脯氨酸衍生催化剂的设计、合成及其在手性含氧杂环合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧杂环是一类有显著的生理活性的化合物,作为核心结构存在于大量的天然产物和药物有效成分中。手性含氧杂环的不对称合成对于天然产物化学和药物开发等领域有重要的意义。所以建立简单、高效、对映选择性和原子经济性地构建手性含氧杂环的方法学就显得十分必要。本论文的研究内容主要集中在羰基化合物的不对称碳-碳键形成反应以及以此为基础的手性含氧杂环的合成上。
     首先以脂肪醛与硝基烯烃的不对称Michael加成反应为模型,我们设计并合成了一类脯氨酸衍生的手性双官能催化剂5a-d。通过增加催化剂分子中两个活性官能团的距离,有效地防止了惰性中间体的生成,催化效率得到明显提高。反应在仅1.5mol%的催化剂5d作用下即可顺利完成,以71-99%的产率得到加成产物γ-硝基醛。该催化剂也在反应中显示出了非常好的立体选择性,在优化的反应条件下反应dr值和ee值分别高达99:1和97%。
     接下来上述构建碳碳键方法被成功地应于与手性苯并吡喃化合物的合成中。通过仲氨催化剂促进的脂肪醛与(E)-2-(2-硝基乙烯基)-苯酚之间的Michael加成/半缩醛化串联反应,以令人满意的产率和立体选择性生成了苯并吡喃衍生物2-羟基色烷11。通过简单的衍生化反应,产物11可以分别被转化成手性二氢香豆素、色烷和色烯等天然产物中常见的结构。在这个反应中,催化剂的选择对于反应的立体选择性有非常明显的影响。二苯基脯氨醇硅醚2能催化反应以优异的对映选择性得到产物12,但是较低的催化活性和非对映选择性限制了它的应用价值。相比之下我们自己开发的双官能催化剂5d有更好的催化活性,能以更好的产率和优秀的非对映选择性得到苯并吡喃化合物,然而反应的对映选择性不如前者理想。
     在羰基化合物作为电子受体的加成反应中,脯氨酸衍生的小分子同样可以作为配体形成手性Lewis酸催化剂,控制反应的立体选择性。接下来的研究中,以脯氨酸衍生的手性二胺L1与二价铜盐的配合物为催化剂,邻炔基苯甲醛类化合物成功地通过Henry反应在分子中引入了立体中心;反应中间体手性β-硝基醇中的羟基对炔烃的分子内加成得到1H-异色烯19和1,3-二氢异苯并呋喃20。考虑到β-硝基醇在碱性环境、高温以及强的Lewis酸环境下的不稳定性,金(I)催化剂的选用十分关键,它成功避免了β-硝基醇的逆Henry反应、脱水和关环过程中ee值的损失。这个反应方法的建立提供了一种对映选择性合成手性1H-异色烯和1,3-二氢异苯并呋喃衍生物的有效途径。另外反应关环步骤中观察到的区域选择性和底物电子性质之间的关系也得到了进一步的验证与研究。通过对底物取代基的调整,可以选择性地合成1H-异色烯或1,3-二氢异苯并呋喃化合物。
     手性双烯体与活泼的亚硝基化合物之间的不对称Diels-Alder反应也是合成手性含氧杂环的途径之一。双烯体上的取代基对于反应的区域选择性有明显的影响:相对于乙酰氧基,给电子能力较强的硅氧基OTIPS使得双烯体的电子分布更不对称,所以相应的化合物25a在反应中显示出了非常好的区域选择性和面选择性。通过该方法可以在4-取代手性环己烯酮的3,6位同时引入两个杂原子取代的手性中心。
Oxygen heterocycles are found in many natural products and synthetic molecules,exhibiting fascinating biological and pharmacological activities. The synthesis of this typeof compound is of great importance to the field of natural products chemistry andmedicinal chemistry. So, it is essential to establish some simple, atom economicmethodologies for the construction of oxa-heterocycles with high efficiency and highstereoselectivity. The topic of my thesis mainly focused on the deveploping of asymmetriccarbonyl involved C-C bond forming reactions and their applications in preparing oxygenheterocycles such as benzopyrans and benzofurans.
     Based on enamine activation mode, several novel prolylprolinol catalysts5a-d havebeen synthesized for the C-C bond forming reactions. By rational design, the formation ofunreactive species hemiaminal between catalyst and aldehyde was avoided. So, this typeof catalysts showed high catalytic efficiency on promoting the direct addition ofunmodified aliphatic aldehydes to nitroalkenes. Among the catalysts surveyed, the leastbulky5d exhibited the best performance on both efficiency and stereoselectivity,providing the products with up to97%ee and up to99:1dr value with1.5-5mol%catalyst loading. Additionally, computational studies of transition state have beenconducted to explain the high diastereo-and enantioselectivity of5d.
     Then this asymmetric Michael addition methodology had been used in the reactionbetween aliphatic aldehydes and (E)-2-(2-nitrovinyl)-phenols. By the followingspontaneous hemiactalization, this cascade was successfully applied in the synthesis ofbenzopyran frameworks. Interestingly, the diastereo-and enantioselectivities changedmarkedly when the reaction was mediated by different types of secondary-amine catalysts.The diphenylprolinol silyl ether2promoted the reaction with excellent enantioselectivities(up to99%ee) while suffered from poor reactivity and diastereoselectivities (2.8:1to10:1).(L,L)-prolylprolinol5d is also identified as an effective catalyst that showed highcatalytic activity, good enantioselectivities (up to89%ee) and excellentdiasereoselectivities (up to50:1dr). In addition, the chroman-2-ols11b yielded in the above reactions could be conveniently transformed to synthetically and biologicallysignificant chiral dihydrocoumarin, chroman and4H-chromene derivatives.
     The Proline derivatives are also applicable as chiral ligands along with metal saltsfor the Lewis acid promoted carbonyl addition reactions. By combining the copper(II)catalyzed asymmetric Henry reaction of o-alkynylbenzaldehydes with subsequent gold(I)catalyzed cycloisomerization, optically active1H-isochromenes and1,3-dihydroiso-benzofurans were successfully synthesized in good overall yields with good to excellentenantioselectivities (up to98%). The employment of gold catalyst is vital to thecycloisomerization step because the intermediate β-nitroalcohols18are fairly unstable andprone to racemize under basic, thermo or strong acidic conditions. Various substrates wereinvestigated and a correlation between the regioselectivity and electronic nature of thesubstrates was studied. By tuning the electronic property of the substituents, manysubstrates could be selectively transformed to either1H-isochromene or1,3-dihydroisobenzofuran.
     The hetero-Diels-Alder reaction between chiral dienes and highly reactive acylnitroso compouns is another method for construction of chiral oxygen containingheterocycles. The regioselectivity seems largely depended on the substituent on diene.Compared to OAc, the OTIPS group makes the dienen more electronicly asymmetric andleads to the excellent selectivity of the reaction between nitroso and OTIPS-diene25a.This reaction seccessifully introduced two hetero substituents on chiral ketene moleculessimultaneously in one step.
引文
[1] The Chemistry of Heterocycles (Ed.: T. Eicher, S. Hauptmann) Wiley-VCH,2003
    [2] B. F. Bowden, J. C. Coll, S. J. Mitchell, Studies of Australian soft corals. XVIII. Further cembranoidditerpenes from soft corals of the Genus Sarcophyton. Aust. J. Chem.1980,33,879-884.
    [3] K. Gerth, N. Bedorf, G. Hoefle, H. Irschik, H. Reichenbach, Antifungal and cytotoxic compoundsfrom Sorangium cellulosum (Myxobacteria)-Production, physico-chemical and biological properties.Journal of Antibiotics1996,49,560-563.
    [4] P. V. Kiem, N. T. K. Thuy, Y. H. Kim, et al. Chemical constituents of the rhizomes of Hedychiumcoronarium and their inhibitory effect on the pro-inflammatory cytokines production LPS-stimulated inbone marrow-derived dendritic cells. Bioorg. Med. Chem. Lett.2011,21,7460-7465.
    [5] B.-W. Chen, C.-Y. Huang, J.-H. Sheu, et al. Klysimplexins U–X, Eunicellin-Based Diterpenoids from theCultured Soft Coral Klyxum simplex. Bull. Chem. Soc. Jpn.2011,84,1237-1242.
    [6] K. Arimitsu, S. Nomura, M. Yamashita, First total synthesis of (±)-adunctin B. Tetrahedron Lett.2011,52,7046-7048.
    [7] J. K. Harper, A. M. Arif, D. M. Grant, et al. Pestacin (I): A1,3-dihydro isobenzofuran from Pestalotiopsismicrospora possessing antioxidant and antimycotic activities. Tetrahedron2003,59,2471-2476.
    [8] J. Malmstrom, C. Christophersen, A. Rosales, et al. Bioactive metabolites from a marine derived strain ofthe fungus emericella variecolor. J. Nat. Prod.2002,65,364-367.
    [9] S. Wan, W. Seth Horne, P. E. Floreancig, et al. Total synthesis and biological evaluation of pederin,psymberin, and highly potent analogs. J. Am. Chem. Soc.2011,133,16668-16679.
    [10] Vitamin E (Ed.: L. J. Machlin) Marcel Dekker: New York,1980.
    [11] K. Isabashi, Studies of antibiotics from Helminthosporium sp. fungi. VII. Siccanin, a new antifungalantibiotic produced by Helminthosprorium siccans. J. Antibiot. Ser. A1962,15,161-167.
    [12] B.-X. Jia, Y.-X. Zhou, Q. Wang, et al. Structure determination of baeckeins C and D from the roots ofBaeckea frutescens. Magn. Reson. Chem.2011,49,757-761.
    [13] W. Wang, T. Li, G. Attardo, at al. Novel1,3-disubstituted-5,10-dihydro-5,10-dioxo-1H-mbenzo[g]isochromene-3-carboxamides as potent antitumor agents. Bioorg. Med. Chem. Lett.1998,8,1579-1584.
    [14] F. Siddiq, I. Fatima, A. Malik, et al. Biologically Active Bergenin Derivatives from Bergenia stracheyi.Chem. Biodiversity,2012,9,91-98.
    [15] B. List, Asymmetric aminocatalysis. Synlett2001,1675-1686.
    [16] B. List, Enamine catalysis is a powerful strategy for the catalytic generation and use of carbanionequivalents. Acc. Chem. Res.2004,37,548-557.
    [17] G. Stork, A. Brizzolara, R. Terrell, The enamine alkylation and acylation of carbonyl compounds. J. Am.Chem. Soc.1963,85,207-222.
    [18] The Chemistry of Enamines,(Ed.:, Z. Rappoport) Wiley: New York,1994.
    [19] B. List, The ying and yang of asymmetric aminocatalysis. Chem. Commun.,2006,819-824.
    [20] U. Eder, G. Sauer, R. Weichert, New Type of. Asymmetric Cyclization to Optically Active Steroid CDPartial. Structures. Angew. Chem. Int. Ed.1971,10,496-497.
    [21] Z. G. Hajos, D. R. Parrish, Asymmetric synthesis of bicyclic intermediates of natural product chemistry.J. Org. Chem.1974,39,1615-1621.
    [22] B. List, R. A. Lerner, C. F., III. Barbas, Proline-catalyzed direct asymmetric aldol reactions. J. Am.Chem. Soc.2000,122,2395-2396.
    [23] P. I. Dalko, L. Moisan, In the golden age of organocatalysis. Angew. Chem. Int. Ed.2004,43,5138-5175.
    [24] A. Dondoni, A. Massi, Asymmetric organocatalysis: from infancy to adolescence. Angew. Chem. Int. Ed.2008,47,4638-4660.
    [25] D. W. C. MacMillan, The advent and development of organocatalysis. Nature2008,455,304-308.
    [26] A. Erkkila, I. Majander, P. M. Pihko, Iminium catalysis. Chem. Rev.2007,107,5416-5470.
    [27] S. Mukherjee, B. List, Asymmetric enamine catalysis. Chem. Rev.2007,107,5471-5569.
    [28] Enantioselective Organocatalysis (Ed.: P. I. Dalko), Wiley-VCH, Weinheim,2007.
    [29] D. Enders, O. Niemeier, L. Straver, Asymmetric organocatalytic synthesis of cis-substituteddihydrobenzofuranols via intramolecular aldol reactions. Synlett2006,3399-3402.
    [30] B. List, The direct catalytic asymmetric three-component mannich reaction. J. Am. Chem. Soc.2000,122,9336-9337.
    [31] B. E. Rossiter, N. M. Swingle, Asymmetric conjugate addition. Chem. Rev.1992,92,771-808.
    [32] Conjugate Addition Reactions in Organic Synthesis (Ed.: P. Perlmutter) Pergamon Press: Oxford,1992.
    [33] B. List, P. Pojarliev, H. J. Martin, Efficient proline-catalyzed michael mdditions of unmodified ketonesto nitro olefins. Org. Lett.2001,3,2423-2425.
    [34] S. Sulzer-Moss, A. Alexakis, Chiral amines as organocatalysts for asymmetric conjugate addition tonitroolefins and vinyl sulfones via enamine activation. Chem. Commun.2007,3123-3135.
    [35] D. Almasi, D. A. Alonso, N. Carmen, Organocatalytic asymmetric conjugate additions. Tetrahedron:Asymmetry2007,18,299-365.
    [36] J. L. Vicario, D. Badia, L. Carrillo, Organocatalytic enantioselective michael and hetero-Michaelreactions. Synthesis2007,2065-2092.
    [37] Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Diphenylprolinol silyl ethers as efficient organocatalystsfor the asymmetric Michael reaction of aldehydes and nitroalkenes. Angew. Chem. Int. Ed.2005,44,4212-4215.
    [38] W. Wang, J. Wang, H. Li, Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed MichaelAddition Reactions of Aldehydes to Nitrostyrenes. Angew. Chem. Int. Ed.2005,44,1369-1371.
    [39] W. Notz, F. Tanaka, C. F., III. Barbas, Enamine-based organocatalysis with Proline and diamines: thedevelopment of direct catalytic asymmetric aldol, Mannich, Michael, and Diels Alder reactions. Acc.Chem. Res.2004,37,580-591.
    [40] B. List, P. Pojarliev, H. J. Martin, et al. The Proline-catalyzed direct asymmetric three-componentMannich reaction: scope, optimization, and application to the highly enantioselective synthesis of1,2-amino alcohols. J. Am. Chem. Soc.2002,124,827-833.
    [41] B. List, C. Castello, A novel Proline-catalyzed three-component reaction of ketones, aldehydes, andmeldrum's Acid. Synlett2001,1687-1689.
    [42] P. Melchiorre, K. A. J rgensen, Direct enantioselective Michael addition of aldehydes to vinyl ketonescatalyzed by chiral amines. J. Org. Chem.2003,68,4151-4157.
    [43] Y. Chi, S. H. Gellman, Diphenylprolinol Methyl Ether: A highly enantioselective catalyst for Michaeladdition of aldehydes to simple enones. Org. Lett.2005,7,4253-4256.
    [44] S. Zhu, Y. Wang, D. Ma, Enantioselective organocatalytic conjugate addition of aldehydes to,β-unsaturated thiol esters. Adv. Synth. Catal.2009,351,2563-2566.
    [45] S. Mosse, A. Alexakis, First organocatalyzed asymmetric Michael addition of aldehydes to vinylsulfones. Org. Lett.2005,7,4361-4364.
    [46] K. Juhl, K. A. J rgensen, Activation of dienophiles through raising of the HOMO energy by an enamineactivation. Angew. Chem. Int. Ed.2003,42,1498-1501.
    [47] T. C. Wabnitz, S. Saaby, K. A. J rgensen, The first catalytic inverse-electron demand hetero-Diels–Alder reaction of nitroso alkenes using pyrrolidine as an organocatalyst. Org. Biomol. Chem.2004,2,828-834.
    [48] T. D. Beeson, A. Mastracchio, D. W. C. MacMillan, et al. enantioselective organocatalysis usingSOMO activation. Science,2007,316,582-585.
    [49] T. Shibata, R. Fujiwara, Y. Ueno, Cationic platinum-catalyzed etherification by intra-andintermolecular dehydration of alcohols. Synlett2005,152-154.
    [50] L.-P. Fan, P. Li, J.-W. Xie, et al. Facile Domino Access to Chiral Mono-, Bi-and Tricyclic2,3-Dihydrofurans. J. Org. Chem.2010,75,8716-8719.
    [51] M. Uyanik, H. Okamoto, K. Ishihara, et al.Quaternary ammonium (hypo)iodite catalysis forenantioselective oxidative cycloetherification. Science2010,328,1376-1379.
    [52] M. Uyanik, D. Suzuki, K. Ishihara, et al. In situ generated (hypo)iodite catalysts for the direct alpha-oxyacylation of carbonyl compounds with carboxylic acids. Angew. Chem. Int. Ed.2011,50,5331-5334.
    [53] I. Ibrahem, R. Rios, A. Córdova, et al. Organocatalytic asymmetric5-hydroxyisoxaz-olidine synthesis:A highly enantioselective route to β-amino acids. Chem. Commun.2007,849-851.
    [54] S. S. Sohn, E. L. Rosen, J. W. Bode, N-Heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J. Am. Chem. Soc.2004,126,14370-14371.
    [55] C. F. Nisinga, S. Brase, Recent developments in the feld of oxa-Michael reactions. Chem. Soc. Rev.2012,41,988-999.
    [56] A. Bhattacharjee, O. Soltani, J. K. De Brabander, Synthesis of the C1C21(C1-C21) fragment of thedimeric polyketide natural product SCH351448. Org. Lett.2002,4,481-484.
    [57] L. Wang, P. Li, D. Menche, Concise synthesis of tetrahydropyrans by a tandem oxa-Michael/Tsuji—Trost reaction. Angew. Chem. Int. Ed.2010,49,9270-9273.
    [58] X. Zhang, S. Zhang, W. Wang, Iminium–allenamine cascade catalysis: one-pot access to chiral4H-chromenes by a highly enantioselective Michael–Michael sequence. Angew. Chem. Int. Ed.2010,49,1481-1484.
    [59] K. Hori, H. Kitagawa, A. Miyoshi, T. Ohta, I. Furukawa, Transition metal-catalyzed cyclization of2-allylphenol to2,3-dihydro-2-methylbenzofuran without beta-Elimination. Chem. Lett.1998,1083-1084.
    [60] L. Coulombel, E. Dunach, Triflic acid-catalysed cyclisation of unsaturated alcohols. Green Chem.2004,6,499-501.
    [61] L. Coulombel, I. Favier, E. Dunach, Catalytic formation of C–O bonds by alkene activation: Lewisacid-cycloisomerisation of olefinic alcohols. Chem. Commun.2005,2286-2288.
    [62] H. Bienayme, J. E. Ancel, J. P. Simonato, et al. Mn(salen)-catalyzed enantioselective C-H amination.Tetrahedron Lett.2000,42,3339-3342.
    [63] E. Marotta, E. Foresti, G. Rosini, et al. CeCl3·7H2O—NaI catalyzed hydrooxacyclization of unsaturated3-hydroxy esters. Org. Lett.2002,4,4451-4453.
    [64] B. D. Kelly, J. M. Allen, T. H. Lambert, et al. Multicatalytic synthesis of complex tetrahydrofuransinvolving bismuth(III) triflate-catalyzed intramolecular hydroalkoxylation of unactivated olefins. Org.Lett.2009,11,1381-1383.
    [65] C. G. Yang, C. He, Gold(I)-catalyzed intermolecular addition of phenols and carboxylic acids to olefins.J. Am. Chem. Soc.2005,127,6966-6967.
    [66] H. Qian, X. Han, R. A. Widenhoefer, Platinum-catalyzed hydroalkoxylation of γ-and-HydroxyOlefins to form Cyclic Ethers. J. Am. Chem. Soc.2004,126,9536-9537.
    [67] K. Komeyama, T. Morimoto, K. Takaki, et al. Cationic iron-catalyzed intramolecular hydroalkoxylationof unactivated olefins. Tetrahedron Lett.2007,48,3259-3261.
    [68] L. B. Wolf, K. C. M. F. Tjen, F. P. J. T. Rutjes, et al. Palladium-catalyzed cyclization reactions ofacetylene-containing amino acids. Adv. Synth. Catal.2002,344,70-83.
    [69] A. Taleb, M. Lahrech, J. L. Parrain, et al. Grubbs catalyst promoted oxacycloisomeri-zation: an easyroute to bicyclic dihydrofurans and tricyclic acetals. Synlett2009,1597-1600.
    [70] S. Antoniotti, E. Genin, V. Michelet, J.-P. Genêt, Highly efficient access to strained bicyclic ketals viagold-catalyzed cycloisomerization of bis-homopropargylic diols. J. Am. Chem. Soc.2005,127,9976-9977.
    [71] P. Roembke, H. Schmidbaur, H. Raubenheimer, et al. Application of (phosphine)gold(I) carboxylates,sulfonates and related compounds as highly efficient catalysts for the hydration of alkynes. J. Mol.Catal. A2004,212,35-42.
    [72] E. Genin, J.-P. Genet, V. Michelet, et al. Room temperature Au(I)-catalyzed exo-selectivecycloisomerization of acetylenic acids: an entry to functionalized γ-lactones. J. Am. Chem. Soc.2006,128,3112-3113.
    [73] G. L. Hamilton, E. J. Kang, F. D. Toste, et al. A powerful chiral counterion strategy for asymmetrictransition metal catalysis. Science2007,317,496-499.
    [74] H. Pellissier, Asymmetric hetero-Diels–Alder reactions of carbonyl compounds. Tetrahedron2009,65,2839-2877.
    [75] J. L. Garcia-Ruano, M. A. Fernandez-Ibanez, M. C. Maestro, Efficient trans-selectivity in thecyclocondensation of (S)-2-[p-tolylsulfinyl)phenyl]acetaldehyde with activated dienes catalized byYb(OTf)3. J. Org. Chem.2006,71,7683-7689.
    [76] B. S. Lucas, V. Gopalsamuthiram, S. D. Burke, Total synthesis of phorboxazole B. Angew. Chem. Int.Ed.2007,46,769-772.
    [77] M. Martin, M. M. Afonso, A. Galindo, J. A. Palenzuela, A facile synthesis of a difluoromethyleneanalog of β-aspartyl phosphate for Inhibition of L-aspartate-β-semialdehyde dehydrogenase. Synlett2001,117-119.
    [78] C. F. Thompson, T. F. Jamison, E. N. Jacobsen, FR901464: total synthesis, proof of structure, andevaluation of synthetic analogs. J. Am. Chem. Soc.2001,123,9974-9983.
    [79] M. Bandini, P. G. Cozzi, A. Umani-Ronchi,[Cr(Salen)] as a―bridge‖between asymmetric catalysis,Lewis acids and redox processes. Chem. Commun.2002,919-927.
    [80] W. Yang, D. Shang, X. Feng, Highly enantioselective synthesis of2,6-disubstituted and2,2,6-trisubstituted dihydropyrones: A one-step synthesis of (R)-(+)-hepialone and its analogues. J. Org.Chem.2005,70,8533-8537.
    [81] B. Gao, Z. Fu, X. Feng, Highly enantioselective hetero-Diels–Alder reaction between trans-1-methoxy-2-methyl-3-trimethylsiloxybuta-1,3-diene and aldehydes catalyzed by (R)-BINOL–Ti(IV) complex.Tetrahedron2005,61,5822-5830.
    [82] Y. Wang, J. Wolf, P. Zavalij, M. P. Doyle, Cationic chiral dirhodium carboxamidates are activated forLewis acid catalysis. Angew. Chem. Int. Ed.2008,47,1439-1442.
    [83] L. Lin, Q. Fan, B. Qin, X. Feng, Highly enantio-and diastereoselective Brassard type hetero-Diels-Alder approach to5-methyl-containing,β-unsaturated-lactones. J. Org. Chem.2006,71,4141-4146.
    [84] I. Iwakura, T. Ikeno, T. Yamada, A DFT study on hetero-Diels–Alder reactions catalyzed by cobaltcomplexes: Lewis acidity enhancement as a consequence of spin transition caused by Lewis basecoordination. Angew. Chem. Int. Ed.2005,44,2524-2527.
    [85] M. Bernarski, S. Danishefsky, Interactivity of chiral catalysts and chiral auxiliaries in the cycloadditionof activated dienes with aldehydes: a Synthesis of L-Glucose. J. Am. Chem. Soc.1986,108,7060-7067.
    [86] S. Danishefsky, E. Larson, N. Kato, On the scope, mechanism and stereochemistry of the Lewis acidcatalyzed cyclocondensation of activated dienes with aldehydes: an application to the erythronolideproblem. J. Am. Chem. Soc.1985,107,1246-1255.
    [87] Ghosh, A. K.; Shirai, M. Asymmetric hetero Diels–Alder route to quaternary carbon centers: synthesisof ()-malyngolide. Tetrahedron Lett.2001,42,6231-6233.
    [88] M. E. Sous, D. Ganame, P. A. Tregloan, M. A. Rizzacasa, Total synthesis of (-)-reveromycin A. Org.Lett.2004,6,3001-3004.
    [89] P. Gizecki, R. Dhal, G. Dujardin, Novel use of N-benzoyl-N,O-acetals as N-acylimine equivalents inasymmetric heterocycloaddition: an extended enantioselective pathway to beta-benzamido aldehydes. J.Org. Chem.2003,68,4338-4344.
    [90] D. A. Evans, J. S. Johnson, E. J. Olhava, Enantioselective synthesis of dihydropyrans. catalysis of teteroDiels-Alder reactions by bis(oxazoline) copper(II) complexes. J. Am. Chem. Soc.2000,122,1635-1649.
    [91] K. Gademann, D. E. Chavez, E. N. Jacobsen, Highly enantioselective inverse-electron-demand hetero-Diels–Alder reactions of,β-unsaturated aldehydes. Angew. Chem. Int. Ed.2002,41,3059-3061.
    [92] W. Zhuang, J. Thorhauge, K. A. Jorgensen, Synthesis of optically active amino sugar derivatives usingcatalytic enantioselective hetero-Diels–Alder reactions. Chem. Commun.2000,459-460.
    [93] Z. Xu, H. Wang, Asymmetric inverse-electron-demand hetero-Diels-Alder reaction via enamine-metalLewis acid bifunctional catalysis. Synlett2011,2907-2912.
    [94] M. G. Nuneza, P. Garcia, R. F. Moro, D. Diez, Asymmetric organocatalytic synthesis of six-memberedoxygenated heterocycles. Tetrahedron2010,66,2089-2109.
    [1] S. B. Tsogoeva, Recent advances in asymmetric organocatalytic1,4-conjugate additions. Eur. J. Org.Chem.2007,1701-1716.
    [2] S. S. Mosse, A. Alexakis. Chiral amines as organocatalysts for asymmetric conjugate addition tonitroolefins and vinyl sulfones via enamine activation. Chem. Commun.2006,3123-3135.
    [3] R. Ballini, G. Bosica, M. Petrini, Conjugate additions of nitroalkanes to electron-poor alkenes: recentresults. Chem. Rev.2005,105,933-971.
    [4] B. L. Feringa, Phosphoramidites: marvellous ligands in catalytic asymmetric conjugate addition. Acc.Chem. Res.2000,33,346-353.
    [5] A. Dondoni, A. Massi, Asymmetric organocatalysis: from infancy to adolescence. Angew. Chem. Int. Ed.2008,47,4638-4660.
    [6] D. W. C. MacMillan, The advent and development of organocatalysis. Nature2008,455,304-308.
    [7] A. Erkkila, I. Majander, P. M. Pihko, Iminium catalysis. Chem. Rev.2007,107,5416-5470.
    [8] S. Mukherjee, B. List, Asymmetric enamine catalysis. Chem. Rev.2007,107,5471-5569.
    [9] Enantioselective Organocatalysis (Ed.: P. I. Dalko), Wiley-VCH, Weinheim,2007.
    [10] O. M. Berner, L. Tedeschi, D. Enders, Asymmetric Michael additions to nitroalkenes. Eur. J. Org. Chem.2002,1877-1894.
    [11] S. Sulzer-Moss, A. Alexakis, Chiral amines as organocatalysts for asymmetric conjugate addition tonitroolefins and vinyl sulfones via enamine activation. Chem. Commun.2007,3123-3135.
    [12] D. Almasi, D. A. Alonso, N. Carmen, Organocatalytic asymmetric conjugate additions. Tetrahedron:Asymmetry2007,18,299-365.
    [13] J. L. Vicario, D. Badia, L. Carrillo, Organocatalytic enantioselective Michael and hetero-Michaelreactions. Synthesis2007,2065-2092.
    [14] The Nitro Group in Organic Synthesis (Ed.: N. Ono), Wiley-VCH,2001.
    [15] M. G. Nuneza, P. Garcia, R. F. Moro, D. Diez, Asymmetric organocatalytic synthesis of six-memberedoxygenated heterocycles. Tetrahedron2010,66,2089-2109.
    [16] B. List, R. A. Lerner, C. F., III. Barbas, Proline-catalyzed direct asymmetric aldol reactions. J. Am.Chem. Soc.2000,122,2395-2396.
    [17] M. Laars, K. Ausmees, T. Kanger, Enantioselective organocatalytic Michael addition of aldehydes to β-nitrostyrenes. J. Org. Chem.2009,74,3772-3775.
    [18] J. Wu, B. Ni, A. D. Headley, Di(methylimidazole)prolinol silyl ether catalyzed highly Michael additionof aldehydes to nitroolefins in water. Org. lett.2009,11,3354-3356.
    [19] P. Garcia-Garcia, Ai Ladepeche, B. List, Catalytic asymmetric Michael reactions of acetaldehyde.Angew. Chem. Int. Ed.2008,47,4719-4721.
    [20] Y. Hayashi, T. Itoh, M. Ohkubo, Asymmetric michael reaction of acetaldehyde catalyzed bydiphenylprolinol silyl ether. Angew. Chem. Int. Ed.2008,47,4722-4724.
    [21] Y. Chi, L. Guo, S. H. Gellman, Enantioselective organocatalytic Michael addition of aldehydes tonitroethylene: efficient access to γ2-amino acids. J. Am. Chem. Soc.2008,130,5608-5609.
    [22] S. Zhu, S. Yu, D. Ma, Highly efficient catalytic system for enantioselective Michael addition ofaldehydes to nitroalkenes in water Angew. Chem. Int. Ed.2008,47,545-548.
    [23] M. T. Barros, A. M. F. Phillips, Chiral piperazines as efficient catalysts for the asymmetric Michaeladdition of aldehydes to nitroalkenes. Eur. J. Org. Chem.2007,178-185.
    [24] T. Mandal, C. Zhao, Synthesis of prolinal dithioacetals as catalysts for the highly stereoselectiveMichael addition of ketones and aldehydes to β-nitrostyrenes. Tetrahedron Lett.2007,48,5803-5806.
    [25] Y. Li, X. Liu, G. Zhao, Effective and recyclable dendritic catalysts for the direct asymmetric Michaeladdition of aldehydes to nitrostyrenes. Tetrahedron: Asymmetry2006,17,2034-2039.
    [26] S. Mosse, A. Alexakis, Organocatalyzed asymmetric reactions via microwave activation. Org. Lett.2006,8,3577-3580.
    [27] S. Mosse, M. Laars, A. Alexakis,3,3-Bimorpholine derivatives as a new class of organocatalysts forasymmetric Michael addition. Org. Lett.2006,8,2559-2562.
    [28] N. Mase, K. Watanabe, C. F. Barbas III, Organocatalytic direct Michael reaction of ketones andaldehydes with β-nitrostyrene in brine J. Am. Chem. Soc.2006,128,4966-4967.
    [29] L. Zu, H. Li, J. Wang, X. Yu, W. Wang, Highly enantioselective aldehyde–nitroolefin Michael additionreactions catalyzed by recyclable fluorous (S)-diphenylpyrrolinol silyl ether. Tetrahedron Lett.2006,47,5131-5134.
    [30] Y. Xu, A. Córdova, Simple highly modular acyclic amine-catalyzed direct enantioselective addition ofketones to nitroolefins. Chem. Commun.2006,460-462.
    [31] Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Diphenylprolinol silyl ethers as efficient organocatalystsfor the asymmetric Michael reaction of aldehydes and nitroalkenes. Angew. Chem. Int. Ed.2005,44,4212-4215.
    [32] O. Andrey, A. Alexakis, A. Tomassini, G. Bernardinelli, The use of N-alkyl-2,2‘-bipyrrolidinederivatives as organocatalysts for the asymmetric Michael addition of ketones and aldehydes tonitroolefins. Adv. Synth. Catal.2004,346,1147-1168.
    [33] N. Mase, C. F. III Barbas, Direct asymmetric organocatalytic Michael reactions of,-disubstitutedaldehydes with β-nitrostyrenes for the synthesis of quaternary carbon-containing products. Org. Lett.2004,6,2527-2530.
    [34] A. Alexakis, O. Andrey, Diamine-catalyzed asymmetric Michael additions of aldehydes and ketones tonitrostyrene. Org. Lett.2002,4,3611-3614.
    [35] J. M. Betancourt, C. F. III Barbas, Catalytic direct asymmetric Michael reactions: taming nakedaldehyde nonors. Org. Lett.2001,3,3737-3740.
    [36] X. Zhang, S. Liu, M. Yan, Highly enantioselective conjugate addition of aldehydes to nitroolefinscatalyzed by chiral bifunctional sulfamides. Chem. Commun.2009,833-835.
    [37] Y. Okuyama, M. Takeshita, C. Kabuto, Organocatalytic activity of4-hydroxy-prolinamide alcohol withdifferent noncovalent coordination sites in asymmetric Michael and direct aldol reactions. TetrahedronLett.2009,50,193-197.
    [38] C. Wang, C. Yu, C. Liu, Y. Peng,4-Trifluoromethanesulfonamidyl prolinol tert-butyldiphenylsilyl etheras a highly efficient bifunctional organocatalyst for Michael addition of ketones and aldehydes tonitroolefins. Tetrahedron Lett.2009,50,2363-2366.
    [39] C. Chang, S. Li, K. Chen, et al. Pyrrolidine-camphor derivative as an organocatalyst for asymmeticMichael additions of,-disubstituted aldehydes to β-nitroalkenes: construction of quaternary carbon-bearing aldehydes under solvent-free conditions. Adv. Synth. Catal.2009,351,1273-1278.
    [40] T. Mandal, C. Zhao, Modularly designed organocatalytic assemblies for direct nitro-Michael additionreactions. Angew. Chem. Int. Ed.2008,47,7714-7717.
    [41] M. Wiesner, J. D. Revell, H. Wennemers, Peptide catalyzed asymmetric conjugate addition reactions ofaldehydes to nitroethylene-a convenient entry into γ2-Amino acids. J. Am. Chem. Soc.2008,130,5610-5611.
    [42] M. Wiesner, J. D. Revell, H. Wennemers, Tripeptides as efficient asymmetric catalysts for1,4-additionreactions of aldehydes to nitroolefins-a rational approach. Angew. Chem. Int. Ed.2008,47,1871-1874.
    [43] Z. Yang, X. Feng, C, Hu, Highly efficient amine organocatalysts based on bispidine for the asymmetricMichael addition of ketones to nitroolefins. Adv. Synth. Catal.2008,350,2001-2008.
    [44] Z. Shen, Y. Zhang, Enantioselective and diastereoselective Michael addition of ketone/aldehyde totrans-nitroolefins catalyzed by a novel chiral pyrrolidine-thiourea. Chirality2007,19,307-312.
    [45] S. H. McCooey, S. J. Connon, Readily accessible9-epi-amino cinchona alkaloid derivatives promoteefficient, highly enantioselective additions of aldehydes and ketones to nitroolefins. Org. Lett.2007,9,599-602.
    [46] C. Palomo, S. Vera, A. Mielgo, E. Gomez-Bengoa, Highly efficient asymmetric michael addition ofaldehydes to nitroalkenes catalyzed by a simple trans-4-hydroxyprolylamide. Angew. Chem. Int. Ed.2006,45,5984-5987.
    [47] M. P. Lalonde, Y. Chen, E. N. Jacobsen, A chiral primary amine thiourea catalyst for the highlyenantioselective direct conjugate addition of alpha,alpha-disubstituted aldehydes to nitroalkenes.Angew. Chem. Int. Ed.2006,45,6366-6370.
    [48] L. Zu, J. Wang, H. Li, W. Wang, A recyclable fluorous (S)-pyrrolidine sulfonamide promoted direct,highly enantioselective Michael addition of ketones and aldehydes to nitroolefins in water. Org. Lett.2006,8,3077-3079.
    [49] C. E. T. Mitchell, A. J. A. Cobb, S. V. Ley, A homo-Proline tetrazole as an improved organocatalyst forthe asymmetric Michael addition of carbonyl compounds to nitro-olefins. Synlett2005,611-614.
    [50] W. Wang, J. Wang, H. Li, Direct, highly enantioselective pyrrolidine sulfonamide catalyzed Michaeladdition of aldehydes to nitrostyrenes. Angew. Chem. Int. Ed.2005,44,1369-1371.
    [51] D. H. Paull, C. J. Abraham, T. Lectka, Bifunctional asymmetric catalysis: cooperative Lewis acid/basesystems. Acc. Chem. Res.2008,41,655-663.
    [52] K. Ishihara, A. Sakakura, M. Hatano, Design of highly functional small-molecule catalysts and ralatedreactions based on acid/base combination chemistry. Synlett2007,686-703.
    [53] J. Ma, D. Cahard, Towards perfect catalytic asymmetric synthesis: dual activation of the electrophileand the nucleophile. Angew. Chem. Int. Ed.2004,43,4566-4583.
    [54] A. G. Doyle, E. N. Jacobsen, Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev.2007,107,5713-5743.
    [55] M. S. Taylor and E. N. Jacobsen, Angew. Chem. Int. Ed.2006,45,1520-1543.
    [56] J. Franzen, M. Marigo, K. A. J rgensen, Asymmetric catalysis by chiral hydrogen-bond donors. J. Am.Chem. Soc.2005,127,18296-18304.
    [57] M. J. Frisch et al., GAUSSIAN03, Revision C.02, Gaussian, Inc., Wallingford, CT,2004.
    [58] M. P. Waller, A. Robertazzi, J. A. Platts, D. E. Hibbs, P. A. Williams, Hybrid density functional theoryfor π-stacking interactions: application to benzenes, pyridines, and DNA bases. J. Comp. Chem.2006,27,491-504.
    [1] K. C. Nicolaou, J. A. Pfefferkorn, J. E. Lillig, et al. Natural product-like combinatorial libraries basedon privileged structures.1. general principles and solid-phase synthesis of benzopyrans. J. Am. Chem.Soc.2000,122,9939-9953.
    [2] O’Kennedy, R.; Thornes, R. D. Coumarins: Biology, Applications, and Mode of Action1st edn., JohnWiley&Sons, New York,1997.
    [3] R. D. H. Murray, J. Mendez, S. A. Brown, The Natural Coumarins: Occurrence, Chemistry, andBiochemistry Wiley, New York,1982.
    [4] E. E. Schweizer, O. Meeder-Nycz, in Chromenes, Chromanes, Chromones (Eds.: Ellis, G. P.), Wiley-Interscience, New York,1977.
    [5] R. C. Neugebauer, U. Uchiechowska, M. Jung, Structure-activity studies on splitomicin derivatives assirtuin inhibitors and computational prediction of binding mode. J. Med. Chem.2008,51,1203-1213.
    [6] J. Posakony, M. Hirao, A. Bedalov, et al. Inhibitors of Sir2: evaluation of splitomicin analogues. J.Med. Chem.2004,47,2635-2644.
    [7] Vitamin E (Ed.: L. J. Machlin) Marcel Dekker: New York,1980.
    [8] K. Terao, E. Niki, Damage to biological tissues induced by radical initiator2,2'-azobis(2-amidinopropane) dihydrochloride and its inhibition by chain-breaking antioxidants. J. Free RadicalBiol. Med.1986,2,193-201.
    [9] D. J. Maloney, S. M. Hecht, Org. Lett.2005,7,4297-4300
    [10] Y. Kashiwada, K. Yamazaki, K. H. Lee, et al. Isolation of rhododaurichromanic acid B and the anti-HIV principles rhododaurichromanic acid A and rhododaurichromenic acid from Rhododendrondauricum. Tetrahedron2001,57,1559-1563.
    [11] K. Isabashi, Studies of antibiotics from Helminthosporium sp. fungi. VII. Siccanin, a new antifungalantibiotic produced by Helminthosprorium siccans. J. Antibiot. Ser. A1962,15,161-167.
    [12] Z. Brahmi, H. Niwa, N. Abe, et al. Effective cytochrome P450(CYP) inhibitor isolated from thyme(Thymus saturoides) purchased from a Japanese market. Biosci., Biotechnol. Biochem.2011,75,2237-2239.
    [13] S. T. S. Chan, A. N. Pearce, B. R. Copp, et al. Anti-inflammatory and antimalarial meroterpenoidsfrom the New Zealand ascidian Aplidium scabellum. J. Org. Chem.2011,76,9151-9156.
    [14] R. Devakaram, D. C. Black, N. Kumar, Synthesis and antimalarial evaluation of novelbenzopyrano[4,3-b]benzopyran derivatives. Bio. Med. Chem.2011,19,5199-5206.
    [15] H. C. Shen, Asymmetric synthesis of chiral chromans. Tetrahedron,2009,65,3931-3952.
    [16] S. B. Ferreira, F. C. Silva, V. F. Ferreira, Syntheses of chromenes and chromanes via o-quinonemethide intermediates. J. Heterocycl. Chem.2009,46,1080-1097.
    [17] A. Deiters, S. F. Martin, Synthesis of oxygen-and nitrogen-containing heterocycles by ring-closingmetathesis. Chem. Rev.2004,104,2199-2238.
    [18] J. A. Wilkinson, E.-A. Raiber, S. Ducki, New stabilising groups for lateral lithiation of ortho-cresolderivatives and a new route to2-substituted chromans. Tetrahedron2008,64,6329-6333.
    [19] D. J. Maloney, S. M. Hecht, A stereocontrolled synthesis of delta-trans-tocotrienoloic acid. Org. Lett.2005,7,4297-4300.
    [20] B. M. Trost, H. C. Shen, L. Dong, J.-P. Surivet, Unusual effects in the pd-catalyzed asymmetric allylicalkylations: synthesis of chiral chromans. J. Am. Chem. Soc.2003,125,9276-9277.
    [21] X. Xu, J. Liu, Y. Li, Iron-catalyzed regioselective hydroaryloxylation of C-C triple bonds: an efficientsynthesis of2H-1-benzopyran derivatives. Adv. Synth. Catal.2009,351,2599-2604.
    [22] N. Saito, A. Ryoda, W. Nakanishi, T. Kumamoto,T. Ishikawa, Guanidine-catalyzed asymmetricsynthesis of2,2-disubstituted chromane skeletons by intramolecular oxa-Michael addition. Eur. J. Org.Chem.2008,2759-2766.
    [23] T. Nishikata, Y. Yamamoto, N. Miyaura, Palladium(II)-catalyzed1,4-addition of arylboronic acids toβ-arylenones for enantioselective synthesis of4-aryl-4H-chromenes. Adv. Synth. Catal.2007,349,1759-1764.
    [24] D. Amantini, F. Fringuelli, F. Pizzo, Uncatalyzed [4+2] cycloadditions of3-nitrocoumarins with vinylethers in solventless conditions. A new entry to chromene derivatives. J. Org. Chem.2002,67,7238-7243.
    [25] J.-W. Xie, X. Huang, L.-P. Fan, Efficient method for the synthesis of optically active2-amino-2-chromene derivatives via one-pot tandem reaction. Adv. Synth. Catal.2009,351,3077-3082.
    [26] K. Fukamizu, Y. Miyake, Y. Nishibayashi, Ruthenium-catalyzed enantioselective carbon-carbon bondforming reaction via allenylidene-ene process: synthetic approach to chiral heterocycles such aschromane, thiochromane, and1,2,3,4-tetrahydroquinoline derivatives. J. Am. Chem. Soc.2008,130,10498-10499.
    [27] E. L. Pearson, N. Kanizaj, M. S. Sherburn, Experimental and computational studies into an ATPH-promoted exo-selective IMDA reaction: a short total synthesis of Delta9-THC. Chem. Eur. J.2010,16,8280-8284.
    [28] K. C. Nicolaou, R. Reingruber, S. Brase, Enantioselective intramolecular Friedel-Crafts-type alpha-arylation of aldehydes. J. Am. Chem. Soc.2009,131,2086-2087.
    [29] S. Yamazaki, S. Kashima, K. Kakiuchi, Enantioselective Friedel–Crafts reactions ofethenetricarboxylates and substituted pyrroles and furans and intramolecular reaction of benzenederivatives. Tetrahedron: Asymmetry2009,20,1224-1234.
    [30] S. Chang, R. H. Grubbs, A highly efficient and practical synthesis of chromene derivatives using ring-closing olefin metathesis. J. Org. Chem.1998,63,864-866.
    [31] H. Sugimoto, S. Nakamura, T. Ohwada, Generation and application of o-quinone methides bearingvarious substituents on the benzene ring. Adv. Synth. Catal.2007,349,669-679.
    [32] C. Grondal, M. Jeanty, D. Enders, Organocatalytic cascade reactions as a new tool in total synthesis.Nature Chemistry2010,2,167-178.
    [33] X. Yu, W. Wang, Organocatalysis: asymmetric cascade reactions catalysed by chiral secondary amines.Org. Biomol. Chem.2008,6,2037-2046.
    [34] D. Enders, C.Grondal, M. R. M. Huettl, Asymmetric organocatalytic domino reactions. Angew. Chem.Int. Ed.2007,46,1570-1581.
    [35] Y.-L. Shi, M. Shi, The synthesis of chromenes, chromanes, coumarins and related heterocycles viatandem reactions of salicylic aldehydes or salicylic imines with,β-unsaturated compounds. Org.Biomol. Chem.2007,5,1499-1504.
    [36] R. Rios, H. Sunden, A. Cordova, A simple and concise catalytic asymmetric entry totetrahydroxanthenones. Tetrahedron Lett.2007,48,2181-2184.
    [37] A.-B. Xia, D.-Q. Xu, Z.-Y. Xu, Dual organocatalytic ion-pair assemblies: a highly efficient approachfor the enantioselective oxa-Michael-mannich reaction of salicylic aldehydes with cyclohexenones.Chem. Eur. J.2010,16,801-804.
    [38] L. Zu, S. Zhang, H. Xie, W. Wang, Catalytic asymmetric oxa-Michael-Michael cascade for facileconstruction of chiral chromans via an aminal intermediate. Org. Lett.2009,11,1627-1630.
    [39] M. Rueping, M.-Y. Lin, Catalytic asymmetric mannich-ketalization reaction: highly enantioselectivesynthesis of aminobenzopyrans. Chem. Eur. J.2010,16,4169-4172.
    [40] D. Lu, Y. Gong, W. Wang, Prolylprolinol-catalyzed asymmetric Michael addition of aliphaticaldehydes to nitroalkenes. Adv. Synth. Catal.2010,352,644-650.
    [41] S. Klutchko, A. C. Sonntag, J. Shave, Jr, Reaction of enamines with o-hydroxy-ω-nitrostyrenes.Preparation of benzodihydropyans and hexahydroxanthenes and their rearrangement to pyrroline1-oxides and hexahydroindole1-oxides. J. Org. Chem.1973,38,3049-3051.
    [42] W. Yao, L. Pan, Y. Wu, C. Ma, Asymmetric synthesis of spiro-3,4-dihydropyrans via a dominoorganocatalytic sequence. Org. Lett.2010,12,2422-2425.
    [43] J. Wang, F. Yu, X. Zhang, D. Ma, Enantioselective assembly of substituted dihydropyrones viaorganocatalytic reaction in water media. Org. Lett.2008,10,2561-2564.
    [44] A. V. Demchenko, M. A. Wolfert, G.-J. Boons, Synthesis and biological evaluation of Rhizobium sin-1lipid A derivatives. J.Am. Chem. Soc.2003,125,6103-6112.
    [45] Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Diphenylprolinol silyl ethers as efficient organocatalystsfor the asymmetric Michael reaction of aldehydes and nitroalkenes. Angew. Chem., Int. Ed.2005,44,4212-4215.
    [46] G. K. S. Prakash, F. Paknia, G. A. Olah, Preparation of trifluoromethylated dihydrocoumarins,indanones, and arylpropanoic acids by tandem superacidic activation of2-(trifluoromethyl)acrylic acidwith arenes. J. Org. Chem.2010,75,2219-2226.
    [47] H. Lv, L. You, S. Ye, Enantioselective synthesis of dihydrocoumarins via N-heterocyclic carbene-catalyzed cycloaddition of ketenes and o-quinone methides. Adv. Synth. Catal.2009,351,2822-2826.
    [48] K. Zeitler, C. A. Rose, An efficient carbene-catalyzed access to3,4-dihydrocoumarins. J. Org. Chem.2009,74,1759-1762.
    [49] E. M. Phillips, M. Wadamoto, H. S. Roth, A. W. Ott, K. A. Scheidt, NHC-catalyzed reactions ofaryloxyacetaldehydes: a domino elimination/conjugate addition/acylation process for the synthesis ofsubstituted coumarins. Org. Lett.2009,11,105-108.
    [50] A. Shaabani, E. Soleimani, A. H. Rezayan, A. Sarvary, H. R. Khavasi, Novel isocyanide-based four-component reaction: a facile synthesis of fully substituted3,4-dihydrocoumarin derivatives. Org. Lett.2008,10,2581-2584.
    [51] B.-L. Zhang, F.-D. Wang, J.-M. Yue, A new efficient method for the total synthesis of linearfurocoumarins. Synlett.2006,4,567-570.
    [1] O. Potterat, H. Zahner, A. Zeeck, et al. Metabolic products of microorganisms.264. Exfoliamycin andrelated metabolites, new naphthoquinone antibiotics from Streptomyces exfoliatus. J. Antibiot.1993,46,346-349.
    [2] S. Ali, R. W. Read, S. Sotheeswaran, Benzisochromanquinones and an isofuranonaphthoquinone fromVentilago vitiensis, Phytochemistry,1994,35,1029-1032.
    [3] N. Naruse, M. Goto, Y. Watanabe, T. Terasawa, K. Dobashi, K1115A, a new anthraquinone thatinhibits the binding of activator protein-1(AP-1) to its recognition sites. II. Taxonomy, fermentation,isolation, physico-chemical properties and structure determination. J. Antibiot.1998,51,545–552.
    [4] B. Raman, B. A. Sharma, A. Kumar, et al. Semi-preparative isolation and structural elucidation of animpurity in citalopram by LC/MS/MS. J. Pharm. Biomed. Anal.2009,50,377-383.
    [5] P. Zhang, G. Cyriac, A. H. Newman, et al. Structure-activity relationships for a novel series ofcitalopram (1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile)analogues at monoamine transporters. J. Med. Chem.2010,53,6112-6121.
    [6] W. Wang, T. Li, G. Attardo, et al. Novel1,3-disubstituted-5,10-dihydro-5,10-dioxo-1H-benzo[g]isochromene-3carboxamides as potent antitumor agents. Bioorg. Med. Chem. Lett.1998,8,1579-1584.
    [7] S. R. Byeon, H. Park, H. Kim, J. Hong, Stereoselective synthesis of2,6-trans-tetrahydropyran viaprimary diamine-catalyzed oxa-conjugate addition reaction of,β-unsaturated ketone: total synthesis ofpsymberin. Org. Lett.2011,13,5816-5819.
    [8] F. Siddiq, I. Fatima, S. W. Khan, et al. Biologically active bergenin derivatives from Bergenia stracheyi.Chem. Biodiversity2012,9,91-98.
    [9] J. T. J. Spence, J. H. George, Structural reassignment of cytosporolides A-C via biomimetic syntheticstudies and reinterpretation of NMR data. Org. Lett.,2011,13,5318-5321.
    [10] J. K. Harper, A. M. Arif, D. M. Grant, Pestacin: a1,3-dihydro isobenzofuran from Pestalotiopsismicrospora possessing antioxidant and antimycotic activities Tetrahedron2003,59,2471-2476.
    [11] A. Padwa, K. E. Krumpe, M. D. Weingarten, An unusual example of a6-endo-dig addition to anunactivated carbon-carbon triple bond. J. Org. Chem.1995,60,5595-5603.
    [12] K. Hiroya, R. Jouka, T. Sakamoto, et al. Cyclization reactions of2-alkynylbenzyl alcohol and2-alkynylbenzylamine derivatives promoted by tetrabutylammonium fluoride. Tetrahedron2001,57,9697-9710.
    [13] B. Gabriele, G. Salerno, R. Pittelli, Versatile synthesis of (Z)-1-alkylidene-1,3-dihydroisobenzofuransand1H-isochromenes by palladium-catalyzed cycloisomerization of2-alkynylbenzyl alcoholsTetrahedron2003,59,6251-6259.
    [14] X. Li, A. R. Chianese, T. Vogel, R. H. Crabtree, Intramolecular alkyne hydroalkoxylation andhydroamination catalyzed by iridium hydrides. Org. Lett.2005,7,5437-5440.
    [15] B. A. Messerle, K. Q. Vuong, Rhodium-and Iridium-catalyzed double hydroalkoxylation of alkynes,an efficient method for the synthesis of O,O-acetals: catalytic and mechanistic studies. Organometallics2007,26,3031-3040.
    [16] A. Varela-Fernández, C. González-Rodríguez, J. A. Varela, L. Castedo, C. Sáa, Cycloisomerization ofaromatic homo-and bis-homopropargylic alcohols via catalytic Ru vinylidenes: formation ofbenzofurans and isochromenes. Org. Lett.2009,11,5350-5353.
    [17] N. Asao, C. S. Chan, Y. Yamamoto, Domino allylation and cyclization of ortho-alkynylbenzaldehydeswith allyltrimethylsilane catalyzed by Pd(II)–Cu(II) bimetallic systems. Tetrahedron2005,61,11322-11326.
    [18] X. Yao, C.-J. Li, Water-triggered and gold(I)-catalyzed cascade addition/cyclization of terminalalkynes with ortho-alkynylaryl aldehyde. Org. Lett.2006,8,1953-1955.
    [19] S. Obika, H. Kono, Y. Takemoto, et al. Concise synthesis of1,2-dihydroisoquinolines and1H-isochromenes by carbophilic lewis acid-catalyzed tandem nucleophilic addition and cyclization of2-(1-alkynyl)arylaldimines and2-(1-alkynyl)arylaldehydes. J. Org. Chem.2007,72,4462-4468.
    [20] F. Wang, Y. Wang, Z. Miao, R. Chen, Efficient syntheses of (thio)phosphonylated isobenzofurans bytandem nucleophilic addition and regioselective5-exo-dig addition to carbon-carbon triple bond:cooperative effect to1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Adv. Synth. Catal.2008,350,2733-2739.
    [21] Z. Chai, Z.-F. Xie, X.-Y. Liu, G. Zhao, J.-D. Wang, Tandem addition/cyclization reaction oforganozinc reagents to2-alkynyl aldehydes: highly efficient regio-and enantioselective synthesis of1,3-dihydroisobenzofurans and tetrasubstituted furans. J. Org. Chem.2008,73,2947-2950.
    [22] M. Dell’Acqua, D. Facoetti, E. Rossi, Selective base-promoted synthesis of dihydroisobenzofurans bydomino addition/annulation reactions of ortho-alkynylbenzaldehydes. Synthesis2010,14,2367-2378.
    [23] L. Zhou, Y. Liu, J. Wang, Sequential Au(I)-catalyzed reaction of water with o-acetylenyl-substitutedphenyldiazoacetates. Beilstein J. Org. Chem.2011,7,631-637.
    [24] J. Barluenga, H. Vázquez-Villa, J. M. González, Cyclization of carbonyl groups onto alkynes uponreaction with IPy2BF4and their trapping with nucleophiles: a versatile trigger for assembling oxygenheterocycles. J. Am. Chem. Soc.2003,125,9028-9029.
    [25] A. B. Beeler, S. Su, C. A. Singleton, J. Porco Jr, A. Discovery of chemical reactions throughmultidimensional screening. J. Am. Chem. Soc.2007,129,1413-1419.
    [26] X. Yu, Q. Ding, W. Wang, J. Wu, Synthesis of1H-isochromen-1-ylphosphonates via AgOTf-catalyzedreaction of2-alkynylbenzaldehyde with diethyl phosphite. Tetrahedron Lett.2008,49,4390-4393.
    [27] B. Ouyang, Y. Peng, J. Wu, et al. Generation of3-(1H-Isochromen-1-yl)-1H-indole via silver triflate-catalyzed tandem reaction of2-alkynylbenzaldehyde with indole. Heterocycles2011,82,1239-1249.
    [28] H. Sasai, T. Suzuki, M. Shibasaki, et al. Basic character of rare earth metal alkoxides. Utilization incatalytic carbon-carbon bond-forming reactions and catalytic asymmetric nitroaldol reactions. J. Am.Chem. Soc.1992,114,4418-4420.
    [29] J. Boruwa, N. Gogoi, N. C. Barua, Catalytic asymmetric Henry reaction. Tetrahedron: Asymmetry2006,17,3315-3326.
    [30] C. Palomo, M. Oiarbide, A. Laso, Recent advances in the catalytic asymmetric nitroaldol (Henry)reaction. Eur. J. Org. Chem.2007,2561-2574.
    [31] D. Xin, Y. Ma, F. He, Synthesis of new planar chiral [2.2]paracyclophane Schiff base ligands and theirapplication in the asymmetric Henry reaction. Tetrahedron: Asymmetry2010,21,333-338.
    [32] A. Noole, K. Lippur, T. Kanger, et al. Enantioselective Henry reaction catalyzed by Cu(II) salt andbipiperidine. J. Org. Chem.2010,75,1313-1316.
    [33] M. Steurer, C. Bolm, Synthesis of amino-functionalized sulfonimidamides and their application in theenantioselective Henry reaction. J. Org. Chem.2010,75,3301-3310.
    [34] W. Yang, H. Liu, D.-M. Du, Efficient in situ three-component formation of chiral oxazoline-Schiffbase copper(II) complexes: towards combinatorial library of chiral catalysts for asymmetric Henryreaction. Org. Biomol. Chem.2010,8,2956-2960.
    [35] Y. Zhou, J. Dong, F. Zhang, Y. Gong, Synthesis of C1-symmetric chiral secondary diamines and theirapplications in the asymmetric copper(II)-catalyzed Henry (nitroaldol) reactions. J. Org. Chem.2011,76,588-600.
    [36] A. Gualandi, L. Cerisoli, H. Stoeckli-Evans, D. Savoia, Pyrrole macrocyclic ligands for Cu-catalyzedasymmetric Henry reactions. J. Org. Chem.2011,76,3399-3408.
    [37] Z.-L. Guo, S. Zhong, G. Lu, Chiral1,1’-binaphthylazepine derived amino alcohol catalyzedasymmetric Henry reaction. Tetrahedron: Asymmetry2011,22,238–245.
    [38] B. V. S. Reddy, S. M. Reddy, C. Madan, Asymmetric Henry reaction catalyzed by a chiral Cu(II)complex: a facile enantioselective synthesis of (S)-2-nitro-1-arylethanols. Tetrahedron: Asymmetry2011,22,530-535.
    [39] K. Dhahagani, J. Rajesh, G. Rajagopal, Asymmetric Henry reaction of aldehydes catalyzed byrecyclable an MCM-41supported copper(II) salen complex. Tetrahedron: Asymmetry2011,22,857-865.
    [40] Y. Wei, L. Yao, S. Zhang, Novel Schiff base ligands derived from Cinchona alkaloids for Cu(II)-catalyzed asymmetric Henry reaction. Tetrahedron2011,67,8552-8558.
    [41] A. S. K. Hashimi, Gold-catalyzed organic reactions. Chem. Rev.2007,107,3180-3211.
    [42] Z. Li, C. Brouwer, C. He, Gold-catalyzed organic transformations. Chem. Rev.2008,108,3239-3265.
    [43] D. J. Gorin, B. D. Sherry, F. D. Toste, Ligand effects in homogeneous Au catalysis. Chem. Rev.2008,108,3351-3378.
    [44] A. S. K. Hashmi, M. Rudolph, Gold catalysis in total synthesis. Chem. Soc. Rev.2008,37,1766-1775.
    [45] S. Sengupta, X. Shi, Recent Advances in Asymmetric Gold Catalysis ChemCatChem2010,2,609-619.
    [46] A. S. K. Hashimi, Homogeneous gold catalysis beyond assumptions and proposals--characterizedintermediates. Angew. Chem. Int. Ed.2010,49,5232-5241.
    [47] S. P. Nolan, The development and catalytic uses of N-heterocyclic carbene gold complexes. Acc. Chem.Res.2011,44,91-100.
    [48] H. A. Wegner, M. Auzias, Gold for C-C coupling reactions: A Swiss-Army-Knife Catalyst? Angew.Chem. Int. Ed.2011,50,8236-8247.
    [49] A. S. K. Hashimi, L. Schwarz, T. M. Frost, A new dold-catalyzed C C bond formation. Angew. Chem.Int. Ed.2000,39,2285-2288.
    [50] Y. Liu, F. Song, B. Yan, Gold-catalyzed cyclization of (Z)-2-en-4-yn-1-ols: highly efficient synthesisof fully substituted dihydrofurans and furans. Org. Lett.2005,7,5409-5412.
    [51] S. Antoniotti, E. Genin, J.-P. Genêt, Highly efficient access to strained bicyclic ketals via gold-catalyzed cycloisomerization of bis-homopropargylic diols. J. Am. Chem. Soc.2005,127,9976-9977.
    [52] J. Barluenga, A. Diéguez, F. J. Fa anás, et al. Gold-or platinum-catalyzed tandemcycloisomerization/prins-type cyclization reactions. Angew. Chem. Int. Ed.2006,45,2091-2093.
    [53] V. Belting, N. Krause, Gold-catalyzed tandem cycloisomerization-hydroalkoxylation of homopropar-gylic alcohols. Org. Lett.2006,8,4489-4492.
    [54] Y. Li, F. Zhou, C. J. Forsyth, Gold(I)-catalyzed bis-spiroketalization: synthesis of the trioxadispiro-ketal-containing A-D rings of azaspiracid. Angew. Chem. Int. Ed.2007,46,279-282.
    [55] S. Belot, N. Krause, A. Alexakis, et al. Enantioselective one-pot organocatalytic Michael addition/gold-catalyzed tandem acetalization/cyclization. Angew. Chem. Int. Ed.2009,48,8923-8926.
    [56] M. Murai, J. Uenishi, M. Uemura, Gold(I)-catalyzed asymmetric synthesis of planar chiral arenechromium complexes. Org. Lett.2010,12,4788-4791.
    [57] A. M. Manzo, A. Perboni, M. Rigamonti, An alternative synthesis of2-alkylidene-3,4-dihydro-2H-1,4-benzoxazines by intramolecular gold-catalyzed hydroalkoxylation of2-(prop-2-yn-1-ylamino)phenols.Synthesis2011,1,127-132.
    [58] C. V. Ramana, R. Mallik, R. G. Gonnade, The influence of electronic factors on palladium-mediatedcycloisomerization: a systematic investigation of competitive5-exo-dig versus6-endo-dig cyclizationsof sugar alkynols. Tetrahedron2008,64,219-233.
    [59] M. Alfonsi, M. Dell’Acqua, E. Rossi, Microwave-promoted synthesis of N-heterocycles by tandemimination/annulation of γ-and-ketoalkynes in the presence of ammonia. Eur. J. Org. Chem.2009,2852-2862.
    [60] S. J. Mahoneya, D. T. Moon, E. Fillion, Functionalization of Csp3–H bond—Sc(OTf)3-catalyzeddomino1,5-hydride shift/cyclization/Friedel–Crafts acylation reaction of benzylidene Meldrum‘s acids.Tetrahedron Lett,2009,50,4706-4709.
    [61] R. Jana, S. Paul, J. K. Ray, Copper-catalyzed addition of water affording highly substituted furan andunusual formation of naphthofuran ring from3-(1-alkenyl)-2-alkene-1-al. Tetrahedron Lett.2010,51,273-276.
    [1] J. Streith, A. Defoin, Hetero Diels-Alder reactions with nitroso dienophiles: application to the synthesisof natural product derivatives. Synthesis1994,1107-1117.
    [2] S. M. Weinreb, R. R. Staib, Synthetic aspects of diels-alder cycloadditions with heterodienophiles.Tetrahedron1982,38,3087-3128.
    [3] A. Baeyer, Ber. Nitrosobenzol und nitrosonaphtalin. Dtsch. Chem. Ges.1874,7,1638-1640.
    [4] P. Ehrlich, F. Sachs, Ber. Ueber condensationen von aromatischen nitrosoverbindungen mitmethylenderivaten. Dtsch. Chem. Ges.1899,32,2341-2346.
    [5] H. Yamamoto, N. Momiyama, Rich chemistry of nitroso compounds. Chem. Commun.2005,3514-3525.
    [6] N. Momiyama, H. Yamamoto, Bronsted acid catalysis of achiral enamine for regio-and enantioselectivenitroso aldol synthesis. J. Am. Chem. Soc.2005,127,1080-1081.
    [7] Y. Yamamoto, N. Momiyama, H. Yamamoto, Enantioselective tandem O-nitroso Aldol/Michael reaction.J. Am. Chem. Soc.2004,126,5962-5963.
    [8] N. Momiyama, H. Yamamoto, Simple synthesis of alpha-hydroxyamino carbonyl compounds: new scopeof the nitroso aldol reaction. Org. Lett.2002,4,3579-3582.
    [9] W. Adam, O. Krebs, The nitroso ene reaction: a regioselective and stereoselective allylic nitrogenfunctionalization of mechanistic delight and synthetic potential. Chem. Rev.2003,103,4131-4146.
    [10] H. Yamamoto, M. Kawasaki, Nitroso and Azo Compounds in Modern Organic Synthesis: LateBlooming but Very Rich. Bull. Chem. Soc. Jpn.2007,80,595-607.
    [11] P. F. Vogt, M. J. Miller, Development and applications of amino acid-derived chiral acylnitroso heteroDiels-Alder reactions. Tetrahedron1998,54,1317-1348.
    [12] G. W. Kirby, Tilden Lecture. Electrophilic C-nitroso-compounds. Chem. Soc. Rev.1977,6,1-24.
    [13] H. Labaziewicz, K. R. Lindfors, T. H. Kejonen, The synthesis of novel N-pyrisyl-3,6-dihydro-1,2-oxazines. Heterocycles1989,29,2327-2334.
    [14] H. Noguchi, T. Aoyama, T. Shioiri, Total synthesis and absolute configuration of radiosumin, a strongtrypsin inhibitor from the blue-green alga plectonema radiosum. Heterocycles2002,58,471-504.
    [15] D. Zhang, C. Sueling, M. J. Miller, The Hetero Diels-Alder Reactions between D-Mannose-DerivedHalonitroso Compounds and Cyclopentadiene: Scope and Limitations. J. Org. Chem.1998,63,885-888.
    [16] J. M. J. Tronchet, E. Jean, F. Barbalat-Rey, G. Bernardinelli, Hetero Diels-Alder adducts of deoxy C-nitroso sugar derivatives. J. Chem. Res. Synop.1992,228-229.
    [17] G. W. Kirby, H. McGuigan, R. P. Sharma, Formation and reactions of C-nitrosoformate esters, a newclass of transient dienophiles. J. Chem. Soc. Perkin Trans.1,1985,1437-1442.
    [18] G. W. Kirby, J. G. Sweeny, Nitrosocarbonyl compounds as intermediates in the oxidative cleavage ofhydroxamic acids. J. Chem. Soc. Chem. Commun.1973,704-710.
    [19] A. G. Leach, K. N. Houk, Transition states and mechanisms of the hetero-Diels-Alder reactions ofhyponitrous acid, nitrosoalkanes, nitrosoarenes, and nitrosocarbonyl compounds. J. Org. Chem.2001,66,5192-5200.
    [20] B. S. Bodnar, M. J. Miller, The nitrosocarbonyl hetero-Diels-Alder reaction as a useful tool for organicsyntheses. Angew. Chem. Int. Ed.2011,50,5630-5647.
    [21] Z. Hua, L. Chen, Z. Jin, Asymmetric [4+2] cycloadditions employing1,3-dienes derived from (R)-4-t-butyldimethyl-silyloxy-2-cyclohexen-1-one. Tetrahedron Lett.2009,50,6621-6623.
    [22] L. Chen, Z. Hua, G. Li, and Z. Jin, Controlling the facial selectivity of asymmetric [4+2] cyclo-additions: a concise synthesis of the cis-decalin core structure of superstolides A and B. Org. Lett,2011,13,3580-3583.
    [23] C.-H. Chen, Y.-K. Chen, C.-K. Sha, Enantioselective total synthesis of otteliones A and B. OrganicLetters,2010,12,1377-1379.
    [24] L. Claire, G. A. Morris, N. S. Wind, The synthesis of2-oxyalkyl-cyclohex-2-enones, related to thebioactive natural products COTC and antheminone A, which possess anti-tumour properties.Tetrahedron,2010,66,9049-9060.
    [25] C. W. Barfoot, A. R. Burns, R. J. K. Taylor, et al. A convergent synthesis of the tricyclic core of thedictyosphaeric acids. Organic Letters2008,10,353-356.
    [26] R. J. Kazlauskas, A. N. E. Weissfloch, L. A. Cuccia, A rule to predict which enantiomer of a secondaryalcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia,and lipase from Candida rugosa. J. Org. Chem.1991,56,2656-2665.
    [27] Z. Hua, W. Yu, M. Su, Z. Jin, Synthetic studies toward the construction of the cis-decalin portion ofsuperstolides A and B. Application of a sequential double michael reaction and an anionic oxy-Coperearrangement. Org. Lett,2005,7,1939-1942.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700