化学链燃烧过程钙基载氧体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来全球变暖引发的频繁极端天气使人们更加关注减少二氧化碳等温室气体的排放问题,二氧化碳的捕集和封存技术因此也成为了各国研究的热点。其中化学链燃烧过程被认为是一种极具发展前景的二氧化碳捕集技术。化学链燃烧技术无需消耗额外能量即可实现CO2内分离,并且还可以控制燃料型、热力型NOx的生成和实现能量的梯级利用。化学链燃烧技术成为解决能源与环境问题的创新性突破口,而载氧体的研究又是化学链燃烧技术能够实施的先决条件。本文围绕化学链燃烧技术对钙基载氧体进行了一系列的研究。
     首先利用双外推法分别对硫酸钙在惰性和还原性氛围下的热反应动力学进行了研究。在不假定机理函数的前提下,采用精确的动力学方程温度积分形式计算得到30种常用机理函数所对应的动力学参数。将升温速率和转化率双外推为零,得到了无任何副反应干扰、体系处于原始状态时的动力学参数E和lnA。硫酸钙的初期分解过程和与还原性气体反应过程均受成核核增长机制控制,其机理函数分别为G(α)=[-ln(1-α)]2、G(α)=[-ln(1-α)]1/3和G(α)=[-ln(1-α)]1/2。
     实验考察了温度和还原性气体分压对载氧体与还原性气体反应的影响。反应产物会随温度的不同而有所改变。温度升高,反应产物中的副产物CaO增多,对于硫酸钙循环不利,但是温度过低,又会降低反应速率。所以控制较低的温度和升温速率能改善提高载氧体的再生性能。在一定范围内,还原性气体的分压越大,越有利于主反应正向进行。当还原性气体的分压达到一定值后,反应产物几乎全部为CaS。此时产物组分不再随分压增大而改变,反应速率也不再随还原性气体分压增大而增大。
     在硫酸钙载氧体的反应动力学研究基础上,根据硫酸钙的结构特点和反应特性,分别采用了两种方法对硫酸钙载氧体进行了物理化学性质上的改性。首先利用不同粒径的碳酸钙对硫酸钙载氧体进行改性,实验研究表明碳酸钙改性使载氧体在反应性和再生性上都得到了很大改善,并且在一定程度上抑制了副反应发生。利用纳米碳酸钙对硫酸钙载氧体改性使硫酸钙的循环再生性能得到提高。当用纳米碳酸钙对酸处理过的硫酸钙载氧体进行改性时,硫酸钙载氧体在八个氧化还原循环后减少量较小。考虑到固体燃料化学链燃烧速率较慢,分别利用微量的三种金属氧化物(氧化铁、氧化铜氧化镍)逐滴浸渍到硫酸钙中对硫酸钙载氧体进行改性。金属氧化物对反应起到催化作用,改性后的硫酸钙载氧体与固体燃料的反应速率得到提高。利用SEM和XRD分别对其表面形貌和反应前后物质形态进行了表征,金属氧化物改变了载氧体的基本孔结构和表面性能,在一定程度上也抑制了SO2的产生。
     本论文还设计了一套带有多角度射流管的高温流化床化学链燃料燃烧反应器。并考察了载氧体的流化特性和温度对最小流化速度的影响。通过实验和经验式推导均得到,载氧体颗粒最小流化速度随温度升高而减小。还考察了同粒径异密度的载氧体和煤颗粒双组份体系最小流化速度。其最小流化速度处在两组份各自单独流化时最小流化速度之间。载氧体颗粒的质量比越大时,与研究者经验关联式的误差越小。大密度的载氧体颗粒占比例越大时,流化效果会变得较差。
More attention is paid to reduce emissions of greenhouse gases such as carbon dioxide due to the frequent extreme weather caused by global warming in recent years. Concequently, carbon dioxide capture and storage technology has become a research hotspot. Chemical looping combustion (CLC) technology, characterized by CO2 inherent separation without extra energy consuming, low NOx emission and high efficient, is considered as a promising technology of carbon dioxide capture. Chemical looping combustion technology gives a new way to solve the problems of energy and the environment, while the oxygen carriers are the prerequisites to explore the process of chemical looping combustion. A series of investigations on the oxygen carriers for chemical looping combustion were carried out in this paper.
     Firstly, the mechanism of calcium sulfate pyrolysis and its reaction with reducibility gas (H2, CO) using double extrapolation was studied in this paper. Thirty kinds of common mechanism functions of and their corresponding kinetic parameters were presented using the precise temperature integral form. The most probable mechanism is evaluated to be nucleation and nuclei growth model, and their probable mechanism functions were G(α)=[-ln(1-α)]2, G(α)=[-ln(1-α)]1/3 and G(α)=[-ln(1-α)]1/2 respectively.
     The effects of temperature and partial pressure of reducing gas on the reaction between oxygen carrier and reducing gas were also investigated. The reactant components varied with the reaction temperature. The fractions of by-products CaO are increased with increasing temperature. However, the above reaction rate would be very low at low temperature; oxygen carrier particles show a good regeneration at a relatively low temperature and heating rate. To some extent, the higher reducing gas partial pressure was, the greater main reaction rate favored reactions. Reaction products were almost the calcium sulfide when the partial pressure of reducing gas reached a certain value, and then the reaction products and the reaction rate would not change with the partial pressure of reducing gas increasing.
     Based on the study on calcium sulfate oxygen carrier and its structure characteristics and reaction feature, the chemical and physical properties of calcium sulfate oxygen carrier were modified by different particle sizes of calcium carbonate. The experiment results showed that the reactivity and regeneration of calcium sulfate oxygen carriers modified by calcium carbonate were improved with less side reaction. The regeneration of the calcium sulfate oxygen carrier modified by the nano-calcium carbonate was better then unmodified oxygen carriers. When the acid treated calcium sulfate was modified by the calcium carbonate, the loss of calcium sulfate was very low after eight redox cycles.
     Considering the reaction rate of the solid fuels for chemical-looping combustion slower, calcium sulfate oxygen carrier was modified by three trace metallic oxides (ferric oxide, copper oxide and nickel oxide) using the wet impregnation method. The reaction rate of the modified calcium sulfate was improved. The reduced calcium sulfate was characterized by scanning electron microscopy (SEM) and XRD respectively on its surface morphology and physical form. It has been found that the main cause on higher reactive of oxygen carrier modified by metal oxides was attributed to its basic pore structure and surface properties, and also the catalyticaction of the metallic oxide.
     The fuel reactor, a high temperature fluidized bed with multiple angles jetting pipes, was designed in this paper. And the cold and heat flow characteristics of the oxygen carriers and solid fuel particles were researched in the reactor. The effect of temperature on the minimum fluidization velocity of particles was examined. Through experiment and empirical equation, the law that the minimum fluidization velocity of oxygen carrier particles increased with temperature decreasing was obtained. Also the minimum fluidization velocity of the oxygen carrier particles and coal particle binary system with the same particle size and different density was studied in this paper. The error between experiment value and calculate value become smaller with the mass ratio of coal particles and oxygen carriers increasing, due to the relatively larger difference of the density between two particles.
引文
[1]狄藤藤,煤气化链式燃烧联合循环系统性能研究[D],南京:东南大学, 2006
    [2] Richter H J; Knoche K F, Reversibility of Combustion Process,Efficiency and Costing, Second Law Analysis of Processes[C], Gaggioli R A,ed ACS Symposium Series 235 Washington. DC: 1983: 71~85
    [3]金红光;洪慧;韩涛,化学链燃烧的能源环境系统研究进展,科学通报, 2008, 53 (24): 2994~3005
    [4] Fan Liangshih; Li Fanxing; Shwetha Ramkumar, Utilization of chemical looping strategy in coal gasification processes, Particuology, 2008, 6: 131~142
    [5] Li Fanxing, Chemical looping gasification process [D], Unite States: The Ohio State University, 2009
    [6]何方;王华;戴永年等,循环热载体无烟燃烧技术的试验研究[J],中国工程科学, 2004, 6(7):65~69
    [7] Wolf Jens; Marie Anhedenb, Yan Jinyue, Comparison of nickel- and iron-based oxygen carriers in Chemical-looping combustion for CO2 capture in power generation[J], Fuel, 2005: 993~1006
    [8]李振山;韩海锦;蔡宁生,化学链燃烧的研究现状及进展[J],动力工程, 2006, 26(2): 538~543
    [9]刘黎明;赵海波;郑楚光,化学链燃烧方式中氧载体的研究进展[J],煤炭转化, 2006, 7(3): 85~92
    [10] Adànez.J; Garcia-Labiano F; de Diego L. E. et al. Nickel-copper oxygen carriers to reach zero CO and H2 emissionsin chemical-looping combustion[J], Industrial and Engineering Chemistry Research, 2006,45: 2617~2625
    [11] Hossain M M; Sedor K E; Lasa.H, Co-Ni/Al2O3 oxygen carrier for fluidized bed chemical–looping combustion: Desorption kinetics and metal support interaction[J]. Chemical Engineering Science, 2007, 62: 5464~5472
    [12]Magnus Rydén; Anders Lyngfelt; Tobias Mattisson et. al. Novel oxygen-carrier materials for chemical looping combustion and chemical looping reforming: LaxSr1-xFeyCo1-yO3-δperovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4, International journal of greenhouse gas control, 2008, 2: 21~36
    [13]郑瑛;保文;宋侃等,化学链燃烧技术中新型氧载体CaSO4的特性研究[J],工程热物理学报, 2006, 27: 531~533
    [14] Jerndal E; Mattisson A, Thermalanalysis of chemical-looping combustion[J], Chemical Engineering Research and Design, 2006, 84: 795~806
    [15] Adánez J; Diego L; Carcía-Labiano F et al. Selection of oxygen carriers for chemical-looping combustion [J], Energy and Fuels, 2004, 18(2): 371~377
    [16] Chuang S.Y.; J.S. Dennis; A.N. Hayhurst et al., Development and performance of Cu-based oxygen carriers for chemical-looping combustion, Combustion and Flame, 2008, (154): 109~121
    [17] Sung Real Son; Kang Seok Go; Sang Done Kim. Thermogravimetric analysis of Copper oxide for chemical-looping hydrogen generation, Ind. Eng. Chem. Res, 2009, 48: 380~387
    [18] Cristina Dueso; Francisco García-Labiano; Juan Adánez, syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier, Fuel, 2009, Volume 88(12): 2357~2364
    [19] Corbella B. M.; Diego L. De; García F.. The performance in a fixed bed reactor of Copper-based oxides on Titania as oxygen carriers for chemical-looping combustion of methane, Energy & Fuels, 2005, 19: 433~441
    [20] Ishida M; Yamamoto M; Ohba T. Experimental Results of Chemical-looping Combustion with NiO/NiAl2O4 Particle Circulation at 1200℃[J]. Energy Conversation, 2002, 43 (9212): 1469~1478
    [21] Linderholm Car; Tobias Mattisson; Anders Lyngfelt, Long-term integrity testing of spray dried particles in 10-kW Chemical-looping combustor using natural gas as fuel, Fuel, 2009, 88 (11): 2083~2096
    [22] Rydén Magnus; Lyngfelt Anders; Mattisson Tobias, Chemical-Looping Combustion and Chemical-Looping Reforming in a Circulating Fluidized-Bed Reactor Using Ni-Based Oxygen Carriers, Energy & Fuels, 2008, 22: 2585~2597
    [23] Zhao Haibo; Liu Liming; Wang Baowen. Sol-Gel Derived NiO/NiAl2O4 Oxygen Carriers for Chemical-Looping Combustion by Coal Char, Energy Fuels, 2008, 22 (2): 898~905
    [24] Copeland R J; Alptekin G; Cesario M e.tal., A novel CO2 separation system, Proceedings of the 8th International Symposium on Transport and Dynamics of Rotating Machinery (ISROMAC28),Honolulu Hawaii, 2000
    [25] Lyngfelt A; Leckner B; Mattisson T. A fluidized bed combustion process with inherent CO2 separation: application of chemical-looping combustion [J]. Chemical Engineering Science, 2001, 56 (10): 3101~3113.
    [26] Abad A,Mattisson T,L yngfelt A etal. Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier [J], Fuel, 2006, 85(9): 1174~1185
    [27] Jung Jonghwun; Gamwo Isaac K. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling, Powder Technology, 2008 183: 401~409
    [28] Deng Zhongyi; Xiao Rui; Jin Baosheng et al. , Numerical simulation of chemical looping combustion process with CaSO4 oxygen carrier, International Journal of Greenhouse Gas Control. 2009, 3(4): 368~375
    [29] Abad Alberto; Adánez Juan; Francisco García-Labiano, Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier, Combustion and Flame, 2010, 157(3) 602~615
    [30] Cho P.; Mattisson T.; Lyngfelt A, Comparison of iron-, nickel-, copper-, and manganese-based oxygen carriers for chemical-looping combustion, Fuel, 2004, 83: 1225~1245.
    [31] Ryu, H .J.; Bae, D . H.; Jo, S.H. et al., Reaction characteristics of Ni and NiO based oxygen carrier particles for chemical-looping combustor. Korean Chemical Engineering Research 2004, 42: 107~114.
    [32] Linderholm Carl; Abad Alberto; Mattisson Tobias et al., 160h of chemical-looping combustion in a 10kW reactor system with a NiO-based oxygen carrier, international journal of greenhouse gas control, 2008, 2: 520~530
    [33] García-Labiano F; de Diego L F; Adánez J et.al, Temperature variations in the oxygen carrierparticles during their reduction and oxidation in a chemical-looping combustion system [J], Chemical Engineering Science, 2005, 60 (3): 851~862
    [34] Mattisson T.; Johansson M.; Lyngfelt M, Reactivity of some metal oxides supported on alumina with alternating and oxygen–application of chemical-looping combustion, Energy & Fuel 2003, 17, 643~651.
    [35] Marcus Johansson; Tobias Mattisson; Anders Lyngfelt. Creating a synergy effect by using mixed oxides of Iron- and Nickel Oxides in the combustion of methane in a chemical-looping combustion reactor, Energy & Fuels, 2006, 20: 2399~2407
    [36] Cho Paul; Mattisson Tobias; Anders Lyngfelt, Defluidization conditions for a fluidized bed of Iron Oxide-, Nickel Oxide-, and Manganese Oxide-containing oxygen carriers for chemical-looping combustion. Ind. Eng. Chem. Res., 2006, 45: 968~977.
    [37] Mattisson T; Lyngfelt A; Cho P. The Use of Iron Oxide as an Oxygen Carrier in Chemical-looping Combustion of Methane with Inherent Separation of CO2 [J], Fuel, 2001, 80 (13): 1953~1962
    [38] Gayán Pilar; de Diego Luis F.; García-Labiano Francisco et al, Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion, Fuel, 2008, 87: 2641~2650
    [39] Shen Laihong; Zheng Min; Xiao Jun et al, A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion, Combustion and Flame, 2008 154: 489~506
    [40] Corbella Beatrizm.; Dediego Luisf.; JoséM. Palacios, Characterization study and five-cycle tests in a fixed-bed reactor of Titania-supported Nickel oxide as oxygen carriers for the chemical-looping combustion of methane. Environ. Sci. Technol. 2005, 39: 5796~5803
    [41] García-Labiano Francisco; Diego Luis F. De; Gayán Pilar. Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers. 1. fate of sulfur. Ind. Eng. Chem. Res., 2009, 48 (5): 2499~2508
    [42] Adánez Juan; Abad Alberto; Cristina Dueso. Effect of fuel gas composition in chemical-looping combustion with Ni-based oxygen carriers 2. fate of light hydrocarbons. Ind. Eng. Chem. Res., 2009, 48 (5): 2509~2518
    [43] Garcia-Labiano F.; de Diego L.F.; Adanez, J. et al,. Temperature variation in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system, Chemical Engineering Science, 2005, 60: 851~862.
    [44] Levenspiel O. Chemical Reaction Engineering, 3rd ed.; Wiley: New York, 1999.
    [45] Son Sung Real and Kim Sang Done. Chemical-looping combustion with NiO and Fe2O3 in a thermobalance and circulating fluidized bed reactor with double loops, Ind. Eng. Chem. Res. 2006, 45: 2689~2696
    [46] Hossain, M., Fluidized bed chemical-looping combustion: development of a bimetallic oxygen carrier and kinetic modeling, Ph.D. Dissertation, The University of Western Ontario, London, Ontario, Canada. 2007
    [47] Son Sung Real; Kim Sang Done. Chemical-looping combustion with NiO and Fe2O3 in a thermobalance and circulating Fluidized Bed Reactor with double loops. Ind. Eng. Chem. Res. 2006, 45: 2689~2696
    [48] Garcia-Labiano, F.; Adanez, J.; de Diego, L.F. et al, Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carrier for chemical-looping combustion, Energy & Fuel 2006, 20: 26~33.
    [49] Hossain, M.M.; de Lasa, H., Reactivity and stability of Co–Ni/Al2O3 oxygen carrier in multicycle chemical-looping combustion. A.I.Ch.E. Journal, 2007, 53(7): 1817~1829.
    [50] Sedor K.E.; Hossain M.M.; de Lasa H.I., Reduction kinetics of a fluidizable nickel-alumina oxygen carrier for chemical-looping combustion, Canadian Journal of Chemical Engineering, 2008, 86(3): 323~334.
    [51] Herbert E;Andrus Jr,Alstom’s calcium oxide chemical looping combustion coal power technology development [C],The 34th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, Florida, USA, 2009
    [52] Shen Laihong; Zheng Min; Xiao Jun et. al, Chemical looping combustion of coal in interconnected fluidized beds[J] Sci China SerE-Tech Sci, 2007, 50(2): 230~240
    [53] Rydén Magnus, Lyngfelt Anders. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion, International Journal of Hydrogen Energy 2006, 31: 1271~1283
    [54] de Diego Luis F.; Ortiz María; García-Labiano Francisco et al. Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers. Journal of Power Sources, 2009, 192(1): 27~34
    [55] Shen Laihong; Gao Yang; Xiao Jun, Simulation of hydrogen production from biomass gasification in interconnected fluidized beds, Biomass and Bioenergy, 2008, 32: 120~127.
    [56] Paolo Chiesa; Giovanni Lozza; Alberto Malandrino et al, Three-reactors chemical looping process for hydrogen production, International Journal of Hydrogen Energy, 2008, 33: 2233~2245
    [57] Cleeton J.P.E.; Bohn C.D.; Müller C.R.et al, Clean hydrogen production and electricity from coal viachemical looping: Identifying a suitable operating regime. International Journal of Hydrogen Energy, 2009, 34: 1~12.
    [58] Chen H., Liu N. New procedure for derivation of approximations for temperature integral. AIChE J, 2006, 52 (12): 4181~4185.
    [59]潘云祥;管翔颖;冯增媛,用双外推法讨论固态草酸钴(Ⅱ)二水合物脱水过程的动力学机理[J],高等学校化学学报, 1999, 20 (7): 1091~1096.
    [60] Ozawa T. A new method of analysis of thermo-gravimetric data, Bulletin of the Chemical Society of Japan [J], 1965, 38(11):1881~1886.
    [61] Vyazovkin S; Dollimore D. J. Linear and nonlinear procedures in isoconversional computations of the activation energy of non-isothermal reactions in solids. J. Chem. Inf. Model. 1996, 36 (1): 42~45.
    [62]肖海平;周俊虎;刘建忠等, CaSO4与CaS在N2气氛下反应动力学,化工学报, 2005, 156(17): 1322~1326
    [63]沈复;李阳初,石油加工单元过程原理(上册),北京:中国石化出版社, 1996, 203~208
    [64] Ergun S, Fluid flow through packed columns. Chemicals Engineering Progress, 1952, 48(8): 89~94
    [65] WEN C Y; YU Y H.A generalized method for predicting the minimum fluidization velocity[J], AIChE Journal, 1996, 12(3): 610~612. [66 ] Svoboda K; Milosla H.Influence of temperature on incipient fluidization of limestone, lime, coal ash and corundum [J], Ind Eng Chem prosess Des Dev. 1981, 20:319~326
    [67]郭庆杰,吕俊复,王昕等,高温鼓泡流化床的流化行为,热能动力工程,2002, 17(101):482~484
    [68] Rowe P N,Henwood G A.Measurement of minimum fluidization velocities at elevated temperatures[J].Trans Inst Chem Engs, 1961, 39(1): 43~48
    [69] Hoffmann AC; Janssen, LPBM; Prins, J. Particle Segregation in Fluidised Binary Mixtures, Chem.Eng.Sci.1993, 48: 1583~1592
    [70] Chiba S, Chiba T, Nienow W A. et al. The minimum fluidization velocity: bed expansion and pressure drop Profile of binary Particle mixtures, Powder Technology, 1979, 22: 225~269
    [71] Cheung Lucia,Nienow A W,Rowe P N. Minimum fluidization velocity of a binary mixture of different sized Particles. Chem Eng Sei, 1974, 29: 1301~1303.
    [72] Goossens WRA,Dmuont GL,SPaepen GL. Fluidization of binary mixtures in the laminar flow region. Chem. Eng. Prog. Symp. Ser, 1971, 67(116):38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700