镁基—海水法船舶烟气脱硫废水水质分析与处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航运事业的不断发展,因船舶烟气中二氧化硫排放造成的污染日益严重。为满足国际海事组织(IMO)对水上航运环境的严格要求,船舶烟气脱硫技术的研究倍受人们关注。而船舶脱硫废水的研究相对较少,对船舶烟气脱硫废水进行水质分析与处理研究亟待展开。
     实验室在某集装箱船设计安装一套镁基-海水法湿式烟气脱硫系统,当船舶主机正常运行时,进行烟气脱硫处理。脱硫废水水样为脱硫率大于90%以上时取得,对《废气清洗系统导则(2009)》(MEPC.184(59)决议)中洗涤水排放标准要求的水质指标进行分析;并根据水质特点,采用预曝气,活性炭二级吸附作用的技术方法处理。
     经实验分析得出船舶烟气脱硫水质主要特点为:废水颜色为黄色、略带刺激性气味、pH为8.87、亚硫酸根为10.21mg/L、悬浮物为1.471×104mg/L、浊度为50.2FTU、 CODOH-KI为224mg/L、PAHs为370.6μg/L、亚硝酸根为1.56mg/L,硝酸根为9.28mg/L。该类废水亚硫酸盐、氯离子含量较高、COD、悬浮物(SS)、多环芳烃(PAHs)、浊度超出海水污水排放标准及废气清洗系统(EGC)中洗涤水排放标准相关指标值。
     废水经预曝气,活性碳二级吸附作用方法处理结果为:250mL废水,在曝气1.5h时,亚硫酸盐的转化率为29.6%,和曝气2h时的转化率29.7%相差仅为0.1%,从经济性角度考虑,曝气时间定位1.5h。曝气处理后的废水50mL,调节pH为7.5,加入1.5g活性炭,吸附1.5h,废水的CODOH-KI与PAHs分别降为110mg/L和52.5gg/L,亚硝酸根为1.43mg/L,硝酸根为9.50mg/L,出水pH为7.56,且各项指标都符合船舶污水排放标准和废气清洗系统中的洗涤水排放标准。其中活性炭对PAHs的饱和吸附量为44.851μg/g。
The pollution caused by sulfur dioxide discharged from shipborne flue gas increases with the development of shipping continuously. In order to meet the stringent requirements set down by the International Maritime Organization (IMO) on the shipping environment, more and more attention is paid to the research on shipborne flue gas desulfurization. However there has been relatively little research on shipborne desulfurization wastewater treatment. It is urgent to analyze and treat wastewater from shipborne flue gas desulfurization.
     When the main engine of the ship is being the normal operation, a self-made wet-method flue gas desulfurization (FGD) equipment with MgO-seawater as desulfurizer was applied on a container ship. When the desulfurization efficiency is more than90%, the wastewater sample was taken and the relevant water quality indicators of 《Exhaust gas cleaning system guide (2009)》(MEPC.184(59) resolution) was analyzed. According to the characteristics of the wastewater, a method of pre-aeration and activated carbon adsorption was applied to treat the wastewater.
     The main characteristics of the yellow and slightly pungent alkaline wastewater were obtained as follows:the value of pH was8.87, the turbidity was50.2FTU, the contents of sulfite, suspended solids(SS), CODOH-KI, polycyclic aromatic hydrocarbons (PAHs), nitrite and nitrate were10.21mg/L,1.471×104mg/L,224mg/L,370.6μg/L,1.56mg/L and9.28mg/L, respectively. The wastewater has high contents of sulfite and chloride, and the contents of COD, SS and PAHs are greater than the values in the seawater turbidity sewage discharge standard and the exhaust gas cleaning system (EGC) in the wash water discharge standards related indexes.
     The results of wastewater treatment by pre-aeration and activated carbon adsorption were as follows:after the wastewater (250mL) aerated by1.5h and2h, the sulfite conversion efficiency was29.6%and29.7%respectively. The latter was only 0.1%greater than the former. From the economic point of view, the aeration time of1.5h is reasonable. The contents of CODOH-KI, PAHs, nitrite and nitrate were decreased to1lOmg/L,52.5μg/L,1.43mg/L and9.50mg/L respectively, and the value of pH was7.56, when1.5g activated carbon was used to treat the wastewater (50mL) in the aeration time of1.5h. The indicators meet all requirements of Exhaust Gas Cleaning System Guide (2009)(MEPC.184(59) resolution). The saturated adsorption capacity of PAHs/activated carbon is44.85μg/g.
引文
[1]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京.化学工业出版社,2002,1-30,40-50,114-116.
    [2]Siagi ZO, Mbarawa M.Dissolution rate of South African calcium-based materials at constant-pH[J].J Hazard Mater,2009,163:678-682.
    [3]Gao X,Guo R, Ding H,Luo Z, Cen K.Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite[J].J Hazard Mater,2009,168:1059-1064.
    [4]Dou B, Pan W, Jin Q,Wang W, Li Y.Prediction of SO2 removal efficiency for wet flue gas desulfurization[J].Energy Convers Manage,2009,50:2547-2553.
    [5]Hao Jin ming, Wang Shu xiao.Designation of Acide Rain and SO2 Control Zones and Control Policies in China[J],J Environ Sci Health, Part A,2000,35(10),1901-1914.
    [6]任如山,黄学敏,石发恩等.湿法烟气脱硫技术研究进展[J].工业安全与环保,2010,36(6):14-15.
    [7]崔一尘,刘惠永,廖洪强,孙俊民,姚强.燃煤烟气脱硫技术发展及其应用前景[J].热电技术,2001,1:19-24.
    [8]景启国,徐康富.氧化镁FGD脱硫过程的建模及其应用[J].环境污染治理技术及设备,2005,11(6):32-38.
    [9]徐宏建,张超,葛红花.镁法烟气脱硫工艺的实验窒模拟及其优化[J].上海电力学院学报,2010,4,26(2):145-146.
    [10]魏刚.氧化镁法脱硫废水处理系统设计.天津化工[A].2007,2(21):55.
    [11]郭东明.脱硫工程技术与设备[M].北京.化学工业出版社,2007.
    [12]GB8978-1996污水综合排放标准.
    [13]F ederal L aw G azette,BGBl.I ordinance o n Requirements for the Discharge of Waste Water into Waters [S].2004:1108.
    [14]中国船级社.73/78公约[M].北京:人民交通出版社,2003.
    [15]葛红花,华晶晶,曹雨欣.氧化镁脱硫废水处理絮凝剂研究[J].上海电力学院学报.2006,22(3):239.
    [16]王中原,王俩,宋宝华.氧化镁湿法烟气脱硫废水处理技术探讨[A].2010.
    [17]应春华,刘柏辉,戴豪波,牛延军.脱硫废水排放的控制项目及标准探讨.热力发电,2005 (9).
    [18]王中原,王俩,宋宝华.氧化镁湿法烟气脱硫废水处理技术探讨[A].2010.
    [19]S V D.imirtova Meatl sorption on blast fnraceslga[J].WatRes.1996,30(1):228-232.
    [20]S K Srivasatva.Removal of lead chromimu by activated slag-ablastufmacewaset[J].Jourmal of Enviormnental Engineering,1997(5):461-468.
    [21]赵玉娥,徐克贤,高大明.悬浮物沉降与治理试验[J].黄金.1989,10(12):4648.
    [22]来勇.化学沉淀-絮凝法处理双碱法烟气脱硫废水[M].(硕十学位论文).杭州:浙江大学,2005.
    [23]李彩亭,刘精今.炉渣处理烟气除尘脱硫废水[J].环境与开发.1996,11(4).
    [24]Menzie C, A,Potoki B.B.Exposure to carcinogenic PAHs in the environment[J]. Enviro n Sci Technol,1992,26(7):1278-1284.
    [25]Wilson S. C, Jonas K. C. Bioremediation of soil contaminated with polycyclic aromatic hydrocarbons(PAHs):a review [J]. Environ Pollute,1993,81:229-249.
    [26]王连生,孔令仁,韩朔睽等编.致癌有机物[M].中国环境科学出版社.北京,1993:1-10.
    [27]王春明.多环芳烃降解菌分离、降解特性及在稠油微生物采油中的应用研究[D].成都:四川大学,2007.
    [28]Juhasz A, L Naidu R. Bioremediation of high molecular weigh poly cyclie aromatic hydrocarbons:a review of the microbial degradation of benzo[a]pyrene [J]. International Biodeterioration & Biodegradation,2000,45:57-88.
    [29]D Mackay, W Y Shiu, Chem Eng.1977,22:399-403.
    [30]ANGOVE M J, FERNANDES M B, IKHSAN J.The sorption of anthracene onto goethite and kaolinite in the presence of some benzene carboxylic Acids [J] Journal of Colloid and Interface Science,2002,24:282-289.
    [31]DOUCE D S, CLENCH M R, COOKE M, et al.Evidence for the adsorption of nitrate d polycyclic aromatic hydrocarbons by tree bark [J].Journal of Chromatography A,1997,78 6:275-283.
    [32]SMKO P, SMON P, KHUNOV. Removal of polycyclic ar2omatic hydrocarbons from water by migration into polyethylene[J].Food Chemistry,1999,64:157-161.
    [33]SABAT J, BAYONA J M, SOLANAS A M.Photolysis of PAHs in aqueous phase by UV irradiation [J].Chemosphere,2001,44:119-124.
    [34]LEHTO K M, VUOR IMAA E, LEMMETYINEN H.Photolysisof polycyclic aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescence[J].Journal of Pho-tochemistry and Photobiology A:Chemistry,2000,136:53-60.
    [35]LEE B D, HOSOM IM, MURAKAM IA. Fenton oxidation with ethanol to degrade an thracene into biodegradable and thraquinon:a pretreatment method for anthracene-contamin a-ted soil[J].Water Science Technology,1998,38(7):91-97.
    [36]BOGAN B W, TRBOV IC V, PATEREK J R.Inclusion of vegetable oils in Fenton's chemistry for remediation of PAH-contaminated soils[J].Chemosphere,2003,50:15-21.
    [37]LITTLE C, HEPHER M J, EL-SHAR IF M.The sono-degradation of phenanthrene in an aqueous environment[J].ltrasonics,2002,40:667-674.
    [38]RSILLAKIS E, GOULA G, KALOGERAKIS N, etal.Degrdation of polycyclic aromatic hydrocarbons in aqueous solution by ultrasonic irradiation [J].Journal of Hazardous Materi-als,2004, B108:95-102.
    [39]LAUGHREY Z, BEAR E, JONES R, etal.Aqueous sonolytic decomposition of polycycli c aromatic hydrocarbons in the p res2ence of additional dissolved species[J].Ultrosonics So-nochemistry,2001,8:353-357.
    [40]TAYLOR J E, COOK B B, TARR M A.D issolved organic matter inhibition of sonoc hemical degradation of aqueous polycyclic aromatic hydrocarbons [J].Ultrasonics Sonochemi-stry,1999,6:175-183.
    [41]李臻,牛自得.利用氧化镁生产硫酸镁的方法.专利号:200310107026.8.
    [42]徐康富,马永亮,刘玉同,张战朝.一种氧化镁烟气脱硫及产物浓浆法氧化回收工艺.专利号:200510086387.8.
    [43]马永亮,徐康富,汪黎东等.一种氧化镁湿法烟气脱硫及产物自浓集的回收工艺.专利号:200910079787.4.
    [44]叶正光,刘延令,朱彤,杨剑等.利用镁法脱硫副产物亚硫酸镁制取脱硫剂氧化镁和二氧化硫的方法.专利号:200510127599.6.
    [45]马永亮,张亚斌,徐康富.一种氧化镁烟气脱硫产物的回收方法.专利号:201010600370.0.
    [46]高飞燕,王轶锋,刘晓龙.发电厂脱硫废水处理的必要性及其技术应用[A].内蒙占科技与经济.2010.215(13):74.
    [47]王新,左经刚.高氯废水中化学需氧量的测定[J].辽宁化工,2004,33(11):680-682.
    [48]赵亚乾Cl-,NH3和H202对COD测定的影响[J].上海环境科学,1995,14(8):32-34.
    [49]林诗敏,葬跃,白书明.差减法测定高氯废水的COD值.海南省辐射环境监测站中国给水排水[J].2009,12,25(24):79-80.
    [50]周养群.中国油品及石油精细化学品手册.北京:化学工业出版社,2000.
    [51]周连江,乐志强,无机盐手册[M],第二版.天津,天津化工研究院.1996,1063-1098.
    [52]汪黎东,赵毅,李蔷薇.湿法脱硫中亚硫酸盐非催化氧化本征动力学[J].化学学报,2007,5(22):2618-2622.
    [53]李天昕,谷为民,林海等.新型介孔净化材料与活性炭的性能对比及其制备方法和应用[J].中国非金属矿工业导刊,2004,(6):49-52.
    [54]王琳,王宝贞.饮用水深度处理技术[M].北京:化学工业出版社,2002.
    [55]于鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003,126(3):23-28.
    [56]孙丽娜.活性炭对水中微量有机物的净化效能与处理工艺中试研究[D].天津大学.28.
    [57]梁利娜,王郑,杨铠诚等.凹凸棒活性炭复合滤料对水中CODMn的吸附研究[J].河北化工,2010,33(1):2-4.
    [58]孙璐.混凝-活性炭吸附对化工废水深度处理效果的研究[D].(硕士学位论文).兰州:兰州理工大,2010.
    [59]包金梅,凌琪,李瑞.活性炭的吸附机理及其在水处理方面的应用[J].四川环境,2011,30(1):97.
    [60]陈良杰,王京刚.挥发性有机物的物化性质与活性炭饱和吸附量的相关性研究[J].化工环保,2007,27(5):412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700