纳米铝热剂的制备及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推进剂是以推进为目的的复合型含能材料,是提供推进力的能源,是火箭和导弹发动机的动力源,固体推进剂的性能直接影响导弹武器的作战效能和生存能力,高能固体推进剂是高性能导弹武器系统研制的技术基础。纳米催化剂由于具有量子尺寸效应、表面效应和宏观量子隧道效应,导致其表面积巨大且表面活性中心多,因此在固体推进剂中的催化燃烧中展现了良好的应用前景。本文制备了一系列纳米金属氧化物及其与纳米铝粉的复合物,并进行了表征。主要研究内容如下:
     1.对应用较广泛的纳米催化剂Fe_2O_3、NiO、MgO等一元金属氧化物进行了纳米化制备,并采用X-射线粉末衍射、扫描电镜(SEM)、热重分析和红外分析进行了表征。结果表明,制备了颗粒形状及大小都比较均匀的纳米氧化Fe_2O_3,粒径均在50-100 nm范围;纳米氧化镍粉体呈球形,粒径范围在50-200 nm,微粒形状不是很规则;纳米氧化镁粉体呈球形且形貌规则,粒径在50-200 nm范围内;纳米氧化铜微粒呈块体立方形,也有少数球形,粒径范围在50-200 nm;采用共沉淀法制备纳米四氧化三铁粉体,实验结果表明,所得产品是Fe_2O_3。
     2.采用溶胶-凝胶法制备了纳米Fe_2O_3/Al、NiO/Al、MgO/Al粉体,并进行了表征。结果表明,得到粒子晶化非常完全的纳米Fe_2O_3/Al粉体,且纳米粉体呈均匀球形,粒径很小,粒径范围在50 nm左右;得到了不纯的NiO/Al粉体,并且纳米粉体颗粒很不规则;得到形状极不规则的纳米MgO/Al粉体,且有明显在团聚现象。同时还对实验所用的两种铝粉进行了分析,结果表明,所用原料纳米铝粉粒径都很大,且团聚现象都很严重。
Propellant is composite energetic materials, which is energy sources unfolding the propulsion; which is the power supply of the rocket and guide missle engine. The performance of solid propellant effect the operation efficiency and survivability of missile weapon, the high energy solid propellant is the technical basis of the research of high energy missile weapon system. Owing to the fact that quantum size effect, superficial effect and macroscopic quantum tunnel effect, which lead to huge surface and many superficial activated centers, nanoparticles as combustion catalyst have a good application foreground in the solid propellant. In this thesis, a series of nanocomposite oxides and some composite were prepared and characterized. Main results of this thesis are as follows:
     1. Nanocrytalline Fe_2O_3、NiO、MgO and CuO were prepared, because these mono-metal oxides are usually used in propellants, and characterized method by XRD、SEM、TG and IR, results indicated that the nanocrystalline Fe_2O_3 powders were prepared with relatively uniform particle size and shape, the range of particle size of Fe_2O_3 is 50-100 nm; the nanocrystalline NiO powders are sphere, the range of particle size of NiO is 50-200 nm with an irregular shape; the nanocrystalline MgO powders is sphere with a regular shape, the range of particle size is 50-200 nm; the nanocrystalline CuO powders is cube and a few sphere, the range of particle size is 50-200 nm. Nanometer Fe_3O_4 was prepared by coprecipitation, but the results show that the preparation is Fe_2O_3.
     2. Nanometer Fe_2O_3/Al、NiO/Al and MgO/Al were prepared by sol-gel synthetic approach and characterized. The results show that Fe_2O_3/Al nanometer powders were fully crystallized, and the powders are uniform sphere and smaller crystal size, the particle size is 50 nm; The impurity NiO/Al prepared with an irregular shape; The MgO/Al powders were prepared with an extremely irregular shape, and obviously agglomerates can be observed. At the same time, nano-aluminium used by experiment are analyzed, the results show that the particale size is large with obviously agglomerates.
引文
[1]朱屯,王福明,王习东等.国外纳米材料技术进展与应用[M].北京:化学工业出版 社,2002:32-36
    
    [2]周瑞发.纳米材料技术[M].北京:国防工业出版社,2003:20-24
    
    [3]陈敬中,刘剑洪.纳米材料科学导论[M].北京:高等教育出版社,2006:6-7
    
    [4] Gleiter H. Nanostructured materials[J]. Acta Metalur gica Sinica, 1997, 33(2): 30-38
    
    [5]李斗星,平德海.纳米固体材料的显微结构[J].电子显微学报,1997,16(3):255-260
    
    [6]郁卫飞,黄辉,聂福德等.纳米复合含能材料的研究进展[J].含能材料,2005,13(5): 40-343
    
    [7]莫红军,赵凤起.纳米含能材料的概念与实践[J].火炸药学报,2005,28(3):79-82
    
    [8] Miziolek, A. W. Defense applications of nanomaterials(ACS Symposium Series Book)[M]. Oxford: Oxford U niversity Press, 2003: 1 -5
    
    [9] Miziolek, A. W. Nanoenergetics: an emerging technology area of national importance[J].The Amptica Newsletter, 2002, 6(1): 43-48
    
    [10]罗运军,刘晶如.高能固体推进剂研究进展[J].含能材料,2007,15(4):407-410
    
    [11]刘晶如,罗运军,杨寅.新一代高能固体推进剂的能量特性计算研究[J].含能材料, 2008,16(1):94-99
    
    [12]王申,金韶华,盛思源等.含CL220的NEPE推进剂能量水平分析[J].火炸药学报, 2002,1:12-15
    
    [13]洪伟良,赵凤起,刘剑洪等.含硝仿肼的固体推进剂能量特性研究[J].火炸药学报, 2000,3:22-24
    
    [14]刘剑洪,田德余,赵彦晖等.二硝酰胺铵推进剂的能量特性[J].火炸药学报,2000, 2:1-3
    
    [15]郭万东译.固体推进剂超级燃速催化剂[J].飞航道弹,1996,6:21
    
    [16]邓鹏图,田德余,赵恂等.超细CaCO_((3))对丁羟基复合固体推进剂燃速及工艺性能的 影响[J].推进技术,1998,19(1):86-88
    
    [17]张汝冰,刘宏英,李凤生.含能催化复合纳米材料的制备研究[J].火炸药学报, 2000,23(3):9-15
    
    [18]张汝冰,刘宏英,李凤生.复合纳米材料制备研究(Ⅱ)[J].火炸药学报,2000,23(1):??59-61
    
    [19]马凤国,季树田.纳米氧化铅作为燃烧催化剂的应用研究[J].火炸药学报,2000, 23(2):13-15
    
    [20]洪伟良,赵凤起,刘剑宏等.纳米PbO和Bi_((2))O_((3))粉的制备对推进剂燃烧性能的影响 [J].火炸药学报,2001,24(3):7-9
    
    [21]洪伟良,刘剑宏,陈沛等.纳米CuO的制备及对RDX热分解特性的影响[J].推进 技术,2001,22(3):254-257
    
    [22]汪信,罗元香,陆路德等.纳米材料在固体推进剂中的应用[J].增刊:123-126
    
    [23]罗元香,陆路德,汪信等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究[J]. 含能材料,2002,10(4):148-152
    
    [24]王世敏,许祖勋,傅晶.纳米材料制备技术.北京:化学工业出版社,2002,61-120
    
    [25]洪伟良,赵凤起等.制备纳米氧化铜粉体的新方法[J].火炸药学报,2000,23(3):7-9
    
    [26]徐宏,刘剑宏,陈沛等.纳米氧化铁的制备及其对吸收药热分解催化作用的研究[J]. 火炸药学报,2002,25(3):51-52
    
    [27] Sandra K. Overview of Sol-Gel Science and Technology[R]. US Army Research Laboratory Report No. ARL-TR-2650
    
    [28]马凤国等.均匀沉淀法合成超细碳酸铅[J].火炸药学报,2002,25(2):45-46
    
    [29]邓鹏图,田德宇等.溶胶-凝胶法制备纳米Cr_((2))O_((3))[P].中国专利:97107927, 1997-11-26
    
    [30]赵凤起等.纳米材料在火炸药中的应用研究现状及发展方向[J].火炸药学报,2001, 24(4):61-65
    
    [31]王昕.纳米含能材料研究进展[J].火炸药学报,2006,29(2):29-32
    
    [32]谢剑宏等.国外纳米铝粉应用推进剂研究进展[J].化学推进剂与高分子材料,2002, 5:15-17
    
    [33] Ulrich T., Ulrich F. B. Rheology of nano-aluminum suspensions[J]. Propellants,Explosive, Pyrotechnics, 2001, 26(6): 268-272
    
    [34] Ramasvamy A., Kaste P. Combustion modifiers for energetic materals[A]. InternationalAnnual Conference of ICT 34~(th)[C], 2003, 21/1-21/15
    
    [35] Jones D. E. G., Brousseau P., Fouchard R. C, et al. Thermal characterization ofpassivated nanometer size aluminum powders[J]. J. Therm Anal Calorm, 2000, 61(3):??805-818
    
    [36] Lefrancois Alexandra Expertise of Nanometric aluminum powder on the detonationefficiency of explosives [A]. International Annumal Conference of ICT 32~(nd) [C], 2001,36/1-36/12
    
    [37] Utkin A. V., Kanel G. I., Bogach A. Macrokinetics of the energy release in highexplosives containing nano-size boron particles[A]. A IP Conf Proc, 505(ShockCompression of Condensed Matter, Pt 2) [C], 2000, 869-872
    
    [38] Huang H., Huang H. J., Huang Y. Influence of particle size of aluminum powder andmorphology of oxidizer in RDX based aluminized explosive on the ability ofaccelerating metal ( I ) [A]. Theory and Practice of Energetic Materials[C],2003,504-509
    
    [39]黄辉,黄勇,李尚斌.含纳米级铝粉的复合炸药研究[J].火炸药学报,2002,25(2): 1-3
    
    [40] Tepper F., Ivanov G.V. Intermetallic Alloy Formation from Nanosize Metal PowderProduced by Electro-exploding Wires, 1996 world Congress on Metallurgy andParticulate Materials. June 16-21, Washington, DC.
    
    [41] Ivanov G.V., Tepper F. 4~(th) International symposium of special Topics in ChemicalPropulsion. Stockholm, Sweden, May 27-31, 1996
    
    [42] Mench M. M, Yeh C. L, Kuo K. K. Propellant burning rate Enhancements and ThermalBehavior of Ultra-fine Powder(Alex). 29~(TH)Int. Annu. Conf. Of ICT, 1998
    
    [43]郭万东.固体推进剂超燃速催化剂[J].飞航导弹,1996,6:21-25
    
    [44]邓鹏图.纳米过渡金属氧化物的制备及其在固体推进剂催化燃烧中应用[D].北京: 国防科技大学,1997
    
    [45]宝迪.三氧化二铁超细粉末的制备[J].内蒙古石油化工,2004,30:3-4
    
    [46]赵克辉,王承权,闰涛等.纳米Fe_((2))O_((3))的制备与气敏性质的研究[J].材料学报,2002, 21(8):579-584
    
    [47]马振叶,李凤生,崔平等.纳米Fe_((2))O_((3))的制备及其对高氯酸铵热分解的催化性能[J]. 催化学报,2003,24(10):795-798
    
    [48]孙彤,沈瑜生,刘勇.α-Fe_((2))O_((3))基纳米材料催化和气敏性质的研究[J].科学通报, 1995,40(8):694-694
    
    [49] Narasimhan B. R. V., Prabhakar S., Manohar P., et al. Mater Lett, 2002, 52 (4-5): 295
    
    [50] Nakamura H., Akiyoshi M. Combustion catalysts of non-pollutant solid roeket Propellant[J]. Journal of the Japan Explosives Society, 2002, 63(4):163-168
    
    [51]郭万东译.固体推进剂超级燃速催化剂[J].飞航导弹,1996,6:21
    
    [52]邓鹏图.纳米过渡金属氧化物的制备及其在固体推进剂催化燃烧中的应用.国防科 技大学博士论文,1997
    
    [53] Lucas E. M, Klabunde K. J. Nanocrystals as destructive adsorbents formimics of chemical warfare agents[ J]. Nanostrucured Msterials, 1999, 12: 179-182
    
    [54] Ryan Richards, Ravichandra S Mulukutla, IIya Mishakov, et al. Nanocrystalline ultra-high surface area magnesium oxide as a selective base catalyst[J]. ScripatMater, 2001,44:1663-1666
    
    [55]安红梅,刘云飞,李玉平等.金属氧化物对HNIW单元推进剂燃烧的催化研究[J]. 火炸药学报,2000,23(4):27-28
    
    [56] Larsson P. O., Andersson A. Complete oxidation of CO, ethanol and ethyl acetate overcopper oxide supported on titania and ceria modified titania[J]. CataL, 1998, 179: 72-89
    
    [57] Frietseh M., Zudoek F., Gosehniek J, et al. CuO catalytic membrane as selectivitytrimmer for metal oxide gas sensors[J]. Sensors and Aetuators B, 2000, 65: 379-381
    
    [58] Gruttner C, Rudershausen S., Teller J. Improved properties of magnetic particles bycombination of different polymer materials as particle matrix[J]. J Magn Magn Mater,2001,225:17
    
    [59] Hunu C, Yousef H., Chen C. J. Modification and characterization of polysetrene-basedmagnetic microspheres and comparison with albumin-based magnetic microspheres[J]. JMagn Magn Mater, 2001, 225: 21
    
    [60]曾恒兴.铁基微粉材料研制的进展[J].化学通报,1992(10):6-8
    
    [61] Qu S. C, Yang H., B., Ren D. W., et al. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions [J]. J. Colloid Interface Sci, 1999, 215: 190-192
    
    [62] Carl R. F., Dumesic J. A. Strong oxide-oxide interaction in silica-supported magnetite catalysts[J], J. Phys Chem, 1981, 85: 3175-3180.
    
    [63] Tilbtson T. M., Gash A. E., Simpson R. L., et al. Nanaostructured energetic materials??using sol-gel methologies[J]. Nano-Cryst Solid, 2002, 285(1-3): 338-354
    
    [64] Barbee T. W., Gash A. E., Satcher J. H., et al. Nanotechnology based environmentallyrobust priners[A]. 34~(th) International Annual Coference of ICT[C], 2003, 31/1-31/13
    
    [65] Hrubesh L. A Shared Award in Aerogel Process Technology[J]. LLNL Science andTechnology Review, 1995, Nov/Dec, 22-25
    
    [66] Parker A. Nanoscale Chemistry Yields Better Explosives [J]. LLNL Science and Technology Review, 2000, Oct, 19-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700