CH_4、CO和VOCs完全氧化催化剂(Ir/ZrO_2、Ir/CeO_2、M/OMS-2)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机化合物(VOCs)、甲烷和CO的催化燃烧是减少污染物排放的主要途径。其中甲烷、CO氧化也是评价催化剂氧化性能的模型反应,也是当前环境催化领域非常值得关注的课题。本论文采用浸渍法制备了一系列的Ir/ZrO2、Ir/CeO2催化剂和OMS-2负载过渡金属氧化物Co、Cu、Fe催化剂,分别用于CH4、CO和VOCs的氧化消除,主要研究结果如下:
     1.Ir/ZrO2催化剂的CH4催化燃烧性能
     采用沉淀法制备了Zr02载体,利用浸渍法制备了不同Ir负载量的Ir/ZrO2催化剂,并考察了催化剂的CH4催化燃烧性能。采用XRD、Raman、XPS、H2-TPR等技术对催化剂的结构和Ir物种的存在形式进行了表征。结果表明,Ir/ZrO2催化剂中Ir是以IrO2形式存在的,Ir/ZrO2催化剂的CH4燃烧表观活性随着Ir负载量的增加而提高,并且催化剂表现出较高的催化活性和良好的反应稳定性。在低Ir负载量(≤1%)时,CH4燃烧的TOF随着Ir粒子的增大而提高;然而高Ir负载量(≥1%)时,TOF随着Ir粒子的增大保持不变。
     2.Ir/CeO2催化剂对CO的催化氧化
     采用浸渍法制备了Ir/CeO2催化剂,考察了催化剂对CO的氧化活性。实验结果发现随着Ir负载量的增加,Ir/CeO2催化剂的CO氧化活性先上升后下降,当Ir的负载量为1%时,催化剂的活性最高。Ir/CeO2催化剂中Ir以IrO2的形式存在,当低负载量(≤1%)时以高分散形式存在;高负载量(>1%)时以晶相IrO2的形式存在。随着Ir负载量增加,Ir粒子逐渐变大,反应比速率和反应转换频率(TOF)逐渐下降,表明小粒子上具有更高的CO反应活性。同时也发现金属态Ir催化剂的CO氧化活性高于氧化态IrOx催化剂。
     3.OMS-2分子筛负载Co、Cu、Fe氧化物催化剂的VOCs氧化性能
     以KMnO4和MnSO4为前躯体,采用回流法合成了氧化锰八面体分子筛(OMS-2)。以OMS-2为载体采用浸渍法制备了Co/OMS-2、Cu/OMS-2和Fe/OMS-2催化剂,考察了催化剂对甲苯和乙酸乙酯的催化燃烧性能。扫描电镜(SEM)、X射线粉末衍射(XRD)表征表明合成的OMS-2分子筛为纳米棒状,且具有典型的cryptomelane结构。氢气程序升温还原(H2-TPR)实验结果表明OMS-2负载金属氧化物具有较低的还原温度。活性测试结果表明催化剂对乙酸乙酯的氧化活性明显高于对甲苯的氧化活性。添加少量的Co、Cu和Fe氧化物(1-2%)有利于提高OMS-2对甲苯和乙酸乙酯的催化燃烧活性,然而过多的负载量,造成OMS-2载体表面的覆盖使得活性反而下降。催化剂的活性顺序为Fe/OMS-2> Cu/OMS-2> Co/OMS-2> OMS-2。在Fel/OMS-2催化剂上乙酸乙酯和甲苯完全氧化温度分别为175℃和220℃。
Catalytic combustion of volatile organic compounds (VOCs), CH4 and CO is the main way for reducing emissions of pollutants. CH4 and CO oxidation are widely studied to evaluate catalytic performances of catalysts. In this work, Ir/ZrO2, Ir/CeO2 and a series of Co, Cu and Fe oxide catalysts supported on OMS-2 were prepared using an impregnation method. These catalysts were tested for oxidation of CH4, CO and VOCs. The detailed results are as follows:
     1. Catalytic combustion of methane over Ir/ZrO2 catalysts
     ZrO2 supports were prepared by precipitation method, and a series of Ir/ZrO2 catalysts were prepared by an impregnation method and their catalytic performance for CH4 catalytic combustion were tested. The catalyst structure and Ir species in the catalyst were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reaction (H2-TPR) techniques. The results showed that Ir existed in the form of IrO2 in the Ir/ZrO2 catalysts. The apparent activity of Ir/ZrO2 catalysts for CH4 combustion increased with Ir loading, and the catalysts showed high activities as well as good stability. With low Ir loading (≤1%), turnover frequency (TOF) for CH4 combustion increased with Ir particle size, however, it remained constant with high Ir loading (≥1%).
     2. Ir/CeO2 catalysts for CO catalytic oxidation
     A series of Ir/CeO2 catalysts were prepared by an impregnation method, and they were tested for CO oxidation. It was found that the activity of Ir/CeO2 catalysts for CO catalytic oxidation rose first and then declined with Ir loading. The catalysts showed the highest activity when Ir content is 1%. Ir existed in the form of IrO2 in the Ir/CeO2 catalysts. IrO2 was high dispersed with low Ir loading (≤1%), and existed as crystalline phase with high Ir loading (>1%). Ir particle size increased gradually with Ir loading, but specific rate and turnover frequency (TOF) declined gradually. It indicated that the catalyst with small particle size had a higher CO reactivity. It was also found that for CO oxidation, the activity of Ir catalyst with metal state was higher than that of with oxidation state.
     3. Oxidation of volatile organic compounds (VOCs) over manganese oxide octahedral molecular sieves (OMS-2) supported Co, Cu and Fe oxide catalysts
     A manganese oxide octahedral molecular sieve (OMS-2) was synthesized using KMnO4 and MnS04 as precursors by a reflux method. Co/OMS-2, Cu/OMS-2 and Fe/OMS-2 catalysts were prepared using a impregnation method and tested for catalytic combustion of toluene and ethyl acetate. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results showed that the synthesized OMS-2 molecular sieves were nano-rods, with the cryptomelane-type structure. Hydrogen temperature program reduction (H2-TPR) results indicated that the supported Co, Cu and Fe oxide catalysts have lower reduction temperatures. The activity test results showed that the catalytic activity of the catalysts for ethyl acetate was much higher than that for toluene. The addition of a small amount of Co, Cu and Fe oxides (1-2%) to OMS-2 was favorable for the catalytic combustion of ethyl acetate and toluene. However, due to excessive loading, the surface of OMS-2 was covered and the catalytic activity decreased. The activity order of the catalysts was Fe/OMS-2> Cu/OMS-2> Co/OMS-2> OMS-2. The highest activity was obtained over Fel/OMS-2 catalyst, with a complete oxidation of ethyl acetate and toluene at 175℃and 220℃respectively.
引文
[1]Spivey J J. Complete catalytic oxidation of volatile organics [J]. Ind. Eng. Chem. Res.,1987.26:2165-2171.
    [2]胡望均.常见有毒化学品环境事故应急处理与监测方法[M].中国环境科学出版社,北京,1993.
    [3]邱建华,吴彩斌,挥发性有机物对室内环境的影响研究[J].闽西职业技术学院学报,2009,11:124-127.
    [4]王海霞,仲伟华.挥发性有机化合物处理技术[J].化学工程师,2009,6:45-46.
    [5]黎维彬,龚浩,催化燃烧去除VOCs污染物的最新进展[J].物理化学学报,2010,26:885-894.
    [6]朱乐天.室内空气污染控制[M].化学工业出版社,北京,2002.
    [7]Urashima K, Chang J S. Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology [J]. IEEE Trans. Ind. Appl.,2000,7:602-614.
    [8]苑宏英,郭静VOCs恶臭污染物质的污染状况和一般处理方法[J].四川环境,2004,23:45-49.
    [9]余倩,邓欣,李俊,等.活性炭吸附技术对VOCs净化处理的研究进展[J].材料研究与应用,2010,4:368-371.
    [10]Kim H J., Nah S S., Min B R. A new technique for preparation of PDMS pervaporation membrane for VOCs removal [J]. Adv. Environ. Res.,2002,6: 255-264.
    [11]李国文.挥发性有机废气(VOCs)的污染控制技术[J].西安建筑科技大学学报,1998,30:399-402.
    [12]王红娟,李忠.半导体多相光催化剂氟化技术[J].现代化工,2002,22:56-60.
    [13]杨豪,李彦旭,卢姿.生物法处理挥发性有机废气(VOCs)的研究[J].广东化工,2009,36:125-127.
    [14]陈建孟,王家德,唐翔宇.生物技术在有机废气处理中的研究进展[J].环境科学进展,1998,6:30-35.孙小亮,蔡忠林,胡真.低温等离子体催化治理气 态污染物的研究进展[J].环境科技,2009,22:72-75.
    [15]郭建光,李忠,奚红霞,等.催化燃烧VOCs的三种过渡金属催化剂的活性评价[J].华南理工大学学报,2004,32:56-59.
    [16]Thevenin P O, Ersson A G., Kusar H M J, et al. Deactivation of high temperature combustion catalysts [J]. Appl. Catal. A:Gen.,2001,212:189-197.
    [17]Luo M F, Yuan X X, Zheng X M. Catalyst characterizaiton and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compands [J]. Appl. Catal. A:Gen.,1998,175:121-129.
    [18]Minico S, Scire S, Crosafulli C, et al. Influence of catlyst pretreatments on valatile organic compands oxidation over gold/iron oxide [J]. Appl. Catal. B: Environ.,2001,34:277-285.
    [19]Jeffrey C S, Lin Z A., Pan J W, et al. A novel boron nitride suppoted Pt catalyst for VOCs incineration [J]. J. Mol. Catal. A:Chem.,2005,239:243-248.
    [20]罗孟飞,袁贤鑫Pd-Pt/A12O3燃烧催化剂的活性和热稳定性[J].燃料化学学报,1995,23:23-25.
    [21]Zhang M, Zhou B, Chuang K T. Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures [J]. Appl. Catal. B:Environ.,1997,13:123-130.
    [22]Ferreira R S G., de Oliveira P G. P, Noronha F B. Characterization and catalytic activity of Pd/V2O5/Al2O3 catalysts on benzene total oxidation [J]. Appl. Catal. B: Environ.,2004,50:243-249.
    [23]Marceau E, Che M, Saint-Just J, et al. Influence of chlorine ions in Pt/Al2O3 catalysts for methane total oxidation [J]. Catal. Today,1996,29:415-419.
    [24]Yang Y X, Xu X L, Sun K P. Catalytic combustion of ethyl acetate on supported copper oxide catalysts [J]. J. Hazard. Mater.,2002,91:285-299.
    [25]李鹏,童志权,黄妍,等.新型CuMn/TiO_2苯类催化燃烧催化剂的研制及活性实验[J].环境科学学报,2008,28:468-475.
    [26]Larsson P O, Andersson A. Oxides of copper, ceria promoted copper, manganese and copper manganese on Al2O3 for the combustion of CO, ethyl acetate and ethanol [J]. Appl. Catal. B:Environ.,2000,24:175-192.
    [27]Kanungo S B, Physicochemical properties of MnO3 and MnO2-CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation [J].J. Catal.,1979,58:419-435.
    [28]Du F L, Cui Z L, Zhang Z K. Behavior of supported nano-copper catalysis in CO oxidation [J]. J. Natural Gas Chem.,1997,6:135-141.
    [29]Liu X S, Lu J Q, Qian K, et al. A comparative study of formaldehyde and carbon monoxide complete oxidation on MnOx-Ce02 catalysts [J]. Journal of Rare Earths, 2009,27:418-424.
    [30]Zheng X C, Zhang X L, Wang X Y, et al. Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation [J]. Appl. Catal. A,2005,295:142-149.
    [31]Avgouropoulos G, Ioannides T, Matralis H, et al. CuO-CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen [J]. Catal. Lett.,2001,73:33-40
    [32]Jia A P, Jiang S Y, Lu J Q, et al. Study of catalytic activity at the CuO CeO interface for CO oxidation [J], J. Phys. Chem. C,2010,114:21605-21610.
    [33]Liu X S, Jin Z N, Lu J Q, et al. Highly active CuO/OMS-2 catalysts for low-temperature CO oxidation [J]. Chem. Eng. J.,2010,162:151-157.
    [34]Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for Low-Temperature oxidation of hydrogen and of carbon monoxide [J]. J. Catal.,1989,115:301-309.
    [35]王桂英,张文祥,蒋大振,等.常温常湿条件下Au/MeOx催化剂上CO氧化性能[J].化学学报,2000,58:1557-1562.
    [36]Schryer D R, Upchurch B T, van Norman J D, et al. Effects of pretreatment conditions on a Pt/SnO2 catalyst for the oxidation of CO in CO2 Lasers [J]. J. Catal.,1990,122:193-197.
    [37]Sheintuch M, Schmidt J, Lechtman Y, et al. Modelling catalyst-support interactions in carbon monoxide oxidation catalysed by Pd/SnO2 [J]. Appl.Catal., 1989,49:55-65.
    [38]Fernandez-Garcia M, Martinez-Arias A, Salamanca L N, et al. Influence of ceria on Pd activity for the CO+O2 reaction [J]. J. Catal.,1999,187:474-485.
    [39]Martinez-Ortega F, Batiot-Dupeyrat C, Valderrama G., et al. Methane catalytic combustion on La-based perovskite catalysts [J]. Comptes Rendus de I'Academie des Sciences (Series ⅡC):Chemistry,2001,4:49-55.
    [40]Alifanti M, Kirchnerova J, Delmon B. Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion [J]. Appl. Catal. A:Gen., 2003,245:231-244.
    [41]Jansen S R, Haan J W, van der Ven L J M, et al. Incorporation of nitrogen of nitrogen in alkaline-earth hexaaluminates with a Beta-alumina-type or a magnetoplumbite-type structure [J]. Chem. Mater.,1997,9:1516-1523.
    [42]Astier M, Garbowski E, Prime M. BaMgAl1oO17 as hosmatrix for Mn in the catalytic combustion of methane [J]. Catal. Lett.,2004,95:31-37.
    [43]Milt V G., Ulla M A., Lombardo E A, Cobalt-containing catalysts for the high-temperature combustion of methan [J]. Catal. Lett.,2000,65:67-73.
    [44]Xiao T C, Ji S f, Wang H T, et al. Methane combustion over supported cobalt catalysts [J]. J. Mol. Catal.A:Chem.,2001,175:111-123.
    [45]Niwa M, Awano K, Murakami Y. Activity of supported platinum catalysts for methane oxidation [J]. Appl. Catal.,1983,7:317-325.
    [46]Bozo C, Guilhaume N, Garbowski E, et al. Combustion of methane on CeO2-ZrO2 based catalysts [J]. Catal. Today,2000,59:33-45.
    [47]Sekizawa K, Widjaja H, Maeda S, et al. Low temperatureoxidation of methane over Pd catalyst supported on metaloxides [J]. Catal. Today,2000,59:69-74.
    [48]Castellazzi P, Groppi G, Forzatti P, et al. Role of Pd loading and dispersion on redox behaviour and CH4 combustion activity of Al2O3 supported catalysts [J]. Catal. Today,2010,155:18-26.
    [49]罗才武,叶青,杨扬.氧化锰八面体分子筛的制备与应用研究进展[J].化学工业与工程技术,2009,30:19-23.
    [50]Ohtsuka H, The Oxidation of methane at low temperatures over zirconia-supported Pd, Ir and Pt catalysts and deactivation by sulfur poisoning [J]. Catal. Lett.,2011,141:413-419.
    [51]Jiang Z, Yu J J, Cheng J, et al. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites [J]. Fuel Process. Technol., 2010,91:97-102.
    [52]Miao S J, Deng Y Q, Au-Pt/Co3O4 catalyst for methane combustion [J]. Appl. Catal. B:Environ.,2001,31:L1-L4.
    [53]Carstens J N, Su S C, Bell A T. Factors affecting the catalytic activity of Pd/ZrO2 for the combustion of methane [J]. J. Catal.,1998,176:136-142.
    [54]Liotta L F, Di Carlo G., Longo A, et al. Support effect on the catalytic performance of Au/Co3O4-CeO2 catalysts for CO and CH4 oxidation [J]. Catal. Today,2008,139:174-179.
    [55]倪平,氨催化分解用铱催化剂的制备及其性能研究[D],四川:四川大学,2007
    [56]Wang A Q, Ma L, Cong Y, et al. Unique properties of Ir/ZSM-5 catalyst for NO reduction with CO in the presence of excess oxygen [J]. Appl. Catal., B:Environ., 2003,40:319-329.
    [57]Okumura M, Masuyama N, Konishi E, et al. CO Oxidation below room temperature over Ir/TiO2 catalyst prepared by deposition precipitation method [J]. J. Catal.,2002,208:485-489.
    [58]Reyes P, Rojas H, Pecchi G., et al. Liquid-phase hydrogenation of citral over Ir-supported catalysts [J]. J. Mol. Catal. A:Chem.,2002,179:293-299.
    [59]Zhu S M, Wang X D, Wang A Q, et al. Superior performance of Ir-substituted hexaaluminate catalysts for N2O decomposition [J]. Catal. Today,2008,31: 339-346
    [60]陈宏伟,尹安远,戴维林,等.草酸钠改性共沉淀制备高效Cu/ZrO_2催化剂及其在甲醇部分氧化制氢反应中的应用[J].化学学报,2009,67:129-133.
    [61]徐云鹏,田志坚,林励吾.贵金属固体催化剂的纳米结构及催化性能[J].催化学报,2004,25:331-338.
    [62]Liao P C, Chen C S, Ho W S, et al. Characterization of IrO2 thin films by Raman spectroscopy [J]. Thin Solid Films,1997,301:7-11.
    [63]Zyuzin D A, Cherepanova S V, Moroz E M. X-ray, Raman and FTIRS studies of the microstructural evolution of zirconia particles caused by the thermal treatment [J]. J. Solid State Chem.,2006,179:2965-2971.
    [64]Chen R S,. Chang H, Huanga Y, et al. Growth and haracterization of vertically aligned self-assembled IrO2 nanotubes on oxide substrates [J]. J. Cryst. Growth, 2004,271:105-112.
    [65]Zhang W S; Wang A Q; Li L; et al. Design of a novel bifunctional catalyst IrFe/Al2O3 for preferential CO oxidation [J]. Catal. Today,2008,131:457-463.
    [66]Keramidas V G, White W B. Raman spectra of oxides with fluorite structure [J]. J. Chem. Phys.,1973,59:1561-1562.
    [67]McBride J R, Hass K C, Poindexter B D, et al. Raman and X-ray studies of Ce1-xRExO2-y, where RE=La, Pr, Nd, Eu, Gd, and Tb [J]. J. Appl. Phys.,1994,76: 2435-2441.
    [68]Dohcevic-Mitrovic Z D, Grujic-Brojcin M U, Scepanovic M J, et al. Ce1-xY(Nd)xO2-d nanopowders:potential materials for intermediate temperature solid oxide fuel cells [J]. J. Phys.:Condens. Matter,2006,18:S2061-S2068.
    [69]Huang Y Q, Wang A Q, Li L, et al. "Ir-in-ceria":A highly selective catalyst for preferential CO oxidation [J]. J. Catal.,2008,255:144-152.
    [70]Pozdnyakova O, Teschner D, Wootsch A, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I:Oxidation state and surface species on Pt/CeO2 under reaction conditions [J]. J. Catal.,2006,237:1-16.
    [71]Luo M F, Lu G L, Zheng X M, et al. Redox properties of CexZr1-xO2 mixed oxides prepared by the sol-gel method [J]. J. Mater. Sci. Lett.,1998,17: 1553-1557.
    [72]唐幸福,黄秀敏,邵建军,等.氧化锰八面体分子筛纳米棒的合成及其催化甲醛低温氧化性能[J].催化学报,2006,27:97-99.
    [73]Peluso M A; Gambaro L A; Pronsato E; et al. Synthesis and catalytic activity ofmanganese dioxide (type OMS-2) for the abatement of oxygenated VOCs [J]. Catal. Today,2008,133-135:487-492.
    [74]Makwana V D; Son Y C; Howell A R; et al. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst:a kinetic and isotope-labeling study [J]. J. Catal.,2002,210:46-52.
    [75]Gandhe A R; Rebello J S; Figueiredo J L; et al. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate [J]. Appl. Catal., B:Environ., 2007,72:129-135.
    [76]Luo J; Zhang Q; Huang A; et al. Total oxidation of volatile organic compounds with hydrophobic cryptomelane-type octahedral molecular sieves [J]. Microporous Mesoporous Mater.,2000,35-36:209-217.
    [77]Gandhe A R, Rebello J S, Figueiredo J L, et al. Manganese oxide OMS-2 as an effective catalyst fortotal oxidation of ethyl acetate [J]. Appl. Catal. B,2007,72: 129-135.
    [78]DeGuzman R N, Shen Y F, Neth E J, et al. Synthesis and characterization of octahedral molecular sieves (OMS-2) having the hollandite structure [J]. Chem. Mater.,1994,6:815-821.
    [79]Chen X, Shen Y F, Suib S L, et al. Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants[J]. Chem. Mater.,2002,14:940-948.
    [80]de la Pena O'Shea V A, Alvarez-Galvana M C, Fierroa J L G, et al. Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol [J]. Appl. Catal., B:Environ.,2005,57:191-199.
    [81]Tang X F, Li Y G, Huang X M, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:effect of preparation method and calcination temperature [J]. Appl. Catal., B:Environ.,2006,62:265-273.
    [82]Luo M F, Zhong Y J, Yuan X X, et al. TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation [J]. Appl. Catal., A: Gen.,1997,162: 121-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700