,发现该催化体系的催化作用实际是TEMPO、Cu(NO_3)_2和卤素离子共同作用的结果。提出了TEMPO/X~-/HNO_3无过渡金属催化醇氧化体系,该体系反应效率高,选择性好,和其他无过渡金属催化氧化体系相比,对环境的不良影响更小。讨论了TEMPO/Cu(NO_3)_2体系和TEMPO/X~-/HNO_3体系催化醇氧化的机理,认为这两种体系都是氧化氮活化分子氧从而催化醇的氧化。
     水相中TEMPO/CuCl体系能将醇催化氧化为醛或酮,但转化率和选择性较低。TEMPO/CuCl/H_2O体系中加入碱和表面活性剂均能提高反应的转化率和选择性。考察了离子液体固定化和SiO_2负载TEMPO在反应中的循环使用性能,由于TEMPO与载体材料之间的连接键容易断裂而使体系的循环使用性能较低。
     合成了系列OMS-2材料,并对其进行了BET、TG、XRD、SEM和EDS分析。将系列OMS-2材料应用于催化醇的分子氧氧化,结果表明,OMS-2材料在离子液体中有较好的催化氧化性能,反应的选择性较高。金属离子的掺杂对OMS-2在离子液体中催化氧化并无明显促进作用,反而降低了其催化选择性。采用手工研磨或球磨机研磨的方法,探索了OMS-2催化固相研磨选择性氧化固态醇的可能性,结果表明,采用研磨的方式也能高选择性地氧化醇,但由于反应生成水的不利影响,使转化率偏低。OMS-2材料催化醇的氧化可能按Mars-van Krevelen机理进行。
The selective oxidation of alcohols to the corresponding aldehydes or ketones is a fundamental transformation in both laboratory synthesis and industrial production. Numerous oxidizing reagents(e.g.CrO_3/H_2SO_4、CrO_3(Py)_2、PCC、DMSO/(COCl)_2、MnO_2 and SeO_2)in stoichiometric amounts have been traditionally employed to accomplish this transformation with considerable drawbacks,such as use of expensive reagents and volatile organic solvents,and discharge of environmentally pernicious wastes.From economic and environmental perspectives,the development of new catalytic oxidation systems with cheap and green oxidation reagents such as air,molecular oxygen and hydrogen peroxide is very attractive.Of particular interest are the use of molecular oxygen and air,which have several benefits,including low cost,improved safety,abundance,and water as the sole byproduct.Therefore,study on this type of oxidation is of great value in laboratory scope as well as industrial applications.In this dissertation,the selective oxidation of alcohols to corresponding aldehydes and ketones using molecular oxygen as primary oxidant was studied.
     The ionic liquid immobilized TEMPO(TEMPO-IL)was prepared and used in TEMPO-IL/CuCl catalytic system,which was applied for the aerobic oxidation of alcohols using[bmim][PF_6]as solvent or under solvent-flee conditions.The system exhibits favorable catalytic activity for the oxidation of benzylic and allylic alcohols,in spite of low activity observed for the oxidation of heterocyclic and aliphatic alcohols.The catalytic system shows high selectivity,no acid product was detected,and double bonds of allylic alcohol were not oxidized.The catalytic system was easily recovered and reused in the reaction.In the case of the oxidation of benzyl alcohol,the catalyst was recovered and reused for 5 times without significant loss of catalytic activity.The catalytic mechanism of TEMPO-IL/CuCl was discussed.The results show that copper ion is the active centre of the oxidation.
     To improve the catalytic activity of TEMPO/CuCl,effects of bases on alcohols oxidation were studied.It was found that most inorganic and organic bases speed up the reaction except sodium bicarbonate,and the promotion effect of pyridine, N-methylimidazole and ethanol solution of sodium hydroxide was remarkable.It is suggested that the promotion activity of base was due to the basicity and the coordination capacity.The TEMPO/CuCl/pyridine catalytic system was applied to the aerobic oxidation of types of alcohol.The results show that in the presence of pyridine the selective oxidation of alcohols proceeded rapidly.The oxidation of benzylic,allylic and heterocyclic alcohols in the presence of pyridine,is about 10 times faster than without pyridine as co-catalyst.Because of the loss of TEMPO and base in the extraction process,the TEMPO/CuCl/pyridine system can not be recycled and reused.Alternatively,TEMPO-IL and 3A molecular sieve(MS3A)would be used to instead of TEMPO and base respectively. The TEMPO/CuCl/3AMS catalytic system was as reactive as the TEMPO/CuCl/pyridine system was,and can be easily recovered and reused.
     The TEMPO/Cu(NO_3)_2 catalytic system was developed and used in the oxidation of a series of alcohols in ionic liquid[bmim][PF_6].It was found that active spieses in this system includes TEMPO,Cu(NO_3)_2 and halide ions.A highly efficient transition-metal-free catalytic system-TEMPO/X~-/HNO_3 was developed.Compared with other transition-metal-free catalytic systems,the TEMPO/X~-/HNO_3 catalytic system is environmental benign.The catalytic mechanisms of TEMPO/X~- /HNO_3 and TEMPO/Cu(NO_3)_2 were discussed.The oxidation of alcohols in both systems proceeds via nitric oxide activated molecular oxygen.
     The aerobic oxidation of alcohols can be achieved by TEMPO/CuCl catalytic system in water,in spite of the low conversion and selectivity.With the addition of base and surfactant,the conversion and selectivity can be improved.The recycling of ionic liquid and silica immobilized TEMPO was investigated.Because of the break of the bond between TEMPO and the supporter,the recycling of the catalytic system was difficult.
     A series of OMS-2 materials were prepared and characterized by BET,TG,XRD, SEM and EDS.OMS-2 materials were applied to the aerobic oxidation of alcohols.The results show that OMS-2 materials have favorable catalytic activity and the corresponding catalytic system shows high selectivity.Metal ion doping on OMS-2 materials has little promotion effects on the catalytic activity in ionic liquid and decreases the selectivity of the oxidation of alcohols.The possibility of selective oxidation of solid alcohols by solid phase grinding in mortar or ball grinder was explored.The results indicated that highly selective oxidation of alcohols can also be achieved by grinding.However,the conversion of oxidation is low due to the effect of water produced in the reaction.The reaction catalyzed by OMS-2 was found to follow the Mars-van Krevelen oxidation mechanism.
引文
[1]赵刚.绿色有机催化.北京:中国石化出版社,2005.
    [2]Larock R C.Comprehensive organic transformations:A guide to functional group preparations.2nd ed.;Wiley-VCH:New York,1999.
    [3]Sheldon R A,Kochi J K.Metal-catalyzed oxidations of organic compounds:mechanistic principles and synthetic methodology including biochemical processes.Academic Press:New York,1981.
    [4]Trost B M,Fleming I,Ley S V.Comprehensive organic synthesis:selectivity,strategy,and efficiency in modern organic chemistry.Volume 7,Oxidation.Pergamon press:Oxford;New York,1991.
    [5]Holum J R.Study of the Chromium(VI)Oxide-Pyridine Complex.J.Org.Chem.,1961,26(12):4814-4816.
    [6]Cainelli G,Cardillo G.Chromium Oxidations in Organic Chemistry.Springer:Berlin,1984.
    [7]Lee D G,Spitzer U A.Aqueous dichromate oxidation of primary alcohols.J.Org.Chem.,1970,35(10):3589-3590.
    [8]Muzart J.Chromium-catalyzed oxidations in organic synthesis.Chem.Rev.,1992,92(1):113-140.
    [9]Menger F M,Lee C.Synthetically useful oxidations at solid sodium permanganate surfaces.Tetrahedron Lett.,1981,22(18):1655-1656.
    [10]Regen S L,Koteel C.Activation through impregnation.Permanganate-coated solid supports,d.Am.Chem.Soc.,1977,99(11):3837-3838.
    [11]Uchiyama M,Kimura Y,Ohta A.Stereoselective total syntheses of(+/-)-arthrinone and related natural compounds.Tetrahedron Lett.,2000,41(51):10013-10017.
    [12]Ball S,Goodwin T W,Morton R A.Studies on vitamin A:5.The preparation of retinene(1)-vitamin A aldehyde.Biochem.J.,1948,42(4):516-523.
    [13]Berkowitz L M,Rylander P N.Use of ruthenium tetroxide as a multi-purpose oxidant,d.Am.Chem.Soc.,1959,80(24):6682-6684.
    [14]Griftith W P.Ruthenium oxo complexes as organic oxidants.Chem.Soc.Rev.,1992, 21(3):179-185.
    [15]Albright J D,Goldman L.Dimethyl Sulfoxide-Acid Anhydride Mixtures.New Reagents for Oxidation of Alcohols.d.Am.Chem.Soc.,1965,87(18):4214-4216.
    [16]Pfitzner K E,Moffatt J G.Sulfoxide-Carbodiimide Reactions.I.A Facile Oxidation of Alcohols.J.Am.Chem.Soc.,1965,87(24):5661-5670.
    [17]Dess D B,Martin J C.Readily accessible 12-I-51 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones.J Org.Chem.,1983,48(22):4155-4156.
    [18]Dohi T.Development of environmentally benign oxidations using hypervalent iodine(Ⅲ)reagents.Yakugaku Zasshi d.Pharm.Soc.dpn.,2006,126(9):757-766.
    [19]纪红兵,佘远斌.绿色氧化与还原.北京:中国石化出版社,2005.
    [20]Grieco P A.Organic synthesis in water.Blackie Academic & Professional:London;New York,1998.
    [21]Lindstrom U M.Stereoselective organic reactions in water.Chem.Rev.,2002,102(8):2751-2771.
    [22]Welton T.Room-temperature ionic liquids.Solvents for synthesis and catalysis.Chem.Rev.,1999,99(8):2071-2083.
    [23]Sheldon R.Catalytic reactions in ionic liquids.Chem.Commun.,2001,(23):2399-2407.
    [24]Zhao D B,Wu M,Kou Y,Min E.Ionic liquids:applications in catalysis.Catal.Today,2002,74(1-2):157-189.
    [25]Davis J H.Task-specific ionic liquids.Chem.Lett.,2004,33(9):1072-1077.
    [26]Chiappe C,Pieraccini D.Ionic liquids:solvent properties and organic reactivity.J.Phys.Org.Chem.,2005,18(4):275-297.
    [27]Tundo P,Selva M.The chemistry of dimethyl carbonate.Acc.Chem.Res.,2002,35(9):706-716.
    [28]Noyori R.Supercritical fluids:Introduction.Chem.Rev.,1999,99(2):353-354.
    [29]Jessop P G,Ikariya T,Noyori R.Homogeneous catalysis in supercritical fluids.Chem.Rev.,1999,99(2):475-493.
    [30]Baiker A.Supercritical fluids in heterogeneous catalysis.Chem.Rev.,1999,99(2):453-473.
    [31]Cornils B.Fluorous biphase systems-The new phase-separation and immobilization technique.Angew.Chem.Int.Edit.Engl.,1997,36(19):2057-2059.
    [32]Fish R H.Fluorous biphasic catalysis:A new paradigm for the separation of homogeneous catalysts from their reaction substrates and products.Chem.Eur.J.,1999,5(6):1677-1680.
    [33]Ryu I,Matsubara H,Yasuda S,Nakamura H,Curran D P.Phase-vanishing reactions that use fluorous media as a phase screen.Facile,controlled bromination of alkenes by dibromine and dealkylation of aromatic ethers by boron tribromide.J.Am.Chem.Soc.,2002,124(44):12946-12947.
    [34]Minisci F,Recupero F,Pedulli G F,Lucarini M.Transition metal salts catalysis in the aerobic oxidation of organic compounds-Thermochemical and kinetic aspects and new synthetic developments in the presence of N-hydroxy-derivative catalysts.J.Mol.Catal.A:Chem.,2003,204:63-90.
    [35]Schultz M J,Hamilton S S,Jensen D R,Sigman M S.Development and comparison of the substrate scope of Pd-catalysts for the aerobic oxidation of alcohols.J.Org.Chem.,2005,70(9):3343-3352.
    [36]Sheldon R A,Arends I,Dijksman A.New developments in catalytic alcohol oxidations for fine chemicals synthesis.Catal.Today,2000,57(1-2):157-166.
    [37]Zhan B Z,Thompson A.Recent developments in the aerobic oxidation of alcohols.Tetrahedron,2004,60(13):2917-2935.
    [38]Inokuchi T,Matsumoto S,Torii S.Recent Advances in the Catalytic-Oxidation of Alcohols with 2,2,6,6-Tetramethylpiperidine-1-Oxyl(Tempo)and Its Application to Organic-Synthesis.J.Synth.Org.Chem.Jpn.,1993,51(10):910-920.
    [39]Punniyamurthy T,Velusamy S,Iqbal J.Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen.Chem.Rev.,2005,105(6):2329-2364.
    [40]Schultz M J,Sigman M S.Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations.Tetrahedron,2006,62(35):8227-8241.
    [41]Sineriz F,Thomassigny C,Lou J D.Recent advances in solvent-free oxidation of alcohols.Curt.Org.Synth.,2004,1(2):137-154.
    [42]Matsumoto T,Ueno M,Wang N,Kobayashi S.Immobilization of ruthenium in organic-inorganic hybrid copolymers:A reusable heterogeneous catalyst for oxidation of alcohols with molecular oxygen. Chem. Asian J., 2008,3 (2): 239-243.
    [43] Matsumoto T, Ueno M, Wang N, Kobayashi S. Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols. Chem.-Asian J., 2008,3 (2): 196-214.
    [44] Tang R, Diamond S E, Neary N, Mares F. Homogeneous catalytic oxidation of amines and secondary alcohols by molecular oxygen. J. Chem. Soc, Chem. Commun., 1978: 562-563.
    [45] Matsumoto M, Ito S. Ruthenium-catalysed oxidation of allyl alcohols by molecular oxygen. J. Chem. Soc, Chem. Commun., 1981: 907-908.
    [46] Bilgrien C, Davis S, Drago R S. The selective oxidation of primary alcohols to aldehydes by oxygen employing a trinuclear ruthenium carboxylate catalyst. J. Am. Chem. Soc, 1987,109 (12): 3786-3787.
    [47] Marko I E, Giles P R, Tsukazaki M, Chelle-Regnaut I, Urch C J, Brown S M. Efficient, aerobic, ruthenium-catalyzed oxidation of alcohols into aldehydes and ketones. J. Am. Chem. Soc, 1997,119 (51): 12661-12662.
    [48] Lenz R, Ley S V. Tetra-n-propylammonium perruthenate (TPAP)-catalysed oxidations of alcohols using molecular oxygen as a co-oxidant. J. Chem. Soc. Perkin Trans. 1,1997, (22): 3291-3292.
    [49] Backvall J E, Chowdhury R L, Karlsson U. Ruthenium-catalyzed aerobic oxidation of alcohols via multistep electron-transfer. J. Chem. Soc,Chem. Commun., 1991, (7): 473-475.
    [50] Csjernyik G, Ell A H, Fadini L, Pugin B, Backvall J E. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system. J. Org. Chem., 2002,67 (5): 1657-1662.
    [51] Hanyu A, Takezawa E, Sakaguchi S, Ishii Y. Selective aerobic oxidation of primary alcohols catalyzed by a Ru(PPh3)3C12/hydroquinone system. Tetrahedron Lett., 1998, 39 (31): 5557-5560.
    [52] Bobbitt J M, Flores M C L. Organic nitrosonium salts as oxidants in organic-chemistry. Heterocycles, 1988,27 (2): 509-533.
    [53] Denooy A E J, Besemer A C, Vanbekkum H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis-Stuttgart, 1996,(10): 1153-1174.
    [54] Dijksman A, Marino-Gonzalez A, Payeras A M I, Arends I, Sheldon R A. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J. Am. Chem. Soc, 2001, 123 (28): 6826-6833.
    [55] Dijksman A, Arends I W C E, Sheldon R A. Efficient ruthenium-TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones. Chem. Commun., 1999, (16): 1591-1592.
    [56] Sheldon R A, Arends I W C E, Brink G J T, Dijksman A. Green, catalytic oxidations of alcohols. Acc. Chem. Res., 2002, 35 (9): 774-781.
    [57] Dijksman A, Arenas I W C E, Sheldon R A. The ruthenium/TEMPO-catalysed aerobic oxidation of alcohols. Platinum Met. Rev, 2001,45 (1): 15-19.
    [58] Tashiro A, Mitsuishi A, Irie R, Katsuki T. (NO)Ru(salen)-catalyzed aerobic oxidation of o-hydroxybenzyl alcohol derivatives. Synlett, 2003, (12): 1868-1870.
    [59] Nishimura T, Onoue T, Ohe K, Uemura S. Pd(OAc)_2-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen. Tetrahedron Lett., 1998, 39 (33): 6011-6014.
    [60] Nishimura T, Onoue T, Ohe K, Uemura S. Palladium(II)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen. J. Org. Chem., 1999, 64 (18): 6750-6755.
    [61] Nishimura T, Kakiuchi N, Inoue M, Uemura S. Palladium(II)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen. Chem. Commun., 2000, (14): 1245-1246.
    [62] Nishimura T, Maeda Y, Kakiuchi N, Uemura S. Palladium(II)-catalysed oxidation of alcohols under an oxygen atmosphere in a fluorous biphase system (FBS). J. Chem. Soc. Perkin Trans. 1,2000, (24): 4301-4305.
    [63] Kakiuchi N, Maeda Y, Nishimura T, Uemura S. Pd(II)-hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air. J. Org. Chem., 2001, 66 (20): 6620-6625.
    [64] Kakiuchi N, Nishimura T, Inoue M, Uemura S. Pd(II)-hydrotalcite-catalyzed selective oxidation of alcohols using molecular oxygen. Bull. Chem. Soc. Jpn., 2001,74(1): 165-172.
    [65] Ten Brink G J, Arends I W C E, Sheldon R A. Green, catalytic oxidation of alcohols in water. Science, 2000,287 (5458): 1636-1639.
    [66] ten Brink G J, Arends I, Sheldon R A. Catalytic conversions in water. Part 21: Mechanistic investigations on the palladium-catalysed aerobic oxidation of alcohols in water. Adv. Synth. Catal, 2002, 344 (3-4): 355-369.
    [67] Ten Brink G J, Arends I W C E, Hoogenraad M, Verspui G, Sheldon R A. Catalytic conversions in water. Part 22: Electronic effects in the (Diimine)palladium(II)-catalysed aerobic oxidation of alcohols. Adv. Synth. Catal, 2003, 345 (4): 497-505.
    [68] Ten Brink G J, Arends I W C E, Hoogenraad M, Verspui G, Sheldon R A. Catalytic conversions in water. Part 23: Steric effects and increased substrate scope in the palladium-neocuproine catalyzed aerobic oxidation of alcohols in aqueous solvents. Adv. Synth. Catal., 2003, 345 (12): 1341-1352.
    [69] Peterson K P, Larock R C. Palladium-Catalyzed Oxidation of Primary and Secondary Allylic and Benzylic Alcohols. J. Org. Chem., 1998, 63 (10): 3185-3189.
    [70] Stahl S S, Thorman J L, Nelson R C, Kozee M A. Oxygenation of nitrogen-coordinated palladium(O): Synthetic, structural, and mechanistic studies and implications for aerobic oxidation catalysis. J. Am. Chem. Soc, 2001,123 (29): 7188-7189.
    [71] Steinhoff B A, Fix S R, Stahl S S. Mechanistic study of alcohol oxidation by the Pd(OAc)_2/O_2/DMSO catalyst system and implications for the development of improved aerobic oxidation catalysts. J. Am. Chem. Soc, 2002,124 (5): 766-767.
    [72] Steinhoff B A, Stahl S S. Ligand-modulated palladium oxidation catalysis: Mechanistic insights into aerobic alcohol oxidation with the Pd(OAc)_2/pyridine catalyst system. Org. Lett., 2002,4 (23): 4179-4181.
    [73] Lee T V. Comprehensive Organic Synthesis. Pergamon: Oxford, 1991; Vol. 7, p 291-303.
    [74] Tojo G, Fernandez M. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Springer: New York, 2006.
    [75] Trocha-Grimshaw J, Henbest H B. Catalysis of the aerial oxidation of sulphoxides to sulphones by rhodium and iridium derivatives in solution in aqueous propan-2-ol. Chem. Commun., 1968: 1035-1036.
    [76] James B R, Ng F T T, Rempel G L. Catalytic reduction of dimethylsulfoxide by molecular hydrogen using rhodium(III) complexes. Can. J. Chem., 1969, 47: 4521-4526.
    [77] Gampp H, Zuberbuhler A D. Autoxidation of benzoin coupled to the oxygenation of the solvent by an oxocupric complex in dimethylsulfoxide. J. Mol. Catal., 1980, 7 (1): 81-88.
    [78] Atlay M T, Preece M, Strukul G, James B R. Selective catalytic oxidation using hydrogen/oxygen mixtures with solutions of iridium and rhodium complexes. Can. J. Chem., 1983, (61): 1332-1338.
    [79] Gampp H, Haspra D, Spieler W, Zuberbuhler A D. Oxygenation of dimethylsulfoxide and copper-catalyzed autoxidation of substituted benzoins. Helv. Chim. Acta, 1984,67 (4): 1019-1025.
    [80] Steinhoff B A, Stahl S S. Mechanism of Pd(OAc)_2/DMSO-catalyzed aerobic alcohol oxidation: Mass-transfer-limitation effects and catalyst decomposition pathways. J. Am. Chem. Soc, 2006,128 (13): 4348-4355.
    [81] Schultz M J, Park C C, Sigman M S. A convenient palladium-catalyzed aerobic oxidation of alcohols at room temperature. Chem. Commun., 2002, (24): 3034-3035.
    [82] Jensen D R, Schultz M J, Mueller J A, Sigman M S. A well-defined complex for palladium-catalyzed aerobic oxidation of alcohols: Design, synthesis, and mechanistic considerations. Angew. Chem. Int. Edit., 2003,42 (32): 3810-3813.
    [83] Jensen D R, Pugsley J S, Sigman M S. Palladium-catalyzed enantioselective oxidations of alcohols using molecular oxygen. J. Am. Chem. Soc, 2001, 123 (30): 7475-7476.
    [84] Mueller J A, Jensen D R, Sigman M S. Dual role of (-)-sparteine in the palladium-catalyzed aerobic oxidative kinetic resolution of secondary alcohols. J. Am. Chem. Soc, 2002,124 (28): 8202-8203.
    [85] Mandal S K, Jensen D R, Pugsley J S, Sigman M S. Scope of enantioselective palladium(II)-catalyzed aerobic alcohol oxidations with (-)-sparteine. J. Org. Chem., 2003, 68 (11): 4600-4603.
    [86] Ferreira E M, Stoltz B M. The palladiuim-catalyzed oxidative kinetic resolution of secondary alcohols with molecular oxygen. J. Am. Chem. Soc, 2001, 123 (31): 7725-7726.
    [87]Nielsen R J,Keith J M,Stoltz B M,Goddard W A.A computational model relating structure and reactivity in enantioselective oxidations of secondary alcohols by (-)-sparteine-Pd-Ⅱ complexes,J.Am.Chem.Soc.,2004,126(25):7967-7974.
    [88]Semmelhack M F,Schmid C R,Cortes D A,Chou C S.Oxidation of alcohols to aldehydes with oxygen and cupric ion,mediated by nitrosonium ion.J.Am.Chem.Soc.,1984,106(11):3374-3376.
    [89]Marko I E,Giles P R,Tsukazaki M,Brown S M,Urch C J.Copper-catalyzed oxidation of alcohols to aldehydes and ketones:An efficient,aerobic alternative.Science,1996,274(5295):2044-2046.
    [90]Marko I E,Tsukazaki M,Giles P R,Brown S M,Urch C J.Anaerobic copper-catalyzed oxidation of alcohols to aldehydes and ketones.Angew.Chem.Int.Edit.Engl.,1997,36(20):2208-2210.
    [91]Marko I E,Gautier A,Chelle-Regnaut I,Giles P R,Tsukazaki M,Urch C J,Brown S M.Efficient and practical catalytic oxidation of alcohols using molecular oxygen.J.Org.Chem.,1998,63(22):7576-7577.
    [92]Marko I E,Giles P R,Tsukazaki M,Chelle-Regnaut I,Gautier A,Brown S M,Urch C J.Efficient,ecologically benign,aerobic oxidation of alcohols.J.Org.Chem.,1999,64(7):2433-2439.
    [93]Marko I E,Gautier A,Mutonkole J L,Dumeunier R,Ates A,Urch C J,Brown S M.Neutral,non-racemising,catalytic aerobic oxidation of alcohols.J.Organomet.Chem.,2001,624(1-2):344-347.
    [94]Marko I E,Gautier A,Dumeunier R L,Doda K,Philippart F,Brown S M,Urch C J.Efficient,copper-catalyzed,aerobic oxidation of primary alcohols.Angew.Chem.Int.Edit.,2004,43(12):1588-1591.
    [95]Marko I E,Giles P R,Tsukazaki M,Chelle-Regnaut I,Gautier A,Dumeunier R,Philippart F,Doda K,Mutonkole J L,Brown S M,Urch C J.Efficient,ecologically benign,aerobic oxidation of alcohols.In Advances in Inorganic Chemistry-Including Bioinorganic Studies,Vol 56,Elsevier Academic Press Inc:San Diego,2004;Vol.56,pp 211-240.
    [96]魏运洋,刘裕立,田澍.配位催化氧化合成邻硝基苯甲醛的工艺研究.化学反应工程与工艺,2001,(2):124-127.
    [97] Gamez P, Arends I, Reedijk J, Sheldon R A. Copper(II)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chem. Commun., 2003, (19): 2414-2415.
    [98] Gamez P, Arends I, Sheldon R A, Reedijk J. Room temperature aerobic copper-catalysed selective oxidation of primary alcohols to aldehydes. Adv. Synth. Catal., 2004,346 (7): 805-811.
    [99] Velusamy S, Srinivasan A, Punniyamurthy T. Copper(II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen. Tetrahedron Lett, 2006,47 (6): 923-926.
    [100] Tovrog B S, Diamond S E, Mares F, Szalkiewicz A. Activation of cobalt-nitro complexes by Lewis acids: Catalytic oxidation of alcohols by molecular oxygen. J. Am. Chem. Soc, 1981,103 (12): 3522-3526.
    [101] Iwahama T, Sakaguchi S, Nishiyama Y, Ishii Y. Aerobic oxidation of alcohols to carbonyl compounds catalyzed by N-hydroxyphthalimide (NHPI) combined with Co(acac)_3. Tetrahedron Lett., 1995, 36 (38): 6923-6926.
    [102] Iwahama T, Yoshino Y, Keitoku T, Sakaguchi S, Ishii Y. Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species. J. Org. Chem., 2000, 65 (20): 6502-6507.
    [103] Kalra S J S, Punniyamurthy T, Iqbal J. Cobalt catalyzed oxidation of secondary alcohols with dioxygen in the presence of 2-methylpropanal. Tetrahedron Lett., 1994, 35 (27): 4847-4850.
    [104] Khanna V, Tamilselvan P, Kalra S J S, Iqbal J. Cobalt(II)-porphyrin catalyzed selective functionalization of alkanes with sulfurylchloride: A remarkable substituent effect. Tetrahedron Lett., 1994, 35 (32): 5935-5938.
    [105] Mandal A K, Iqbal J. A versatile aerobic oxidation of organic compounds catalyzed by cobalt(II) porphyrins. Tetrahedron, 1997, 53 (22): 7641-7648.
    [106] Sharma V B, Jain S L, Sain B. Cobalt (II) Schiff base catalyzed aerobic oxidation of secondary alcohols to ketones. J. Mol. Catal. A: Chem., 2004, 212 (1-2): 55-59.
    [107] Maeda Y, Kakiuchi N, Matsumura S, Nishimura T, Kawamura T, Uemura S. Oxovanadium complex-catalyzed aerobic oxidation of propargylic alcohols. J. Org. Chem., 2002, 67 (19): 6718-6724.
    [108] Radosevich A T, Musich C, Toste F D. Vanadium-catalyzed asymmetric oxidation of α-hydroxy esters using molecular oxygen as stoichiometric oxidant. J. Am. Chem. Soc, 2005,127 (4): 1090-1091.
    [109] Weng S S, Shen M W, Kao J Q, Munot Y S, Chen C T. Chiral N-salicylidene vanadyl carboxylate-catalyzed enantioselective aerobic oxidation of α-hydroxy esters and amides. Proceedings of the National Academy of Sciences of the United States of America, 2006,103 (10): 3522-3527.
    
    
    [110] Martin S E, Suarez D F. Catalytic aerobic oxidation of alcohols by Fe(NO_3)_3-FeBr_3. Tetrahedron Lett., 2002,43 (25): 4475-4479.
    [111] Hinzen B, Ley S V. Polymer supported perruthenate (PSP): A new oxidant for clean organic synthesis. J. Chem. Soc.-Perkin Trans. 1,1997, (13): 1907-1908.
    [112] Hinzen B, Lenz R, Ley S V. Polymer supported perruthenate (PSP): Clean oxidation of primary alcohols to carbonyl compounds using oxygen as cooxidant. Synthesis-Stuttgart, 1998, (7): 977-979.
    [113] Bleloch A, Johnson B F G, Ley S V, Price A J, Shephard D S, Thomas A W. Modified mesoporous silicate MCM-41 materials: immobilised perruthenate - a new highly active heterogeneous oxidation catalyst for clean organic synthesis using molecular oxygen. Chem. Commun., 1999,(18): 1907-1908.
    [114] Pagliaro M, Ciriminna R. New recyclable catalysts for aerobic alcohols oxidation: Sol-gel ormosils doped with TPAP. Tetrahedron Lett., 2001,42 (27): 4511-4514.
    [115] Mori K, Tano M, Mizugaki T, Ebitani K, Kaneda K. Efficient heterogeneous oxidation of organosilanes to silanols catalysed by a hydroxyapatite-bound Ru complex in the presence of water and molecular oxygen. New J. Chem., 2002, 26 (11): 1536-1538.
    [116] Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K. Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chem. Commun., 2001, (5): 461-462.
    [117] Opre Z, Grunwaldt J D, Maciejewski M, Ferri D, Mallat T, Baiker A. Promoted Ru-hydroxyapatite: designed structure for the fast and highly selective oxidation of alcohols with oxygen. J. Catal, 2005,230 (2): 406-419.
    [118] Uozumi Y, Nakao R. Catalytic oxidation of alcohols in water under atmospheric oxygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst. Angew. Chem. Int. Edit., 2003,42 (2): 194-196.
    [119] Karimi B, Zamani A, Clark J H. A bipyridyl palladium complex covalently anchored onto silica as an effective and recoverable interphase catalyst for the aerobic oxidation of alcohols. Organometallics, 2005, 24 (19): 4695-4698.
    [120] Karimi B, Abedi S, Clark J H, Budarin V. Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: The role of mesoporous channels of SBA-15 in stabilizing palladium nanoparticles. Angew. Chem. Int. Edit., 2006, 45 (29): 4776-4779.
    [121] Prati L, Rossi M. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal, 1998,176 (2): 552-560.
    [122] Bianchi C, Porta F, Prati L, Rossi M. Selective liquid phase oxidation using gold catalysts. Top. Catal, 2000, 13 (3): 231-236.
    [123] Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S. Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives. Angew. Chem. Int. Edit., 2007,46 (22): 4151-4154.
    [124] Clerici M G.Zeolites for fine chemicals production. Top. Catal, 2000, 13 (4): 373-386.
    [125] Suib S L, Son Y C, Howell A R. Oxidation of primary or secondary organic alcohol, involves contacting primary or secondary organic alcohol with stoichiometric excess of oxygen in the presence of manganese-containing octahedral molecular sieve. US2002128506-A1; US6486357-B2, US2002128506-A1 12 Sep 2002 C07C-049/29 200305.
    [126] Son Y C, Makwana V D, Howell A R, Suib S L. Efficient, catalytic, aerobic oxidation of alcohols with octahedral molecular sieves. Angew. Chem. Int. Edit., 2001,40 (22): 4280-4283.
    [127] Sheldon R A, Wallau M, Arends I, Schuchardt U. Heterogeneous catalysts for liquid-phase oxidations: Philosophers' stones or Trojan horses? Acc. Chem. Res., 1998, 31 (8): 485-493.
    [128] ten Brink G J, Arends I, Sheldon R A. Green, catalytic oxidation of alcohols in water. Science, 2000,287 (5458): 1636-1639.
    [129] Arends I W C E, ten Brink G J, Sheldon R A. Palladium-neocuproine catalyzed aerobic oxidation of alcohols in aqueous solvents. J. Mol. Catal. A: Chem., 2006, 251 (1-2): 246-254.
    [130] Buffin B P, Clarkson J P, Belitz N L, Kundu A. Pd(II)-biquinoline catalyzed aerobic oxidation of alcohols in water. J. Mol. Catal. A: Chem., 2005,225 (1): 111-116.
    [131] Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc, 2005,127 (26): 9374-9375.
    [132] Yamada Y M A, Arakawa T, Hocke H, Uozumi Y. A nanoplatinum catalyst for aerobic oxidation of alcohols in water. Angew. Chem. Int. Edit., 2007, 46 (5): 704-706.
    [133] Qian W X, Jin E L, Bao W L, Zhang Y M. Clean and highly selective oxidation of alcohols in an ionic liquid by using an ion-supported hypervalent iodine(III) reagent. Angew. Chem. Int. Edit., 2005,44 (6): 952-955.
    [134] Qian W X, Jin E L, Bo W L, Zhang Y M. Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water. Tetrahedron, 2006,62 (4): 556-562.
    [135] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing using ionic liquids and CO_2. Nature, 1999, 399 (6731): 28-29.
    [136] Welton T. Ionic liquids in catalysis. Coord. Chem. Rev, 2004, 248 (21-24): 2459-2477.
    [137] Farmer V, Welton T. The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts. Green Chem., 2002,4 (2): 97-102.
    [138] Chhikara B S, Tehlan S, Kumar A. 1-Methyl-3-butylimidazolium decatungstate in ionic liquid: An efficient catalyst for the oxidation of alcohols. Synlett, 2005, (1): 63-66.
    [139] Chhikara B S, Chandra R, Tandon V. Oxidation of alcohols with hydrogen peroxide catalyzed by a new imidazolium ion based phosphotungstate complex in ionic liquid. J. Catal., 2005,230 (2): 436-439.
    [140] Wolfson A, Wuyts S, De Vos D E, Vankelecom I F J, Jacobs P A. Aerobic oxidation of alcohols with ruthenium catalysts in ionic liquids. Tetrahedron Lett., 2002, 43 (45): 8107-8110.
    
    [141] Liu Z, Chen Z C, Zheng Q G.Mild oxidation of alcohols with O-iodoxybenzoic acid (IBX) in ionic liquid 1-butyl-3-methyl-imidazolium chloride and water. Org. Lett.,2003,5(18):3321-3323.
    [142]Ansari I A,Gree R.TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes and ketones in ionic liquid[bmim][PF_6].Org.Lett.,2002,4(9):1507-1509.
    [143]唐文明,李朝军.三氯化钌催化下环己烷和环己醇在离子液体中的氧化反应研究.化学学报,2004,62:742-744.
    [144]Jiang N,Ragauskas A J.Copper(Ⅱ)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid[bmpy]PF6.Org.Lett.,2005,7(17):3689-3692.
    [145]Jiang N,Ragauskas A J.TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H_2O_2/HBr/ionic liquid[bmim]PF6 system.Tetrahedron Lett.,2005,46(19):3323-3326.
    [146]Jiang N,Ragauskas A J.Vanadium-catalyzed selective aerobic alcohol oxidation in ionic liquid[bmim]PF_6.Tetrahedron Lett.,2007,48(2):273-276.
    [147]Lei M,Hu R-J,Wang Y-G.Mild and selective oxidation of alcohols to aldehydes and ketones using NalO_4/TEMPO/NaBr system under acidic conditions.Tetrahedron,2006,62(38):8928-8932.
    [148]Barhdadi R,Comminges C,Doherty A P,Nedelec J Y,O'Toole S,Troupel M.The electrochemistry of TEMPO-mediated oxidation of alcohols in ionic liquid.J.Appl.Electrochem.,2007,37(6):723-728.
    [149]Mehdi H,Bodor A,Lantos D,Horvath I T,De Vos D E,Binnemans K.Imidazolium ionic liquids as solvents for cerium(Ⅳ)-mediated oxidation reactions.J.Org.Chem.,2007,72(2):517-524.
    [150]邓友全.离子液体:性质、制备与应用.北京:中国石化出版社,2006.
    [151]张锁江,吕兴梅.离子液体:从基础研究到工业应用.北京:科学出版社,2006.
    [152]Yamaguchi K,Mizuno N.Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen.Angew.Chem.Int.Edit.,2002,41(23):4538-4540.
    [153]Yamaguchi K,Mizuno N.Scope,kinetics,and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina.Chem.Eur.J.,2003,9(18):4353-4361.
    [154]Enache D I,Knight D W,Hutchings G J.Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts.Catal.Lett.,2005,103(1-2):43-52.
    [155]Enache D I,Edwards J K,Landon P,Solsona-Espriu B,Carley A F,Herzing A A, Watanabe M,Kiely C J,Knight D W,Hutchings G J.Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO_2 catalysts.Science,2006,311(5759):362-365.
    [156]Hutchings G J,Carrettin S,Landon P,Edwards J K,Enache D,Knight D W,Xu Y J,Carley A F.New approaches to designing selective oxidation catalysts:Au/C a versatile catalyst.Top.Catal.,2006,38(4):223-230.
    [157]Jenzer G,Sueur D,Mallat T,Baiker A.Partial oxidation of alcohols in supercritical carbon dioxide Chem.Commun.,2000:2247-2248.
    [158]Steele A M,Zhu J,Tsang S C.Noble metal catalysed aerial oxidation of alcohols to aldehydes in supercritical carbon dioxide.Catal.Lett.,2001,73(1):9-13.
    [1]Semmelhack M F,Schmid C R,Cortes D A,Chou C S.Oxidation of alcohols to aldehydes with oxygen and cupric ion,mediated by nitrosonium ion.J.Am.Chem.Soc.,1984,106(11):3374-3376.
    [2]Ansari I A,Gree R.TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid[bmim][PF_6].Org.Lett.,2002,4(9):1507-1509.
    [3]Cozzi E Immobilization of organic catalysts:When,why,and how.Adv.Synth.Catal.,2006,348(12-13):1367-1390.
    [4]De Vos D E,Sels B F,Jacobs P A.Immobilization of homogeneous oxidation catalysts.In Advances in Catalysis,Vol 46,Academic Press Inc:San Diego,2002;Vol.46,pp 1-87.
    [5]Fey T,Fischer H,Bachmann S,Albert K,Bolm C.Silica-supported TEMPO catalysts:Synthesis and application in the Anelli oxidation of alcohols.J..Org.Chem.,2001,66(24):8154-8159.
    [6]Bolm C,Fey T.TEMPO oxidations with a silica-supported catalyst.Chem.Commun.,1999,(18):1795-1796.
    [7]Brunel D,Fajula F,Nagy J B,Deroide B,Verhoef M J,Veum L,Peters J A,van Bekkum H.Comparison of two MCM-41 grafted TEMPO catalysts in selective alcohol oxidation.Appl.Catal.A:Gen.,2001,213(1):73-82.
    [8]Brunel D,Lentz P,Sutra P,Deroide B,Fajula F,Nagy J B.Grafting of nitroxyl (TEMPO)radical on the surface of silical gel and micelle-templated-silica(MTS).In Porous Materials in Environmentally Friendly Processes,Elsevier Science Publ B V:Amsterdam,1999;Vol.125,pp 237-244.
    [9]Pozzi G,Cavazzini M,Quici S,Benaglia M,Dell'Anna G Poly(ethylene glycol)-supported TEMPO:An efficient,recoverable metal-free catalyst for the selective oxidation of alcohols.Org.Lett.,2004,6(3):441-443.
    [10]Kashiwagi Y,Ikezoe H,Ono T.Oxidation of alcohols with nitroxyl radical resins under two-phase conditions.Synlett,2006,(1):69-72.
    [11]Benaglia M,Puglisi A,Holczknecht O,Quici S,Pozzi G Aerobic oxidation of alcohols to carbonyl compounds mediated by poly(ethylene glycol)-supported TEMPO radicals.Tetrahedron,2005,61(51):12058-12064.
    [12]Gilhespy M,Lok M,Bauchcrel X.Polymer-supported nitroxyl radical catalyst for selective aerobic oxidation of primary alcohols to aldehydes.Chem.Commun.,2005,(8):1085-1086.
    [13]Geisslmeier D,Jary W G,Falk H.The TEMPO/copper catalyzed oxidation of primary alcohols to aldehydes using oxygen as stoichiometric oxidant.Monatsh.Chem.,2005,136(9):1591-1599.
    [14]Dijksman A,Arends I,Sheldon R A.A comparison of the activity of polymer immobilised TEMPO(PIPO)with MCM-41 and silica supported TEMPO as heterogeneous catalysts for the oxidation of alcohols.Synlett,2001,(1):102-104.
    [15]Dzyuba S V,Bartsch R A.New room-temperature ionic liquids with C-2-symmetrical imidazolium cations.Chem.Commun.,2001,(16):1466-1467.
    [16]Bonhote P,Dias A P,Armand M,Papageorgiou N,Kalyanasundaram K,Gratzel M.Hydrophobic,highly conductive ambient-temperature molten salts.Inorg.Chem.,1996,35(1):1168-1178.
    [17]Wu X E,Ma L,Ding M X,Gao L X.TEMPO-derived task-specific ionic liquids for oxidation of alcohols.Synlett,2005,(4):607-610.
    [18]Qian W X,Jin E L,Bo W L,Zhang Y M.Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water.Tetrahedron,2006,62(4):556-562.
    [19]王乃伟.基于氮氧自由基催化的醇选择性氧化反应的研究.大连:中国科学院大连化学物理研究所,2006.
    [20]Smallwood I M,Knovel.Handbook of organic solvent properties.Arnold:London,1996.
    [21]邓友全.离子液体:性质、制备与应用.中国石化出版社:北京,2006.
    [22]Fletcher K A,Storey I A,Hendricks A E,Pandey S,Pandey S.Behavior of the solvatochromic probes Reichardt's dye,pyrene,dansylamide,Nile Red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid[bmim]PF_6.Green Chem.,2001,3(5):210-215.
    [23]Muldoon M J,Gordon C M,Dunkin I R.Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes.J.Chem.Soc.Perkin Trans.2,2001,(4):433-435.
    [24]Anderson J L,Ding J,Welton T,Armstrong D W.Characterizing ionic liquids on the basis of multiple solvation interactions.J.Am.Chem.Soc.,2002,124(47):14247-14254.
    [25]Baker S N,Baker G A,Bright F V.Temperature-dependent microscopic solvent properties of 'dry' and 'wet' 1-butyl-3-methylimidazolium hexafluorophosphate:correlation with ET(30)and Kamlet-Taft polarity scales.Green Chem.,2002,4(2):165-169.
    [26]Dzyuba S V,Bartsch R A.Expanding the polarity range of ionic liquids.Tetrahedron Lett.,2002,43(26):4657-4659.
    [27]Yoshizawa M,Xu W,Angell C A.Ionic liquids by proton transfer:Vapor pressure,conductivity,and the relevance of Delta pK(a)from aqueous solutions.J.Am.Chem.Soc.,2003,125(50):15411-15419.
    [28]Kawai A,Hidemori T,Shibuya K.Polarity of room-temperature ionic liquid as examined by EPR spectroscopy.Chem.Lett.,2004,33(11):1464-1465.
    [29]Ogihara W,Aoyama T,Ohno H.Polarity measurement for ionic liquids containing dissoeiable protons.Chem.Lett.,2004,33(11):1414-1415.
    [30]张锁江,吕兴梅.离子液体:从基础研究到工业应用.科学出版社:北京,2006.
    [31]Wasserscheid P,Keim W.Ionic liquids-New "solutions" for transition metal catalysis.Angew.Chem.Int.Edit.,2000,39(21):3773-3789.
    [32]Zhou Z B,Matsumoto H,Tatsumi K.Low-melting,low-viscous,hydrophobic ionic liquids:N-alkyl(alkyl ether)-N-methylpyrrolidinium perfluoroethyl-trifluoroborate.Chem.Lett.,2004,33(12):1636-1637.
    [33]Zhou Z B,Matsumoto H,Tatsumi K.Low-viscous,low-melting,hydrophobic ionic liquids:1-alkyl-3-methylimidazolium trifluoromethyltrifluoroborate.Chem.Lett.,2004,33(6):680-681.
    [34]Branco L C,Rosa J N,Ramos J J M,Afonso C A M.Preparation and characterization of new room temperature ionic liquids.Chem.Eur d.,2002,8(16):3671-3677.
    [35]McFarlane D R,Sun J,Golding J,Meakin P,Forsyth M.High conductivity molten salts based on the imide ion.Electrochim.Acta,2000,45(8-9):1271-1278.
    [36]Okoturo O O,VanderNoot T J.Temperature dependence of viscosity for room temperature ionic liquids,d.Electroanal.Chem.,2004,568(1-2):167-181.
    [37]Ohno H,Yoshizawa M.Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles.Solid State Ion.,2002,154:303-309.
    [38]Harris K R,Kanakubo M,Woolf L A.Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate:Viscosity and density relationships in ionic liquids.J.Chem.Eng.Data,2007,52(6):2425-2430.
    [39]Harris K R,Woolf L A,Kanakubo M.Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexaftuorophosphate,d.Chem.Eng.Data,2005,50(5):1777-1782.
    [40]Wu X P,Liu Z P,Wang W C.Molecular dynamics simulation of gas solubility in room temperature ionic liquids.Acta Physico-Chimica Sinica,2005,21(10):1138-1142.
    [41]Scovazzo P,Camper D,Kieft J,Poshusta J,Koval C,Noble R.Regular solution theory and CO2 gas solubility in room-temperature ionic liquids.Ind.Eng.Chem.Res.,2004,43(21):6855-6860.
    [42]Camper D,Scovazzo P,Koval C,Noble R.Gas solubilities in room-temperature ionic liquids.Ind.Eng.Chem.Res.,2004,43(12):3049-3054.
    [43]Kumelan J,Kamps A P S,Urukova I,Tuma D,Maurer G.Solubility of oxygen in the ionic liquid[bmim][PF_6]:Experimental and molecular simulation results.J.Chem.Thermodyn.,2005,37(6):595-602.
    [44]Huddleston J G,Visser A E,Reichert W M,Willauer H D,Broker G A,Rogers R D.Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation.Green Chem.,2001,3(4):156-164.
    [45]Semmelhack M F,Chou C S,Cortes D A.Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones.J.Am.Chem.Soc.,1983,105(13):4492-4494.
    [46]Semmelhack M F,Schmid C R.Nitroxyl-mediated electro-oxidation of amines to nitriles and carbonyl compounds.J.Am.Chem.Soc.,1983,105(22):6732-6734.
    [47]Takaya Y,Matsubayashi G,Tanaka T.Reactions of 2,2,6,6-tetramethylpiperidine nitroxide radical with Tin(IV)halides.Inorg.Chim.Acta,1972,6:339-342.
    [48]Okunaka M,Matsubayashi G-e,Tanaka T.Palladium(Ⅱ)Complexes of 2,2,6,6-Tetramethylpiperidine N-Oxyl Radical.Bull.Chem.Soc.Jpn.,1977,50(4):907-909.
    [49]Semmelhack M F,Schmid C R,Cortes D A.Mechanism of the oxidation of alcohols by 2,2,6,6-tetramethylpipeddine nitrosonium cation.Tetrahedron Lett.,1986,27(10):1119-1122.
    [50]Dijksman A,Marino-Gonzalez A,Payeras A M I,Arends I,Sheldon R A.Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system.J.Am.Chem.Soc.,2001,123(28):6826-6833.
    [51]Miyazawa T,Endo T.Oxidation of alcohols with Cu(Ⅱ)mediated by oxoaminium salt.J.Mol.Catal.,1985,32(3):357-360.
    [52]Miyazawa T,Endo T.Oxidation of Diols with Oxoaminium Salts.J.Org.Chem.,1985,50(20):3930-3931.
    [53]Dijksman A,Arends I,Sheldon R A.Cu(Ⅱ)-nitroxyl radicals as catalytic galactose oxidase mimics.Org.Biomol.Chem.,2003,1(18):3232-3237.
    [54]Sheldon R A,Arends I.Catalytic oxidations mediated by metal ions and nitroxyl radicals.J.Mol.Catal.A:Chem.,2006,251(1-2):200-214.
    [55]Sheldon R A,Arends I.Organocatalytic oxidations mediated by nitroxyl radicals.Adv.Synth.Catal.,2004,346(9-10):1051-1071.
    [1]Marko I E,Giles P R,Tsukazaki M,Brown S M,Urch C J.Copper-catalyzed oxidation of alcohols to aldehydes and ketones:An efficient,aerobic alternative.Science,1996,274(5295):2044-2046.
    [2]Jensen D R,Pugsley J S,Sigman M S.Palladium-catalyzed enantioselective oxidations of alcohols using molecular oxygen.J..Am.Chem.Soc.,2001,123(30):7475-7476.
    [3]Sheldon R A,Arends I W C E,Brink G J T,Dijksman A.Green,catalytic oxidations of alcohols.Accounts Chem.Res.,2002,35(9):774-781.
    [4]Stahl S S.Palladium-catalyzed oxidation of organic chemicals with 02.Science,2005,309(5742):1824-1826.
    [5]Mallat T,Bronnimann C,Baiker A.Oxidation of L-sorbose with molecular oxygen on platinum modified by metals,amines and phosphines.J.Mol.Catal.A:Chem.,1997,117(1-3):425-438.
    [6]Mallat T,Baiker A.Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions.Catalysis Today,1994,19(2):247-283.
    [7]Nishimura T,Onoue T,Ohe K,Uemura S.Pd(OAc)2-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen.Tetrahedron Lett.,1998,39(33):6011-6014.
    [8]Bagdanoff J T,Ferreira E M,Stoltz B M.Palladium-catalyzed enantioselective oxidation of alcohols:A dramatic rate acceleration by Cs2CO3/t-BuOH.Org.Lett.,2003,5(6):835-837.
    [9]Marko I E,Gautier A,Chelle-Regnaut I,Giles P R,Tsukazaki M,Urch C J,Brown S M.Efficient and practical catalytic oxidation of alcohols using molecular oxygen.J.Org.Chem.,1998,63(22):7576-7577.
    [10]Marko I E,Giles P R,Tsukazaki M,Chelle-Regnaut I,Gautier A,Brown S M,Urch C J.Efficient,ecologically benign,aerobic oxidation of alcohols,J.Org.Chem.,1999,64(7):2433-2439.
    [11]Ranu B C,Banerjee S.Ionic Liquid as Catalyst and Reaction Medium.The Dramatic Influence of a Task-Specific Ionic Liquid,[bmlm]OH,in Michael Addition of Active Methylene Compounds to Conjugated Ketones,Carboxylic Esters,and Nitriles.Org.Lett.,2005,7(14):3049-3052.
    [12]Ansari I A,Gree R.TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid[bmim][PF6].Org.Lett.,2002,4(9):1507-1509.
    [13]Jiang N,Ragauskas A J.Copper(Ⅱ)-catalyzed aerobic oxidation of primary alcohols to aldehydes in ionic liquid[bmpy]PF6.Org.Lett.,2005,7(17):3689-3692.
    [14]Nishimura T,Maeda Y,Kakiuchi N,Uemura S.Palladium(Ⅱ)-catalysed oxidation of alcohols under an oxygen atmosphere in a fluorous biphase system(FBS).J.Chem.Soc.Perkin Trans.1,2000,(24):4301-4305.
    [15]Jensen D R,Schultz M J,Mueller J A,Sigrnan M S.A well-defined complex for palladium-catalyzed aerobic oxidation of alcohols:Design,synthesis,and mechanistic considerations.Angew.Chem.Int.Edit.,2003,42(32):3810-3813.
    [16]Schultz M J,Park C C,Sigman M S.A convenient palladium-catalyzed aerobic oxidation of alcohols at room temperature.Chem.Commun.,2002,(24):3034-3035.
    [17]Hallman K,Moberg C.Palladium(Ⅱ)-catalyzed oxidation of alcohols with air as reoxidant.Adv.Synth.Catal.,2001,343(3):260-263.
    [18]Ferreira E M,Stoltz B M.The palladiuim-catalyzed oxidative kinetic resolution of secondary alcohols with molecular oxygen.J.Am.Chem.Soc.,2001,123(31):7725-7726.
    [19]Bagdanoff J T,Stoltz B M.Palladium-catalyzed oxidative kinetic resolution with ambient air as the stoichiometric oxidation gas..4ngew.Chem.Int.Edit.,2004,43(3):353-357.
    [20]Caspi D D,Ebner D C,Bagdanoff J T,Stoltz B M.The resolution of important pharmaceutical building blocks by palladium-catalyzed aerobic oxidation of secondary alcohols.Adv.Synth.Catal.,2004,346(2-3):185-189.
    [21]Mandal S K,Sigman M S.Palladium-catalyzed aerobic oxidative kinetic resolution of alcohols with an achiral exogenous base.J.Org.Chem.,2003,68(19):7535-7537.
    [22]Dyer A.An introduction to zeolite molecular sieves.John Wiley & Sons:New York,1988.
    [23]Nishimura T,Onoue T,Ohe K,Uemura S.Palladium(Ⅱ)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen.J.Org.Chem.,1999,64(18):6750-6755.
    [24]Steinhoff B A,King A E,Stahl S S.Unexpected roles of molecular sieves in palladium-catalyzed aerobic alcohol oxidation.J.Org.Chem.,2006,71(5):1861-1868.
    [1]Partenheimer W.The high yield synthesis of benzaldehydes from benzylic alcohols using homogeneously catalyzed aerobic oxidation in acetic acid.Adv.Synth.Catal.,2006,348(4-5):559-568.
    [2]Lin Q,Jiang W,Fu H,Chen H,Li X.Hydroformylation of higher olefin in halogen-free ionic liquids catalyzed by water-soluble rhodium-phosphine complexes.Appl.Catal.A:Gen.,2007,328(1):83-87.
    [3]Armarego W L F,Chai C L L.Purification of laboratory chemicals.5th ed.;Butterworth-Heinemann:Amsterdam;Boston,2003.
    [4]Wang N W,Liu R H,Chen J P,Liang X M.NaNO_2-activated,iron-TEMPO catalyst system for aerobic alcohol oxidation under mild conditions.Chem.Commun.,2005,(42):5322-5324.
    [5]王乃伟.基于氮氧自由基催化的醇选择性氧化反应的研究.大连:中国科学院大连化学物理研究所,2006.
    [6]Liu R H,Liang X M,Dong C Y,Hu X Q.Transition-metal-free:A highly efficient catalytic aerobic alcohol oxidation process.J.Am.Chem.Soc.,2004,126(13):4112-4113.
    [7]Liang X M,Fu D M,Liu R H,Zhang Q,Zhang T Y,Hu X Q.Highly efficient NaNO_2-Catalyzed destruction of trichlorophenol using molecular oxygen.Angew.Chem.Int.Edit.,2005,44(34):5520-5523.
    [8]Liu R H,Dong C Y,Liang X M,Wang X J,Hu X Q.Highly efficient catalytic aerobic oxidations of benzylic alcohols in water.J.Org.Chem.,2005,70(2):729-731.
    [9]Wang L Z,Zhang F F,Liu R H,Zhang T Y,Xue X Y,Xu Q,Liang X M.FeCl_3/NaNO_2:An efficient photocatalyst for the degradation of aquatic steroid estrogens under natural light irradiation.Environ.Sci.Technol.,2007,41(10):3747-3751.
    [10]Lenoir D.Selective oxidation of organic compounds Sustainable catalytic reactions with oxygen and without transition metals? Angew.Chem.Int.Edit.,2006,45(20):3206-3210.
    [11]Xie Y,Mo W M,Xu D,Shen Z L,Sun N,Hu B X,Hu X Q.Efficient NO equivalent for activation of molecular oxygen and its applications in transition-metal-free catalytic aerobic alcohol oxidation.J.Org.Chem.,2007,72(11):4288-4291.
    [12]Chauvin Y,Mussmann L,Olivier H.A novel class of versatile solvents for two-phase catalysis:Hydrogenation,isomerization,and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts.Angew.Chem.Int.Edit.Engl.,1996,34(23-24):2698-2700.
    [13]McCamley K,Warner N A,Lamoureux M M,Scammells P J,Singer R D.Quantification of chloride ion impurities in ionic liquids using ICP-MS analysis.Green Chem.,2004,6(7):341-344.
    [14]Villagran C,Banks C E,Hardacre C,Compton R G.Electroanalytical determination of trace chloride in room-temperature ionic liquids.Anal Chem.,2004,76(7):1998-2003.
    [15]Xiao L,Johnson K E.Electrochemistry of 1-butyl-3-methyl-1H-imidazolium tetrafluoroborate ionic liquid.J.Electrochem.Soc.,2003,150(6):E307-E311.
    [16]李作鹏,杜正银,顾彦龙,朱英来,邓友全.降低离子液体中卤素含量的方法.中国专利,申请号:200510129882.2.
    [17]Bonhote P,Dias A P,Papageorgiou N,Kalyanasundaram K,Gratzel M.Hydrophobic,highly conductive ambient-temperature molten salts.Inorg.Chem.,1996,35(5):1168-1178.
    [18]Ansari I A,Gree R.TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes and ketones in ionic liquid[bmim][PF6].Org.Lett.,2002,4(9):1507-1509.
    [19]Gray P,Rathbone P,Williams A.Benzyloxyl radicals in benzyl nitrite pyrolyses.J.Chem.Soc.,1960:3932-3934.
    [20]Ogata Y,Sawaki Y,Matsunaga F,Tezuka H.Kinetics of the nitric acid oxidation of benzyl alcohols to benzaldehydes.Tetrahedron,1966,22:2655-2657.
    [21]Ross D S,Gu C-L,Hum G P,Malhotra R.Oxidation of benzyl alcohols by nitrous and nitric acids in strong sulfuric acid media.Int.J.Chem.Kinet.,1986,18(11):1277-1280.
    [22]Gasparrini F,Giovannoli M,Misiti D.Nitric acid facile oxidation of mono- and diarylcarbinols to carbonyl compounds in a biphasic system.Synth.Commun.,1988,18(1):69-71.
    [23]Nishiguchi T,Okamoto H.Oxidation of ethers by nitrogen dioxide in the presence of silica gel.Chem.Commun.,1990:1607-1608.
    [24]Levina A,Trusov S.Nitrous acid-catalyzed oxidation of alcohols by oxygen in strongly acidic aqueous solutions,J.Mol Catal.,1994,88:121-122.
    [25]Joshi S R,Kataria K L,Sawant S B,Joshi J B.Kinetics of oxidation of benzyl alcohol with dilute nitric acid.Ind.Eng.Chem.Res.,2005,44(2):325-333.
    [1]Dack M R J.The importance of solvent internal pressure and cohesion to solution phenomena.Chem.Soc.Rev.,1975,4:211-229.
    [2]Blomberg M R A,Siegbahn P E M,Nagashima U,Wennerberg J.Theoretical study of the activation of alkane carbon-hydrogen and carbon-carbon bonds by different transition metals.J.Am.Chem.Soc.,1991,113(2):424-433.
    [3]Lubineau A.Water-promoted organic reactions:aldol reaction under neutral conditions.J.Org.Chem.,1986,51(11):2142-2144.
    [4]Breslow R,Maitra U,Rideout D.Selective diels-alder reactions in aqueous solutions and suspensions.Tetrahedron Lett.,1983,24(18):1901-1904.
    [5]张岩,王梅祥,王东,黄志镗.水相中金属有机化学反应的研究进展.化学进展,1999,(04):394-402.
    [6]靳通收,王爱卿,张建设,赵瑞巧,刘利宾.水相中一些有机合成反应的研究进展.有机化学,2006,(12):1723-1732.
    [7]Wu X E,Ma L,Ding M X,Gao L X.TEMPO-derived task-specific ionic liquids for oxidation of alcohols.Synlett,2005,(4):607-610.
    [8]Qian W X,Jin E L,Bo W L,Zhang Y M.Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water.Terrahedron,2006,62(4):556-562.
    [9]Zolfigol M A,Madrakian T,Ghaemi E,Afkhami A,Aziziana S.Synthesis of morpholinated and 8-hydroxyquinolinated silica gel and their application to water softening.Green Chem.,2002,4:611-614.
    [10]Safavi A,Iranpoor N,Saghir N.Directly silica bonded analytical reagents:synthesis of 2-mercaptobenzothiazole-silica gel and its application as a new sorbent for preconcentration and determination of silver ion using solid-phase extraction method.Sep.Purif.Technol.,2004,40:303-308.
    [11]Safavi A,Iranpoor N,Saghir N,Momeni S.Glycerol-silica gel:A new solid sorbent for preconcentration and determination of traces of cobalt(Ⅱ)ion.Anal.Chim.Acta,2006,569:139-144.
    [12]Comils B,Herrmann W A.Aqueous-phase organometallic catalysis:concepts and applications.2~(nd)ed.;Wiley-VCH:Weinheim,2004.
    [13]ten Brink G J,Arends I,Sheldon R A.Green,catalytic oxidation of alcohols in water.Science,2000,287(5458):1636-1639.
    [14]ten Brink G J,Arends I,Sheldon R A.Catalytic conversions in water.Part 21:Mechanistic investigations on the palladium-catalysed aerobic oxidation of alcohols in water.Adv.Synth.Catal.,2002,344(3-4):355-369.
    [15]Brunel D,Fajula F,Nagy J B,Deroide B,Verhoef M J,Veum L,Peters J A,van Bekkum H.Comparison of two MCM-41 grafted TEMPO catalysts in selective alcohol oxidation.Appl.Catal.A:Gen.,2001,213(1):73-82.
    [16]Dijksman A,Arends I,Sheldon R A.A comparison of the activity of polymer immobilised TEMPO(PIPO)with MCM-41 and silica supported TEMPO as heterogeneous catalysts for the oxidation of alcohols.Synlett,2001,(1):102-104.
    [17]Fey T,Fischer H,Bachmann S,Albert K,Bolm C.Silica-supported TEMPO catalysts:Synthesis and application in the Anelli oxidation of alcohols.J.Org.Chem.,2001,66(24):8154-8159.
    [18]Bolm C,Fey T.TEMPO oxidations with a silica-supported catalyst.Chem.Commun.,1999,(18):1795-1796.
    [19]Brunel D,Lentz P,Sutra P,Deroide B,Fajula F,Nagy J B.Grafting of nitroxyl (TEMPO)radical on the surface of silical gel and micelle-templated-silica(MTS).In Porous Materials in Environmentally Friendly Processes,Elsevier Science Publ B V:Amsterdam,1999;Vol.125,pp 237-244.
    [1]Hudlicky,M.Oxidations in Organic Chemistry.American Chemical Society Science Washington,DC,1990.
    [2]Yin Y-G,Xu W-Q,DeGuzman R,Suib S L,O'Young C L.Studies of stability and reactivity of synthetic cryptomelane-like manganese oxide octahedral molecular sieves.Inorg.Chem.,1994,33(19):4384-4389.
    [3]Yin Y-G,Xu W-Q,Shen Y-F,Suib S L,O'Young C L.Studies of oxygen species in synthetic todorokite-like manganese oxide octahedral molecular sieves.Chem.Mater,1994,6(10):1803-1808.
    [4]Oyoung C L,Sawicki R A,Suib S L.Micropore size distribution of octahedral molecular sieves(OMS).Microporous Mater,1997,11(1-2):1-8.
    [5]Tian Z R,Tong W,Wang J Y,Duan N G,Krishnan V V,Suib S L.Manganese oxide mesoporous structures:Mixed-valent semiconducting catalysts.Science,1997,276(5314):926-930.
    [6]Ching S,Krukowska K S,Suib S L.A new synthetic route to todorokite-type manganese oxides.Inorg.Chim.Acta,1999,294(2):123-132.
    [7]Gandhe A R,Rebello J S,Figueiredo J L,Femandes J B.Manganese oxide OMS-2as an effective catalyst for total oxidation of ethyl acetate.Appl.Catal.B:Environ.,2007,72(1-2):129-135.
    [8]Zhou H,Shen Y F,Wang J Y,Chen X,O'Young C L,Suib S L.Studies of decomposition of H_2O_2 over manganese oxide octahedral molecular sieve materials.J Catal.,1998,176(2):321-328.
    [9]Zhou H,Wang J Y,Chen X,O'Young C L,Suib S L.Studies of oxidative dehydrogenation of ethanol over manganese oxide octahedral molecular sieve catalysts.Microporous Mesoporous Mater,1998,21(4-6):315-324.
    [10]DeGuzman R N,Shen Y-F,Neth E J,Suib S L,O'Young C-L,Levine S,Newsam J M.Synthesis and characterization of octahedral molecular sieves(OMS-2)having the hollandite structure.Chem.Mater,1994,6(6):815-821.
    [11]Makwana V D,Garces L J,Liu J,Cai J,Son Y C,Suib S L.Selective oxidation of alcohols using octahedral molecular sieves:influence of synthesis method and property-activity relations.Catal.Today,2003,85(2-4):225-233.
    [12]Tang X F,Huang X M,Shao J J,Liu J L,Li Y G,Xu Y D,Shen W J.Synthesis and catalytic performance of manganese oxide octahedral molecular sieve nanorods for formaldehyde oxidation at low temperature.Chin.J.Catal.,2006,27(2):97-99.
    [13]Xia G G,Yin Y G,Willis W S,Wang J Y,Suib S L.Efficient stable catalysts for low temperature carbon monoxide oxidation.J.Catal.,1999,185(1):91-105.
    [14]Suib S L,Son Y C,Howell A R.Oxidation of primary or secondary organic alcohol,involves contacting primary or secondary organic alcohol with stoichiometric excess of oxygen in the presence of manganese-containing octahedral molecular sieve.US2002128506-A1;US6486357-B2,US2002128506-A1 12 Sep 2002C07C-049/29 200305.
    [15]Son Y C,Makwana V D,Howell A R,Suib S L.Efficient,catalytic,aerobic oxidation of alcohols with octahedral molecular sieves.Angew.Chem.Int.Edit.,2001,40(22):4280-4283.
    [16]Makwana V D,Son Y-C,Howell A R,Suib S L.The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst:A kinetic and isotope-labeling study.J.Catal.,2002,210(1):46-52.
    [17]Cben X,Shen Y F,Suib S L,O'Young C L.Catalytic decomposition of 2-propanol over different metal-cation-doped OMS-2 materials.J.Catal.,2001,197(2):292-302.
    [18]Chen X,Shen Y F,Suib S L,O'Young C L.Characterization of manganese oxide octahedral molecular sieve(M-OMS-2)materials with different metal cation dopants.Chem.Mater,2002,14(2):940-948.
    [19]Jothiramalingam R,Viswanathan B,Varadarajan T K.Synthesis and structural characterization of copper incorporated manganese oxide OMS-2 materials synthesized via potassium bimessite.Mater.Chem.Phys.,2006,100(2-3):257-261.
    [20]岳彩波.离子液体中精细合成单元反应的研究.南京:南京理工大学,2007.
    [21]Makwana V D,Son Y C,Howell A R,Suib S L.Role of lattice oxygen in green,catalytic alcohol oxidation using octahedral molecular sieve(OMS)catalysts.Abstr.Pap.Am.Chem.Soc.,2002,223:U654-U654.
    [22]甄开吉.催化作用基础.北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700