东特提斯北支晚白垩世—古新世古海水沉积演化及成钾条件分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中生代晚期至新生代早期,全球大规模盐类聚集以及钾盐成矿集中发生在特提斯域。在特提斯南支,该事件以老挝—泰国钾盐盆地以及我国兰坪-思茅钾盐盆地的形成为显著标志,而在其北支则表现为中亚侏罗纪广泛成钾及塔里木盆地新生代广泛成盐。莎车盆地属于塔里木盆地西南部的次级盆地,晚白垩世-古新世处于新特提斯的北支,并作为当时连接中亚盐盆与塔里木盆地的通道,记录了这一时期古环境的演化过程。盆地上白垩统—古新统发育多套蒸发岩沉积,其是否具备找钾前景一直为地质学家所关注。那么,晚白垩世—古近纪莎车盆地究竟处于什么样的构造—古地理背景、其成盐物质来源、盐类聚集机理以及当时的古气候状况如何?其成钾条件又如何?这些问题的厘清,无疑对盆地下一步的钾盐勘探工作具有重要的理论和找钾实践意义。
     本文以“构造—气候—物源”的耦合为主线,通过对莎车盆地上白垩统—古新统地层格架、岩性特征以及岩石组合类型的研究,对盆地这一时期不同阶段的岩相古地理面貌进行重建;同时基于孢粉组合、氧同位素温度指标以及石盐流体包裹体均一温度,对特提斯南支的老挝万象盆地以及特提斯北支的莎车盆地这一时期的古气候条件进行定量和定性的研究;结合硫同位素地球化学分析对成盐物质来源进行厘清。在上述研究的基础上,通过盐类物质聚集过程以及机理的研究,对莎车盆地上白垩统—古新统成钾条件进行系统分析,提出盆地内这一时期有利的找钾层位和区域。
     运用石盐流体包裹体均一温度(Th),首次定量揭示了晚白垩世老挝万象盆地成钾过程中的古温度状况,并对数据的有效性和代表性进行细致讨论。石盐流体包裹体均一温度集中分布在30℃~55℃,表明晚白垩世该区处于高温大气条件,这与全球这一时期处于普遍高温的气候背景相一致;包裹体最高均一温度为62.1℃,则可能反映了老挝万象盆地处于更加极端的气候环境,盆地内大规模的钾盐富集可能正是始于对这种极端气候的沉积响应。不同层段包裹体均一温度在纵向上的变化可能暗示了在成盐成钾过程中,气候曾出现过短期、快速的波动,这为白垩纪古气候重建工作提供了又一数据支撑。
     石膏/硬石膏硫同位素组成分析表明,莎车盆地及老挝万象钾盐盆地成盐成钾物质皆来源于当时的特提斯古海水,但在成盐成钾过程中可能遭受了周缘淡水的侵入,从而导致盆地内硫同位素组成特征上具有海—陆混合的特征。与此同时,两盆地含盐序列中普遍缺乏盐湖演化早期阶段的产物,表明两盆地在盐类物质的聚集过程中,存在海侵方向上的预备盆地对盐类物质提起进行分异,从而导致高浓度卤水直接进入盆地。中亚各盆地在西部间歇性海侵过程中,可能充当了莎车含盐盆地的预备盆地。
     莎车盆地晚白垩世—古近纪一共经历了5次大规模的海侵—海退旋回,其大致可以和全球海平面的变化进行对比。在这5次大规模的海侵—海退旋回中,晚白垩世依格孜牙期—吐依洛克期的海侵—海退旋回造成了盆地内以石盐岩为主体的蒸发岩沉积,上白垩统吐依洛克组为盆地下一步找钾的重点层位。
     依据莎车盆地盐岩钾离子含量分布特征,同时结合吐依洛克组岩相古地理面貌,提出莎车盆地吐依洛克组‘中间洼地’成盐模式,认为近海次级洼地在海侵过程中以及近陆次级洼地在海退过程中,容易受到正常海水和大陆淡水的侵入,不利于盐湖蒸发浓缩,而处于中间部位的次级洼地更有利于接受高浓度卤水等物质来源以及不容易受到周缘大陆水的淡化影响,为有利成钾区域。基于上述理论,初步推测乌帕尔-塔什米力克一带为莎车盆地成钾远景区。
Large-scale accumulation of salt and formation of potash concentrated in Tethys domain during late Mesozoic to early Cenozoic. These events were typified by the formation of Laos-Thailand and Lanping-Simao potash basin in the southern branch of Tethys and characterized by Central Asian Jurassic potash deposit and Cenozoic deposition of salt in Tarim basin in the northern branch of Tethys. The Yarkand basin which is a sub-basin of southwestern Tarim basin has located in the northern branch of Tethys since late Cretaceous and recorded the paleo-environmental evolution process as the channel between Tarim basin and Central Asian salt basin during this interval. Several sets of evaporates in upper Cretaceous-Paleocene occurred in Yarkand basin and whose perspective for potash prospecting has attracted attentions of geoscientists in the past decades. Thus what things are: what was the tectonic-paleogeographic background of evaporite deposition in Yarkand basin? Where are the salt material sourced? What is the accumaltion mechanism of salt? What are the paleo-climate conditions and the potash formation condition. Answers to these things would have important theoretic practical significance in the next phase of potash exploration.
     This paper following the coupling among tectonics, climate and material sources, reconstructs lithofacies paleogeograph at differet stages of Yarkand basin through stratigraphic framework, lithologic character and rock association of formations in upper Cretaceous and Paleocene, reveals paleoclimatic conditions quantificationally and qualitatively in both Yarkand basin and Vientiane basin in Laos based on palynological assemblage, tempreture proxies of Oxygen isotope and homogenization temperature of halite fluid inclusion, clarifies salt sources by sulfur isotopes. On the basis of study aboved, systemic analysis on potash formation conditions are conducted and proposed favorable beds and area in Yarkand basin, combining with study of the accumulation process and mechanism of salt.
     The late Cretaceous climatic condition is firstly revealed by homogenization temperature (Th) of halite fluid inclusions and the representive and valid of data are also dicussed in detail in this paper. The Th concentrated between30℃~55℃indicates a high temperature conditions in Laos that are consistented with the global high temperature background during late Cretaceous. The highest temperature of62.1℃shows a more extreme climatic environment in Vientiane basin, Laos that was responsed by the large-scale of potash deposits there. The changes of Th from different beds imply that a short-term and fast fluctuation could be occurred during potash deposition.
     Sulfur isotopic composition of gypsum or anhydrites indicates that the salt materials in both Yarkand basin and Vientiane basin sourced from Tethys seawater with the influxion of fresh water from surroundings which resulted in the sulfur isotopic composition similar to that of water from both land and sea. The absence of early-stage products in saline lake evolution, indicates preparatory basin exsited in transgressive direction during the salt accumulation, which make the salt differentiation happened in advanced that led the brine with high concentration inflow into these basin directly. During the transgression, basins from Central Asian may play as a role of preparatory basin to Yarkand salt basin at the interval of late Cretaceous.
     Five cycles of transgression-regressions between Late Cretaceous and Paleogene were distinguished, which is corresponding with the global sea level changes. During these five cycles, transgression-regression happened between Yigeziya Formation and Tuyiluoke Formation resulted in the devolpments of evaporates dominated by halite. The key bed in the next-phase potash exploration is the upper Cretaceous Tuyiluoke Formation.
     Potassium ion content distribution of salt rocks and combining with lithofacies paleogeography at the time of Tuyiluoke Formation, an type of'middle sag'salt-formation model was suggested here that the saline lakes in both the sags located close to sea and land are fragile with the normal sea water and fresh water invading that is not good for saline lake concentration, while the sag located at the middle part is easier to received the brine with high concentration and less vulnerable to dissolution from surrounding fresh water and is a favourable area of potash formation. Therefore, Wupaer-Tashimilike areas are suggested as the areas of potash deposit-prospecting.
引文
1 据国家重点基础研究计划973项目《中国陆块海相成钾规律及预测研究》2012年中期报告
    陈锦石,储雪蕾,邵茂茸.1986.三叠纪海的硫同位素[J].地质科学,4:330-38.
    陈林容.2010.四川盆地海相三叠纪硫同位素组成与地质成因分析[J].四川理工学院学报(自然科学版),23(2):238-248.
    丁道桂,汤良杰,等.1996.塔里木盆地的形成与演化[M].南京:河海大学出版社.
    丁孝忠,郭宪璞,彭阳,纪云龙,李喜臣,张韬,刘丽军,王易农.2002.新疆塔里木盆地白垩纪-第三纪层序地层学研究[J].地球学报,23(3):243-248.
    东特提斯地质构造形成演化[M].地质出版社,1997.
    高广立.金顶铅锌矿区硬石膏矿的形成时代及其所涉及的问题[J].云南地质,1991,10(2):191-205.
    郭宪璞,丁孝忠,何希贤,李汉敏,苏新,彭阳.2002.塔里木盆地中新生代海侵和海相地层研究的新进展[J].地质学报,76(3):299-307.
    郭宪璞.1995.塔里木盆地西部白垩纪-古新世有孔虫群落的划分及其环境意义[J].地球学报,1:75-86.
    郝诒纯,曾学鲁,郭宪璞.1987.新疆塔里木盆地西部海相白垩纪及其沉积环境探讨[J].地质学报,61(3):205-217.
    郝诒纯,曾学鲁,裘松余,何希贤.1982.新疆塔里木盆地中新世有孔虫及地质意义[J].地球学报,4(1):69-82.
    郝诒纯,曾学鲁.1980.新疆喀什地区早第三纪有孔虫[J].古生物学报,19(2):152-167.
    吉磊.1995.西藏岗巴地区始新统遮普惹组的沉积微相和沉积环境[J].沉积学报,13(增刊):88-95.
    贾承造,杨树峰,陈汉林.2001.特提斯北缘盆地群构造地质与天然气[M].北京:石油工业出版社.
    李任伟,辛茂安.1989.东濮盆地蒸发岩的成因[J].沉积学报,7(4):141-147.
    李善平,马海州,山发寿,等.老挝万象盆地通芒地区盐构造特征及成因机制[J].盐湖研究,2009,17(2):5-12.
    李祥辉,王成善,胡修棉.2001.西藏最新非碳酸盐海相沉积及其对新特提斯关闭的意义[J].地质学报,75(3):314-321.
    李兴振, 刘朝基, 丁俊.大湄公河次地区主要结合带的对比与连接[J].沉积与特提斯地质,2005,24(4):1-12.
    林耀庭.2003.四川盆地三叠纪海相沉积石膏和卤水的硫同位素研究[J].盐湖研究,2003,11(2):1-7.
    刘成林,王弭力,焦鹏程.1999.新疆罗布泊盐湖氢氧锶硫同位素地球化学及钾矿成矿物质来源[J].矿床地质,18(3):268-275.
    刘成林.1987.河南安棚碱矿核二段沉积相标志及沉积环境研究.中国地质科学院.
    刘成林.2003.罗布泊钾矿区外围盐湖钾盐资源研究与评价新进展[J].矿床地质,22(3):286-286.
    刘成林等.2013.大陆板块裂谷钾盐矿床特征与成钾作用[J].地球学报,34(5):547-558.
    刘成林, 陈永志, 陈伟十, 等.2006.罗布泊盐湖更新世晚期沉积钙芒硝包裹体特征及古气候意义探讨[J].矿物学报,26(1):93-98.
    刘成林, 陈永志, 焦鹏程, 等.2005.罗布泊卤水室内蒸发及天然石盐包裹体均一温度分析探讨[J].东华理工学院学报,28(4):306-312.
    刘成林, 焦鹏程.2002.罗布泊第四纪卤水钾矿储层孔隙成因与储集机制研究[J].地质论评,48(4):437-443.
    刘成林, 焦鹏程, 曹养同, 等.2008a.蒸发岩盆地构造反转对钾盐成矿控制研究[A].见:第九届全国矿床会议论文集[C].北京:地质出版社:370-373.
    刘成林, 焦鹏程, 王弭力.2003a.罗布泊第四纪含盐系成岩作用特征研究[J].沉积学报,21(2):240-246.
    刘成林, 焦鹏程, 王弭力, 等.2003b.新疆罗布泊第四纪盐湖上升卤水流体及其成钾意义[J].矿床地质,22(4):386-392.
    刘成林,焦鹏程,王弭力,等.2007.罗布泊盐湖巨量钙芒硝沉积及其成钾效应分析[J].矿床地质,26(3):322-329.
    刘成林, 焦鹏程, 王弭力.2010.盆地钾盐找矿模型探讨[J].矿床地质,29(4):81-592.
    刘成林, 杨海军, 顾乔元, 焦鹏程, 等.2008.塔里木盆地重要蒸发岩坳陷成盐及油气生储条件研究.塔里木油田公司报告.
    刘成林, 王弭力.1999a.罗布泊第四纪沉积环境演化与成钾作用[J].地球学报,2(增刊),264-270.
    刘成林, 王弭力, 焦鹏程.1999.新疆罗布泊盐湖氢氧锶硫同位素地球化学及钾矿成矿物质来源[J].矿床地质,18(3):268-275.
    刘成林, 王弭力, 焦鹏程, 等.2006a.世界主要古代钾盐找矿实践与中国找钾对策[J].化工矿产与地质,28(1):1-8.
    刘成林, 王弭力, 焦鹏程, 等.2006b.罗布泊盐湖钙芒硝结晶实验与化学反映探讨[J].矿床地质,25(增):233-236.
    刘成林, 王弭力, 焦鹏程, 等.2006c.中国新疆罗布泊盐湖断裂构造特征、形成机制及成 钾意义[J].地质学报,80(12):1866.
    刘成林,王弭力, 焦鹏程, 等.2008b.罗布泊杂卤石沉积特征及成因机理探讨[J].矿床地质,27(6):705-713.
    刘成林,王弭力,焦鹏程,等.2009.罗布泊盐湖钾盐矿床分布规律及控制因素分析[J].地球学报,30(6):796-803.
    刘群, 陈郁华, 李银彩.1987.中国中、新生代陆源碎屑-化学岩型盐类沉积[M].北京:科学技术出社.
    刘训,吴绍祖,傅德荣.1997.塔里木板块周缘的沉积-构造演化[M].乌鲁木齐:新疆科技卫生出版社.
    彭立才,杨平,濮人龙.1999.陆相咸化湖泊沉积硫酸盐岩硫同位素组成及其地质意义[J].矿物岩石地球化学通报,18(2):99-102.
    曲懿华.兰坪-思茅盆地与泰国呵叻盆地含钾卤水同源性研究--兼论该区找钾有利层位[J].化工矿产地质,1997,19(2):81-84.
    施央申,卢华复, 贾东, 等.中亚大陆古生代构造形成及演化[J].高校地质学报,1996,2(2):134-145.中国及邻区特提斯海的演化[M].地质出版社,1987.
    史忠生,陈开远,何生.2005.东濮盐湖古近系锶、硫、氧同位素组成及古环境意义[J].地球学报(中国地质大学学报),6(30):430-.436.
    孙镇城,杨藩,张枝焕,李守军,李东明,彭立才,曾学鲁,徐钰林,茅绍智,王强.1997.中国新生代咸化湖泊沉积环境与油气生成[M].北京:石油工业出版社.
    唐天福,杨恒仁,蓝秀.1989.新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性[M].北京:科学出版社.
    田在艺,柴桂林,林梁.1990.塔里木盆地石油地质研究新进展[M].北京:科学出版社.
    王弭力,黄兴根,刘成林.1999.新疆罗布泊K1孔岩心中有孔虫化石的发现及其意义[J].地质论评,45(2):158-163.
    王弭力,刘成林,焦鹏程,等.1998.罗布泊罗北凹地超大型钾盐矿床及其开发前景[J].矿床地质,17(增):433-435.
    王弭力, 刘成林, 焦鹏程, 等.2001.罗布泊盐湖钾盐资源[M].北京:地质出版社.
    王弭力, 刘成林, 焦鹏程, 等.2005.罗布泊盐湖钙芒硝沉积及其成钾效应分析[A].见:中国地质学会,第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会论文摘要集[C].北京:地质出版社.
    魏新俊,邵长铎,王弭力,赵德钧,蔡克勤,姜继学,何国权,胡文瑄.1993.柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究[M].北京:地质出版社.
    徐钰林.2000.西藏南部早第三纪钙质超微化石及东特提斯在西藏境内的封闭时限[J].现代地质,14(3):255-262.
    许志琴,李思田,张建新,杨经绥,何碧竹,李海兵,林畅松,蔡志慧.2011.塔里木地块与古亚洲/特提斯构造体系的对接[J].岩石学报,27(1):1-22.
    雍天寿,单金榜.1986.白垩纪及早第三纪塔里木海湾湾的形成与发展[J].沉积学报,4(3)67-75.
    余光明,王成善.1990.西藏特提斯沉积地质[M].北京:地质出版社.
    章炳高,耿良玉.1983.西藏南部早第三纪地层的再认识[J].地层学杂志,7(4):310-312.
    章振国,高继雷,张向文.2010.塔里木盆地古代蒸发岩硫同位素地球化学研究[J].甘肃地质,19(1):32-37.
    郑喜玉,唐渊,徐昶.1988.西藏盐湖[M].北京:科学技术出版社.
    周祖翼.板块构造学与造山运动:特提斯例析梗概[J].海洋地质译丛,1992(1):1-11.
    Allen M B, Windley B F, ZHANG Chi, ZHAO Zhong-yan, WANG Guang-rei.1991. Basin evolution within and adjacent to the Tien Shan Range, NW China[J]. Journal of the Geological Society,148:369-378.
    Atlas Peri-Tethys Palaeogeographical Maps[M]. CCGM/CGMW,2000.
    Ault W U, Kulp J L.1959. Isotopic geochemistry of sulphur[J]. Geochim. Cosmochim. Acta,16: 201-235.
    Aytko K. Some problems of a geodynamic model of the Northern Carpathian[J]. Geological Quarterly,2013,29(1):85-108.
    Barron E J, Peterson W H. Mid - Cretaceous ocean circulation:Results from model sensitivity studies[J]. Paleoceanography,1990,5(3):319-337.
    Barron E J. A warm, equable Cretaceous:the nature of the problem[J]. Earth-Science Reviews, 1983,19(4):305-338.
    Bazhenov M L, Burtman V S, Tsyganova I V. Reconstruction of the mesozoic Tethys in the Caucasus[J]. Geotectonics,1991,25(1):48-58.
    Benison, K.C., Goldstein, R.H.,1999. Permian paleoclimate data from fluid inclusions in halite. Chemical Geology 154,113-132.
    Bice, K.L., Birgel, D., Meyers, P.A., Dahl, K.A., Hinrichs, K.U., Norris, R.D.,2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography 21. doi:10.1029/2005PA001203 PA2002.
    Blanc P L, Duplessy J C. The deep-water circulation during the Neogene and the impact of the Messinian salinity crisis[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1982,29(12):1391-1414.
    Burbank D W, Beck R A, Mulder T. The Himalayan foreland basin[J]. WORLD AND REGIONAL GEOLOGY,1996:149-190.
    Carnalite mineralization in the nonmarine, Quidam Basin, China: evidence for the early diagenetic origin of potash evaporites.1992. Journal of Seidmentary Petrology 62,898.
    Casas, E., Lowenstein, T.K., Spencer, R.J., Pengxi, Z.,1992.
    Catalano R, Di Stefano P, Kozur H. Permian circumpacific deep-water faunas from the western Tethys (Sicily, Italy)-New evidences for the position of the Permian Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,87(1):75-108.
    Chambers L A, Trudinger P A.1979. Microbiological fractionation of stable sulfur isotopes:a review and critique[J]. Geomicrobiol.J.1:249-293.
    Charusiri, P., Imsamut, S., Zhuang, Z.H., Ampaiwan, T., Xu, X.X.2006. Paleomagnetism of the earliest Cretaceous to early late Cretaceous sandstones, Khorat Group, Northeast Thailand: implications for tectonic plate movement of the Indochina block. Gondwana Research,9(3),310-325.
    Clarke J W. Petroleum potential of the Amu Dar'ya Province, western Uzbekistan and eastern Turkmenistan[J]. International Geology Review,1994,36(5):407-415.
    Clarke, L.J., Jenkyns, H.C.,1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology 27 (8),699-702.
    Cooper, M.A., Herbert, R., Hill, G.S.,1989. The structural evolution of Triassic intermontane basins in northeastern Thailand. In: Thansuthipitak, T. (Ed.). Proceedings International Symposium on Intermontane Basins:Geology and Resources, Chiang Mai, pp. 231-242.
    Dallmeyer R D, Neubauer F, Handler R, et al. Tectonothermal evolution of the internal Alps and Carpathians: Evidence from Ar-40/Ar-39 mineral and whole-rock data[J]. Eclogae Geologicae Helvetiae,1996,89(1):203-227.
    Dercourt J, Vrielynck B. Atlas Tethys palaeoenvironmental maps[M]. Gauthier-Villars,1993.
    Deway J F, Robert M Shackleton, Chang Chengfa, Sun Yiyin.1988. The tectonic evolution of the Tibetan Plateau[M]. Phil, Trans. R. Soc, London, A.327:327-413.
    Dingle R V, Lavelle M. Late Cretaceous-Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1998,141(3):215-232.
    Dore A G. The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,87(1):441-492.
    Douglas R G, Savin S M. Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean[J]. Initial Rep. Deep Sea Drill. Proj,1975,32:509-520.
    E1 Tabakh, M., Utha-Aroon, C., Schreiber, B.C.,1999. Sedimentology of the Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. Sedimentary Geology 123,31-62.
    Erbacher J, Huber B T, Norris R D, et al. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period[J]. Nature,2001,409(6818): 325-327.
    Fan P. Accreted terranes and mineral deposits of Indochina[J]. Journal of Asian Earth Sciences, 2000,18(3):343-350.
    Faryad S W. Petrological model for blueschist facies metamorphism in the Pieniny Klippen Belt[J]. Geological evolution of the Western Carpathians: Bratislava, Mineralia Slovaca Monograph, 1997:155-162.
    Francis J E, Poole I. Cretaceous and early Tertiary climates of Antarctica:evidence from fossil wood[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2002,182(1):47-64.
    Friedrich, O., Norris, R.D., Erbacher, J.,2012. Evolution of middle to Late Cretaceous oceans-A 55 my record of Earth's temperature and carbon cycle. Geology 40 (2),107-110.
    Froitzheim N, Schmid S M, Frey M. Mesozoic paleogeography and the timing of eclogite-facies metamorphism in the Alps:a working hypothesis[J]. Eclogae Geologicae Helvetiae,1996, 89(1):81-&.
    Fry B, Cox J, Gest H, Hayes J M.1986.Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds[J]. Journal of Bacteriology,165 (1):328-330.
    GAETANI M, BALINI M, Vuks V J, et al. The Mesozoic of the Mangyshlak (west Kazakhstan)[J]. Memoires du Museum national d'histoire naturelle,1998,179:35-74.
    Garrett D E. Potash: deposits, processing, properties and uses[M]. London, UK::Chapman & Hall,1996.
    Goldstein, R.H., Reynolds, T.J.,1994. Systematic of fluid inclu-sions in diagenetic minerals. SEPM Short Course 31, Tulsa.
    Golonka J, Ford D. Pangean (late Carboniferous-Middle Jurassic) paleoenvironment and lithofacies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,161(1):1-34.
    Golonka J, Oszczypko N,?l?czka A. Late Carboniferous-Neogene geodynamic evolution and paleogeography of the circum-Carpathian region and adjacent areas[C]//Annales Societatis Geologorum Poloniae.2000,70:107-136.
    Golonka J, Ross M I, Scotese C R. Phanerozoic paleogeographic and paleoclimatic modeling maps[J].1994.
    Golonka J, Sikora W. Microfacies of the Jurassic and Lower Cretaceous sedimentarily thinned deposits of the Pieniny Klippen Belt in Poland (in Polish with English abstract):Biuletyn Instytutu Geologicznego, v.31[J]. ndash,1981,37:7.
    Golonka J. Cambrian-Neogene plate tectonic maps[M]. Wydawn. Uniwersytetu Jagiello? "skiego, 2000.
    Golonka J. Geodynamic evolution of the South Caspian Basin[J].2007.
    Gr?cke, D.R., Hesselbo, S.P., Jenkyns, H.C.,1999. Carbon isotope composition of Lower Cretaceous foss il wood: ocean-atmosphere chemistry and relation to sea level change. Geology 27,155-158.
    Guiraud R, Bellion Y. Late Carboniferous to Recent, Geodynamic evolution of the west Gondwanian, cratonic, Tethyan margins[M]//The Tethys Ocean. Springer US,1996: 101-124.
    Hallam A, Grose J A, Ruffell A H. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,81(3):173-187.
    Handford, C.R.,1990, Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits? Geology 18:691-694.
    Hanse, B.T., Wenner, K., Pawlig, S.2002. Isotopic evidence for a Late Cretaceous age of the potash and rock salt deposit at Bamnet Narong, NE Thailand//Mantajit N ed. Proceeding of the Symposium on the Geology of Thailand. Bangkok: Department of Mineral Resources, pp:120.
    Hasegawa, T.,1997. Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 251-273.
    Hasegawa, T.,2003. Cretaceous terrestrial paleoenvironments of northeastern Asia suggested from carbon isotope stratigraphy: increased atmospheric pCO2-induced climate. Journal of Asian Earth Sciences 21,849-859.
    Hay, W.W.,2011. Can humans force a return to a'Cretaceous'climate? Sedimentary Geology 235,5-26.
    Heimhofer, U., Hochuli, P.A., Burla, S.,2005. Timing of Early Cretaceous angiosperm diversification and possible links to major paleoenvironmenta 1 change. Geology 33,141-144.
    Hendrix S M, Dumitru T A, Graham S A.1994. Late Oligocene-Early Miocene unroofing in Chinese Tian shan: An early effect of India-Asia collision[J]. Geology,22:487-490.
    Hite R J, Japakasetr T. Potash deposits of the Khorat plateau, Thailand and Laos[J]. Economic Geology,1979,74(2):448-458.
    Hite R J. Evaporite deposits of the Khorat Plateau, northeasternThailand [C]//Coogan A H ed. Fourth Symposium on Salt. Cleveland: Northern Ohio Geological Society Inc.,1974: 135-146.
    Hite, R.J., Japakasetr, T.,1979. Potash deposits of Khorat Plateau, Thailand and Laos. Economy Geology 74,448-458.
    Holser W T, Kaplan I R.1966. Isotope geochemistry of sedimentary sulfates. Chem Geol.l:93-135.
    Hu, X., Wagreich, M., Yilmaz, I.O.,2012a. Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research 38,40-51.
    Hu, X.M., Jansa, L., Sarti, M.,2006a. Mid-Cr etaceous oceanic red beds in the Umbria-Marche Basin, central Italy: constraints on paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 233 (3-4),163-186.
    Hu, X.M., Jansa, L., Wang, C.S., Sarti, M., Bak, K., Wagreich, M., Michalik, J., Sotak, J.,2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research 26 (1),3-20.
    Hu, X.M., Scott, R.W., Cai, Y.F., Wang, C.S, Meline-Dobrinescu, M.C.,2012. Cretaceous oceanic Red beds (CORBs):Different time scales and models of origin. Earth-Science Reviews 115,217-248.
    Hu, X.M., Wang, C.S., Li, X.H., Luba, J.,2006b. Upper Cretaceous oceanic red beds in southern Tibet: lithofacies, environments and colour origin. Science in China Series D: Earth Sciences 49 (8),785-795.
    Huber B T, Hodell D A, Hamilton C P. Middle-Late Cretaceous climate of the southern high latitudes:stable isotopic evidence for minimal equator-to-pole thermal gradients[J]. Geological Society of America Bulletin,1995,107(10):1164-1191.
    Huber B T, Norris R D, MacLeod K G. Deep-sea paleotemperature record of extreme warmth during the Cretaceous [J]. Geology,2002,30(2):123-126.
    Huber, B.T., Norris, R.D., MacLeod, K.G.,2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30 (2),123-126.
    Jenkyns H C, Gale A S, Corfield R M. Carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance [J]. Geological Magazine,1994, 131(01):1-34.
    Jenkyns, H.C.,2003. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 361 (1810),1885-1916.
    Jenkyns, H.C.,2003. Evidence for rapid climate change in the Mesozoic-Paleogene green-house world. Philosophical Transactions of the Royal Society A 361,1885-1916.
    Kampschulte A, Strauss H.2004. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates[J]. Chemical Geology.204: 255-286.
    Kaplan I R, Rittenberg S C.1964. Microbiological fractionation of sulfur isotopes[J]. J.Gen.Microbiol.34:195-212.
    Kazmin V G. Collision and rifting in the Tethys Ocean: Geodynamic implication[J]. Tectonophysics,1991,196(3):371-384.
    Kazmin V G. Early Mesozoic reconstruction of the Black Sea-Caucasus region[J]. Evolution of the northern margin of the Tethys. Mem. Soc. Geol. Fr., Paris,1990:147-158.
    Kazmin V G. Mesozoic to Cenozoic history of the back-arc basins in the Black Sea-Caucasus region[J]. Cambridge Arctic Shelf Project. Arctic and Russian Studies,1997:34-38.
    Keller G, Herbert T, Dorsey R, et al. Global distribution of late Paleogene hiatuses[J]. Geology, 1987,15(3):199-203.
    Kennett J P, Barker P F. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean-drilling perspective[C]//Proc. Ocean Drill. Program Sci. Results.1990,113:937-960.
    Kopp M L, Leonov Y G. Lateral escape structures in the Alpine-Himalayan collision belt[M]. Scientific World,1997.
    Kovacs S, Szederkenyi T, Haas J, et al. in the pre-Neogene basement of the Hungarian part of the Pannonian area[J]. Acta GeologicaHungarica,2000,43(3):225-328.
    Kozur H, Krahl J. Erster Nachweis von Radiolarien im tethyalen Perm Europas[J]. Neues Jahrbuch fur Geologie und Pal?ontologie, Abhandlungen,1987,174:357-372.
    Kozur H. The evolution of the Meliata-Hallstatt ocean and its significance for the early evolution of the Eastern Alps and Western Carpathians[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,87(1):109-135.
    Krobicki M. Neo-Cimmerian uplift of intraoceanic Czorsztyn pelagic swell (Pieniny Klippen Belt, Polish Carpathians) indicated by the change of brachiopod assemblages[C]//Georesearch Forum.1996,1:2.
    Ksikiewicz M. The tectonics of the Carpathians[J]. Geology of Poland,1977,4:476-620.
    Kump L R, Arthur M A. Global chemical erosion during the Cenozoic: Weatherability balances the budgets[M]//Tectonic uplift and climate change. Springer US,1997:399-426.
    Larson, R.L.,1991. Geological consequences of superplumes. Geology 19 (10),963-966.
    Leckie, R.M., Bralower, T.J., Cashman, R.,2002. Oceanic anoxic events and plankton evolution; biotic response to tectonic forcing during the Mid-Cretaceous. Paleoceanography 17 (3). doi:10.1029/2001PA000623.
    Lees J A. Calcareous nannofossil biogeography illustrates palaeoclimate change in the Late Cretaceous Indian Ocean[J]. Cretaceous Research,2002,23(5):537-634.
    Liu, X.Q., Ni, P., Dong, H.L., Wang, T.G.,2007. Homogenization temperature and its significance for primary fluid inclusion formed in Chaka Salt Lake, Qardam Basin. Acta Petrologica Sinica 23,113-116.
    Lloyd C R. The mid-Cretaceous earth: paleogeography; ocean circulation and temperature; atmospheric circulation[J]. The Journal of Geology,1982:393-413.
    Lowenstein, T.K., Li, J.R., Brown, C., Roberts, S.M., Ku, T.L., Luo, S., Yang, W.,1999.200 k.y. Paleoclimate record from Death Valley salt core. Geology 27,3-6.
    Lowenstein, T.K., Li, J.R., Brown, C.B.,1998. Paleotemperatures from fluid inclusions in halite: method verification and a 100,000 year paleotemperature record, Death Valley, CA. Chemical Geology 150,223-245.
    Lucinska-Anczkiewicz A, Slaczka A, Villa I M, et al.39Ar/40Ar dating of the teschenite association rocks from the polish outer carpathians[J]. Special Paper-Mineralogical Society of Poland,2000,17:241-242.
    Lustrino M. Phanerozoic geodynamic evolution of the circum-Italian realm[J]. International Geology Review,2000,42(8):724-757.
    Marchant R H, Stampfli G M. Subduction of continental crust in the Western Alps[J]. Tectonophysics,1997,269(3):217-235.
    Marsella E, Kozur H, D'Argenio B. Monte Facito Formation (Scythian-Middle Carnian). A deposit of the ancestral Lagonegro basin in the southern Apennines[J]. Boll. Serv. Geol. Italia, 1993,110(1991):225-248.
    McGowran B, Li Q. Miocene climatic oscillation recorded in the Lakes Entrance oil shaft, southern Australia: reappraisal of the planktonic foraminiferal record[J]. Micropaleontology, 1997:129-148.
    Meesook A. Cretaceous environments of northeastern Thailand[J]. Developments in Palaeontology and Stratigraphy,2000,17:207-223.
    Meesook, A.,2000. Cretaceous environments of northeastern Thailand. In:Okada, H., Mateer, N.J. (Eds.), Cretaceous Environments of Asia. Elsevier, Amsterdam, pp.207-223.
    Meng, F.W., Ni, P., Schiffbauer, J.D., Yuan, X.L., Zhou, C.M., Wang, Y.G., Xia, M.L.,2011a. Ediacaran seawater temperature:evidence from inclusions of Sinian halite. Precambrian Research 184,63-69.
    Meng, F.W., Ni, P., Yuan, X.L., Zhou, C.M., Yang, C.H., Li, Y.P.2013. Choosing the best ancient analogue for projected future temperatures: A case using data from fluid inclusion of middle-late Eocene halites. Journal of Asian Earth Sciences 67-68:46-50.
    Metcalfe I. Late Palaeozoic and Mesozoic palaeogeography of eastern Pangea and Tethys[J].1994.
    Metcalfe, I.,2011.Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Researchl9,3-21.
    Miller K G, Fairbanks R G, Mountain G S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion[J]. Paleoceanography,1987,2(1):1-19.
    Moriya, K., Wilson, P.A., Friedrich, O., Erbacher, J., Kawahata, H.,2007. Testing for ice sheets during the mid-Cretaceous greenhouse using glassy foraminiferal calcite from the mid-Cenomanian tropics on Demerara Rise. Geology 35 (7),615-618.
    Morris A. A review of palaeomagnetic research in the Troodos ophiolite, Cyprus[J]. Geological Society, London, Special Publications,1996,105(1):311-324.
    Mouret, C.,994. Geological history of northeastern Thailand since the Carboniferous: relations with Indochina and arboniferous to early Cenozoic evolution model. In: Proceedings of International Symposium Stratigraphic Correlation of Southeast Asia, Bangkok, pp. 132-158.
    Nadirov R S, Bagirov E, Tagiyev M, et al. Flexural plate subsidence, sedimentation rates, and structural development of the super-deep South Caspian Basin[J]. Marine and petroleum geology,1997,14(4):383-400.
    Narebski W. Early rift stage in the evolution of western part of the Carpathians: geochemical evidence from limburgite and teschenite rock series[J]. Geol. Carpath,1990,41:521-528.
    Nikishin A M, Ziegler P A, Stephenson R A, et al. Late Precambrian to Triassic history of the East European Craton: dynamics of sedimentary basin evolution[J]. Tectonophysics,1996, 268(1):23-63.
    Norris, R.D., Bice, K.L., Magno, E.A., Wilson, P.A.,2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30 (4),299-302.
    Otto S C. Mesozoic-Cenozoic history of deformation and petroleum systems in sedimentary basins of Central Asia; implications of collisions on the Eurasian margin[J]. Petroleum Geoscience, 1997,3(4):327-341.
    Pagani M, Arthur M A, Freeman K H. Miocene evolution of atmospheric carbon dioxide[J]. Paleoceanography,1999,14(3):273-292.
    Paytan A, Kastner M, Campbell D, et al. Seawater sulfur isotope fluctuations in the Cretaceous[J]. Science,2004,304(5677):1663-1665.
    Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years[J]. Nature,2000,406(6797):695-699.
    Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J., Hall, M.A.,2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413 (6855),481-487.
    Petrichenko, I.O.,1979. Methods of study of inclusions in miner-als in saline deposits. Fluid Inclusion Research 12,114-274.
    Pique A. Variscan terranes in Morocco[J]. Geological Society of America Special Paper,1989, 230:115-129.
    Pisutha-Arnond, V., Chiba, H., Yumuang, S.,1986. A preliminary sulphur and oxygen isotope study of the Maha Sarakham evaporitic anhydrite from the Bamnet Narong area of northeastern Thailand. Geology Society Malaysia Bulletin 19:209-222.
    Plasienka D. Tektonochronol oacute gia a paleotektonick yacute model jursko-kriedov eacute ho v yacute voja centralnych Z aacute padn yacute ch Karpat: Tectonochrology and Paleotectonic model of the Jurassic-Cretaceous evolution of the Central Western Carpathians:Bratislava[J]. 1999.
    Poulsen C J, Barron E J, Arthur M A, et al. Response of the Mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings[J]. Paleoceanography,2001,16(6):576-592.
    Raab M, Spiro B.1991.Sulfur isotopic variations during seawater evaporation with fractional crystallization[J].Chem.Geol.86:323-333.
    Racey A, Goodall J G S. Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand[J]. Geological Society, London, Special Publications,2009, 315(1):69-83.
    Racey, A., Goodall, J.G.S.,2009. Palynology and stratigraphy of the Mesozoic Khorat Group of NE Thailand. In:Buffetaut, E., Cuny, G., Le Loeuff, J., Suteethorn, V. (Eds.), Late Palaeozoic and Mesozoic Ecosystems in SE Asia, vol.315. Geological Society and Special Publications, London, pp.67-81.
    Rakus M, Potfaj M, Vozarova A. Basic paleogeographic and paleotectonic units of the Western Carpathians[J]. Geodynamic development of the Western Carpathians:Bratislava, Geological Survey of Slovak Republic,1998:15-26.
    Raymo M E, Ruddiman W F, Froelich P N. Influence of late Cenozoic mountain building on ocean geochemical cycles[J]. Geology,1988,16(7):649-653.
    Rea D K, Zachos J C, Owen R M, et al. Global change at the Paleocene-Eocene boundary: Climatic and evolutionary consequences of tectonic events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1990,79(1):117-128.
    Rezanov I A, Chamo S S. Reasons for absence of a'granitic'layer in basins of the South Caspian and Black Sea type[J]. Canadian Journal of Earth Sciences,1969,6(4):671-678.
    Ricou L E. The plate tectonic history of the past Tethys Ocean[M]//The Tethys Ocean. Springer US,1996:3-70.
    Roberts, S.M., Spencer, R.J.,1995. Paleotemperatures preserved in fluid inclusion in halite. Geochimica et Cosmochimica Acta 59,3929-3942.
    Robertson A H F, Woodcock N H. Mamonia Complex, southwest Cyprus:Evolution and emplacement of a Mesozoic continental margin[J]. Geological Society of America Bulletin, 1979,90(7):651-665.
    Robertson A H F. Mesozoic-Tertiary tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence[J]. Proceedings of the Ocean Drilling Program, Scientific Results, Vol.160; Chapter 54,1998.
    Roderic E Bosboom, Guillaume Dupont-Nivet, Alexander J P Houben, Henk Brinkhuis, Giuliana Villa, Oleg Mandic, Marius Stoica, Willem Jan Zachariasse, Zhaojie Guo, ChuanXin Li, Wout Krijgsman.2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J].Palaeogeography, Palaeoclimatology, Palaeocology,299:385-398.
    Roedder, E.,1984. Fluid Inclusions. Mineralogical Society of America, Reviews in Mineralogy, pp.12.
    Roedder, E.,1984. The fluids in salt: American mineralogist 69,413-439.
    Roedder, E., Belkin, H.E.,1980. Thermal gradient migration of fluid inclusions in single crystals of salt from the Waste. Isolation Pilot Plant site WIPP. In: Nothrup, C.J.M. Ed., Scientific Basis for Nuclear Waste Management 2:453-464.
    Rowley D B.1996.Age of initiation of collision between Indian and Asia: A review of stratigraphic data[J].Earth and Planetary Science Letters,145:1-13.
    Rowley D B.1998.Minimum age of initiation of collision between India and Asia north of the Everest based on the subsidence history of the Zhepure Mountian section[J].The Journal of Geology,106:229-235.
    Ruffell A H, Batten D J. The Barremian-Aptian arid phase in western Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1990,80(3):197-212.
    Russell, D.A., Paesler, M.A.2003. Environments of Mid-Cretaceous Saharan dinosaurs.Cretaceous Research 24:569-588.
    Sandulescu M, Visarion M. Crustal structure and evolution of the Carpathian-Western Black Sea areas[J]. First Break,2000,18(3).
    Sandulescu M. Cenozoic tectonic history of the Carpathians[J]. The Pannonian Basin,1988,45: 17-25.
    Savin S M, Douglas R G, Stehli F G. Tertiary marine paleotemperatures[J]. Geological Society of America Bulletin,1975,86(11):1499-1510.
    Schlager, W. (Ed.), 1989. Drowning unconformities on carbonate platforms. Controls on carbonate platform and basin development. Society of Economic Paleontologists and Mineralogists Special Publication 44, pp.15-25.
    Schlanger, S., Jenkyns, H.,1976. Cretaceous oceanic anoxic events:causes and consequences. Geologie en Mijnbouw 55 (3-4),179-184.
    Searle M P, Windley B F, Coward M P.1987. The closing of Tethys and tectonics of the Himalaya[J].GSA. Bull.98:678-701.
    Searle M P. Cooling history, erosion, exhumation, and kinematics of the Himalaya-Karakoram-Tibet orogenic belt[J]. WORLD AND REGIONAL GEOLOGY,1996: 110-137.
    Sengor A M C, Cin A, Rowley D B, et al. Space-time patterns of magmatism along the Tethysides: a preliminary study[J]. The Journal of Geology,1993:51-84.
    Sengor A M C. Classical theories of orogenesis[J]. Orogeny,1982:1-48.
    Sengor A M C, Altner D, Cin A, et al. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land[J]. Geological Society, London, Special Publications, 1988,37(1):119-181.
    Sengor A M C, Natalin B A. Paleotectonics of Asia: fragments of a synthesis[J].1996.
    Sengor A M C, Ylmaz Y, Sungurlu O. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Palaeo-Tethys[J]. Geological Society, London, Special Publications,1984,17(1):77-112.
    Sengor A M C. A new model for the late Palaeozoic-Mesozoic tectonic evolution of Iran and implications for Oman[J]. Geological Society, London, Special Publications,1990,49(1): 797-831.
    Sengor A M C. The Cimmeride orogenic system and the tectonics of Eurasia[J]. Geological Society of America Special Papers,1984,195:1-74.
    Sengor A M C. THE STORY OF TETHYS-HOW MANY WIVES DID OKEANOS HAVE[J]. Episodes,1985,8(1):3-12.
    Sha, J.G., Meesook, A., NGUYEN, X.K.,2012. Non-marine Cretaceous bivalve biostratigraphy of Thailand, Southern Lao PDR and central Vietnam.Journal of Stratigraphy 36 (2):382-399.
    Shackleton N J, Kennett J P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation:oxygen and carbon isotope analyses in DSDP Sites 277,279, and 281[J]. Initial reports of the deep sea drilling project,1975,29:743-755.
    Shanov S, Spassov E, Georgiev T. Evidence for the existence of a paleosubduction zone beneath the Rhodopean massif (Central Balkans)[J]. Tectonophysics,1992,206(3):307-314.
    Skelton, P.W., Spicer, R.A., Kelley, S.P., Gilmour, I.,2003. The Cretaceous World. Cambridge University Press, Cambridge, UK.
    Slaczka A. Oil and gas in the Northern Carpathians[J]. SPECIAL PUBLICATION-EUROPEAN ASSOCIATION OF PETROLEUM GEOSCIENTISTS,1996:187-196.
    Sobornov K O. Structure and petroleum potential of the Dagestan thrust belt, northeastern Caucasus, Russia[J]. Bulletin of canadian petroleum geology,1994,42(3):352-364.
    Sone, M., Metcalfe, I.,2008. Parallel Tethyan sutures in mainland Southeast Asia: new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience 340,166-179.
    Spicer R A, Corfield R M. A review of terrestrial and marine climates in the Cretaceous with implications for modelling the 'Greenhouse Earth'[J]. Geological Magazine,1992,129(02): 169-180.
    Stampfii G M, Mosar J, Marquer D, et al. Subduction and obduction processes in the Swiss Alps[J]. Tectonophysics,1998,296(1):159-204.
    Stampfli G M. The intra-Alpine terrain: a Paleotethyan remnant in the Alpine Variscides[J]. Eclogae Geologicae Helvetiae,1996,89(1):13-42.
    Strauss H.1999. Geological evolution from isotope proxy signals-sulfur[J]. Chemical Geology 161: 89-101.
    SUN Ji-Min, JIANG Mao-Sheng.2013. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau[J].Tectonophysics, 588 (2):27-38.
    Sundharovat S. Potash in E-Sarn[J]. Mineral Resources Gazette,1976,21(11):1-8.
    Tabakh M E, Schreiber B C, Utha-Aroon C.1998.Diagenetic origin of Basal Anhydrite in Cretaceous Maha Sarakham salt, Khorat Plateau, NE Thailand[J].Sedimentology,45 (3): 579-594.
    Tabakh M E, Utha-Aroon C, Schreiber B C.1999.Sedimentology of the Cretaceous Maha Sarakham Evaporites in the Khorat Plateau of Northeastern Thailand[J].Sedimentary Geology,123 (1): 31-62.
    Tabakh M, Utha-Aroon C, Warren J K, et al. Origin of dolomites in the Cretaceous Maha Sarakham evaporites of the Khorat Plateau, northeast Thailand[J]. Sedimentary Geology, 2003,157(3):235-252.
    Tajika E. Climate change during the last 150 million years: reconstruction from a carbon cycle model[J]. Earth and Planetary Science Letters,1998,160(3):695-707.
    Tan H B, Ma H Z, Li B K, et al. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos[J]. Chinese Science Bulletin,2010, 55(27-28):3181-3188.
    Tan, H.B., Ma, H.Z., Li, B.K., Zhang, X.Y., Xiao, Y.K.,2010. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chinese Science Bulletin 55,1-8.
    Tari G, Dicea O, Faulkerson I, et al. Cimmerian and Alpine stratigraphy and structural evolution of the Moesian Platform (Romania/Bulgaria)[J]. MEMOIRS-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS,1998:63-90.
    Thiramongkol N. Some suggestions of potash and rock salt geneses in NE region[J]. Min. Resour. Gazette,1978,21(8):24-40.
    Thode H G, Monster J, Dunford H B.1961. Sulphur isotope geochemistry[J]. Geochim. Cosmochim. Acta.25:159-174.
    Thode H G, Monster J.1965. Sulfur isotope geochemistry of petroleum, evaporites and ancient seas[J]. AAPG Mem.4:367-377.
    Utha-Aroon, C.,1993. Continental origin of the Maha Sarakham evaporites, northeastern Thailand. J Southeast Asia Earth Sci.8:193-203.
    Van de Schootbrugge B, F?llmi K B, Bulot L G, et al. Paleoceanographic changes during the early Cretaceous (Valanginian-Hauterivian):evidence from oxygen and carbon stable isotopes[J]. Earth and Planetary Science Letters,2000,181(1):15-31.
    Vozarova A, Vozar J. Variscan Terranes and evolution of the Late Paleozoic sedimentary basins (western Carpathians)[J]. International Geological Correlation Programme,1992 (276): 147-154.
    Wang L, Liu C, Gao X, et al. Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau: Whole-rock geochemistry, U-Pb geochronology, and Hf isotopic constraints[J]. Sedimentary Geology, 2014,304:44-58.
    Wang, C.S, Hu, X.M., Huang, Y., Wagreich, M., Scott, R.W., Hay, W.W., 2011. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sedimentary Geology 235 (1-2),27-37.
    Wang, C.S., Feng, Z.Q., Zhang, L.M., Huang, Y.J., Cao, K., Wang, P.J., Zhao, B.,2013. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China.Palaeogeography, Palaeoclimatology, Palaeoecology 385,17-30.
    Wang, C.S., Hu, X.M., Sarti, M., Scott, R.W., Li, X.H.,2005. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research 26 (1),21-32.
    Warren J. Evaporites:their evolution and economics[M]. Oxford: Blackwell Science,1999.
    Warren, J. K.2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews,98(3),217-268.
    Willems H, Zhou Z, Zhang B, K U Grafe.1996.Stratigraphy of the Upper Cretaceous and Lower Tertiary Strata in the Tethyan Himalayas of Tibet (Tingri area, China) [J].Geol.Rundsch, 85:723-754.
    Wilson, P.A., Norris, R.D., Cooper, M.J.,2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. Geology 30 (7),607-610.
    Windley B F, Allen M B, Zhang C.1990.Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, Central Asia[J]. Geology,18:128-131.
    Winkler W, Slaczka A. A Late Cretaceous to Paleogene geodynamic model for the Western Carpathians in Poland[J]. Geologica Carpathica,1994,45(2):71-82.
    Withjack M O, Schlische R W, Olsen P E. Diachronous rifting, drifting, and inversion on the passive margin of central eastern North America: an analog for other passive margins[J]. AAPG bulletin,1998,82(5):817-835.
    Woodruff F, Savin S M. Miocene deepwater oceanography [J]. Paleoceanography,1989,4(1): 87-140.
    Yanev S N. Contribution to the elucidation of pre-Alpine evolution in Bulgaria (based on sedimentological data from the marine Paleozoic)[J]. Geologica Balcanica,1992,22(2): 3-31.
    Yang K. A plate reconstruction of the eastern Tethyan orogen in southwestern China[J]. Geodynamics Series,1998,27:269-287.
    Yin A, Nie S. A Phanerozoic palinspastic reconstruction of China and its neighboring regions[J]. World and Regional Geology,1996:442-485.
    YIN An, Nie S, P Craig, T M Harrison, Ryerson F J.1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics,17(1):1-27.
    Yllmaz Y, Tiiysiiz O, Yigitbas E. Geology and tectonic evolution of the Pontides[J].1998.
    YONG Tian-Shou, SHAN Jin-Bang.1986.The development and formation in the Tarim Bay in Cretaceous-Paleogene ages[J].Acta Sediment.Sinica.4 (3):67-75 (in Chinese with English abstract)
    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science,2001,292(5517):686-693.
    Zakharov Y D, Boriskina N G, Ignatyev A V, et al. Palaeotemperature curve for the Late Cretaceous of the northwestern circum-Pacific[J]. Cretaceous Research,1999,20(6): 685-697.
    Zambito, J.J., Benison, K.C.2013. Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology,41(5),587-590.
    Zhang, X.Y., Ma, H.Z., Ma, Y.Q., Tang, Q.L., Yuan, X.L.,2013. Origin of the late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos:δ11B evidence from borates. Journal of Asian Earth Sciences 62:812-818.
    Ziegler P A. Evolution of Laurussia[J].1989.
    Ziegler P A. EVOLUTION OF THE ARCTIC-NORTH ATLANTIC AND THE WESTERN TETHYS--A VISUAL PRESENTATION OF A SERIES OF PALEOGEOGRAPHIC-PALEOTECTONIC MAPS*[J]. Mem.-Am. Assoc. Pet. Geol,1988, 43:164-196.
    Zonenshain L P, Kuz?min M I, Natapov L M, et al. Geology of the USSR: a plate-tectonic synthesis[M]. American Geophysical Union,1990.
    Zonenshain L P, Kuzmin M I, Bocharova N Y. Hot-field tectonics[J]. Tectonophysics,1991, 199(2):165-192.
    Zonenshain L P, Pichon X. Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins[J]. Tectonophysics,1986,123(1):181-211.
    Zytko K. The Atlantic, the Indian Ocean and main linear fracture zones of the post-Variscan Europe[C]//Annales Societatis Geologorum Poloniae.1984,52:3-38。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700