GaN基器件肖特基接触的新结构和新材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AlxGa1-xN/GaN异质结构材料和器件的研究是当前研究的前沿领域和热点。而其中热点研究之一是肖特基接触的研究。本文系统的研究了在Ni/Au金属和GaN间插入3nm薄Al层这种新型结构肖特基接触的热稳定性,同时研究了在Ni/Au金属与Al0.25Ga0.75N/GaN异质结间插入3nm薄Al层肖特基接触的反向漏电机制,以及Ni/Au肖特基接触的高温电流输运机制。本文最后研究了用金属W的氮化物作为Al0.25Ga0.75N/GaN的肖特基接触的热稳定性。主要研究结果如下:
     (1)研究了在Ni/Au和GaN间插入一个3nmAl薄层的肖特基接触的电学性质和热稳定性。发现Al薄层的插入不仅将肖特基接触的反向漏电减小了几乎两个数量级,而且提高了肖特基接触的热稳定性。研究了Al/Ni/Au肖特基接触的热退火性质,我们发现在插入Al薄层后,势垒高度和串联电阻在退火温度低于4500C时,随温度的上升逐渐增加。我们也得到Al/Ni/Au肖特基结在退火温度为4500C,退火时间为12分钟时,反向漏电最小。
     (2)研究了传统Ni/Au肖特基与Al0.25Ga0.75N表面之间插入了3nm的Al薄层后肖特基接触在温度为25-3500C之间时的反向漏电情况,并且和未插薄Al层的肖特基接触进行了比较。实验结果表明插入薄铝层后,I-V曲线的最低点向负偏压方向移动。随着温度的上升,该点又回到零点。反偏漏电对温度的依赖也被研究。结果表明Al薄层的插入在Al0.25Ga0.75N和金属之间引入了界面态。插入的Al与Al0.25Ga0.75N表面的氧杂质反应,减小了氧元素引起的缺陷,同时形成了Al2O3绝缘层,抑制了与氧有关的隧穿电流和热场发射电流。而且Al的插入也提高了二极管的高温可靠性。在研究新型肖特基接触的同时还研究了Au/Ni/Al0.25Ga0.75N/GaN肖特基二极管在250C-2500C温度范围内的电流输运机制,发现肖特基势垒高度的高斯分布模型能很好的解释在该温度范围内有效肖特基势垒随温度升高而升高的实验结果。
     (3)研究了N2气与Ar气比例不同时WNx/Al0.25Ga0.75N/GaN异质结肖特基接触的热稳定性。以及用肖特基势垒的高斯分布模型拟合了WNx肖特基接触的电流输运机制。本文用在N2和Ar的混合气体中磁控溅射纯W靶得到了WNx材料,发现当N2比例不同时,WNx肖特基接触的热稳定性和反向漏电情况不同。实验发现当N2:Ar气的比例为1:2时,WNx肖特基接触可以稳定到6000C;当N2:Ar的比例为4:1时,WNx肖特基接触可以稳定到5000C,且反向漏电可以达到10-6A/cm2。
AlxGa1-xN/GaN heterostructure materials and devices have attracted a lot of interests.In this work, We have systematically investigated the Thermal annealing behaviour of Al/Ni/Au multilayer on n-GaN Schottky contacts and the leakage current mechanisms in the Schottky diode with a thin Aluminium layer insertion between Al0.25Ga0.75N/GaN heterostructure and Ni/Au Schottky contact.And the current transport mechanism in Au/Ni/Al0.25Ga0.75N/GaN Schottky diodes has been investigated.At last, Thermal annealing behaviour of WNx/Al0.25Ga0.75N/GaN Schottky diodes has been studied. The main results are as follows:
     (1) We investigated the effects of the insertion of a thin Aluminium layer into the boundary of the GaN surface and Ni/Au Schottky gate metal on the electrical characteristics of GaN diodes. In the Shottky diodes with a thin Aluminium layer, the gate leakage current is reduced by two orders of magnitude.The thermal annealing behaviour is improved. Then Thermal annealing behaviour of Al/Ni/Au on n-GaN Schottky contacts was investigated. It was found that the barrier height and the serial resistance increase with the annealing temperature below 4500C. And the thermal anneal temperature is 12 minutes at 4500C, the reverse-bias current is the lowest in Au/Ni/Al/GaN diode.
     (2) We investigated the behaviour of the reverse-bias leakage current of the Schottky diode with a thin Al inserting layer insertion between Al0.25Ga0.75N/GaN heterostructure and Ni/Au Schottky contact in the temperature range of 25-3500C. And we compare with the Schottky diode without Aluminium inserting layer. The experimental results show in the Schottky diode with Aluminium layer the minimum point of I-V curve drifts to the minus voltage, and with the temperature increasing, the minimum point of I-V curve returns the 0 point. The temperature dependence of gate-leakage current in the novelty diode and the traditional diode is studied. The results show that the Aluminium inserting layer introduces interface states between metal and Al0.25Ga0.75N. Aluminium reacted with oxygen formed Al2O3 insulator layer which suppresses the trap tunnelling current and the trend of thermionic field emission current. The reliability of the diode at the high temperature is improved by inserting a thin Aluminium layer.At the same time, the current transport mechanism in Au/Ni/AlGaN/GaN Schottky diodes has been investiged between 250C-2500C.Thermionic-emission model with a Gaussian distribution of SBHs is thought to be responsible for increasing of the SBHs with increasing temperature. (3) The effect of thermal annealing of WNx/Al0.25Ga0.75N/GaN structures has
     been studied when the proportion of N2 to Ar is changed.Thermionic-emission model with a Gaussian distribution of SBHs is thought to be responsible for the current transport mechanism in WNx Schottky contacts.WNx is formed by reactive sputtering from a pure W target in an Ar-N2 gas misture.It is found that the thermal anealing and gate leakage changed with changing the proportion of N2 to Ar . The thermal stably temperature is 6000C when the proportion of N2 to Ar is 1:2. The thermal stably temperature is 5000C and the gate leakage is about 10-6A/cm2 when the proportion of N2 to Ar is 4:1.
引文
[1] Johnson W C,Parsons J B,Crew M C.Nitrogen compounds of Gallium.I,II[J].J Phys Chem,1932,36:2588
    [2] Maruska H P,Tietjen J J,The preparation and properties of vapor-deposited single-crystal-line GaN.Appl Phys Lett,1969,15:327.
    [3]中村修二。GaN系发光素子现状与将来。应用物理,1996,65(7):676
    [4] Amano H,Kito M,Hiramatsu K,et al.P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation.Jpn J Appl Phys,1989,28(12):L2112.
    [5] Nakamura S,Mukai T,Senoh M,et al.Thermal annealing effects on P-type Mg-doped GaN films.Jpn J Appl Phys,1992,31:L139.
    [6]王平,GaN材料的特性和应用材料和设备
    [7]黄森GaN外延薄膜和GaN基异质结构肖特基接触的高温性质研究,博士,北京大学,2009年5月。
    [8] H. Morkoc, S. Strite, G. B. Gao, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies , J. Appl. Phys.1994. 76, 1363
    [9] S. C. Jain, M. Willander, J. Narayan, III–nitrides: Growth, characterization, and properties,J. Appl. Phys. 2000.87, 965.
    [10] M. van Schilfgaarde, A. Sher, and A. -B. Chen, Theory of AlN, GaN, InN and their alloys,J. Cryst. Growth 1997.178, 8。
    [11] I. Vurgaftmana, J. R. Meyer, and L. R. Ram-Mohan, Applied Physics Review,J. Appl. Phys. 2001.89, 5815。
    [12] S. J. Pearton, J. C. Zolper, R. J. Shul ,GaN: Processing, defects, and devices,J. Appl. Phys. 1999.86, 1.
    [13] N. Meada, K. Tsubaki, T. Saitoh, High-temperature electron transport properties in AlGaN/GaN heterostructures. Appl. Phys. Lett.2001. 79, 1634
    [14]S. Arulkumaran, T. Egawa, H. Ishikawa, High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and SiC, Appl. Phys. Lett.2002. 80, 2186 .
    [15]S.J. Pearton, F.Ren, A.P. Zhang, Fabrication and performance of GaN electronic devices,Mater. Sci. Eng. R 2000.30, 55
    [16]M.E. Levinshtein, S.L. Rumyantsev and M.S. Shur编,杨树人殷景志译,先进半导体材料性能与数据手册,北京:化学工业出版社(2003).
    [17]H. Amano, I. Akasaki, T. Kozawa, Effects of the buffer layer in metalorganic vapor phase epitaxy of GaN on sapphire substrate,THIN SOL. FILMS. 1988 .163, 415-420,
    [18] M. Asif Khan, J.N. Kuznia, A.R. Bhattarai, Metal semiconductor field effect transistor based on single crystal GaN,Appl. Phys. Lett. 1993.62, 1786
    [19] M. Asif Khan, A. Bhattarai, J.N. Kuznia, High electron mobility transistor based on a GaN–Al Ga N heterojunction ,Appl. Phys. Lett.1993. 63, 1214.
    [20] S.J. Pearton, F. Ren, A.P. Zhang, Fabrication and performance of GaN electronic devices, Mat. Sci. Eng. B 2001,82, 227.
    [21]O. Ambacher, J. Smart, J.R. Shealy, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization ,J. Appl. Phys.1999. 85, 3222
    [22] O. Ambacher, B. Foutz, J. Smart, Role of Spontaneous and Piezoelectric Polarization Induced Effects in Group-III Nitride Based Heterostructures and Devices. J. Appl. Phys.2000. 87, 334.
    [23]Shuji Nakamura, Naruhito Iwasa, Masayuki Senoh, Hole compensation mechanism of p-type GaN films, Jpn. J. Appl. Phys. 1992.31, 1258.
    [24]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by rf plasma-assisted molecular-beam epitaxy,J. Appl. Phys. 1999.86, 4520.
    [25]S. J. Pearton, F. Ren, A. P. Zhang, GaN electronics for high power, high temperature applications, Mat. Sci. Eng. B 2001.82, 227
    [26]S. J. Pearton, J. C. Zolper, GaN: Processing, defects, and devices,J. Appl. Phys. 1999.86, 1 .
    [27]李效白,SiC和GaN电子材料和器件的几个科学问题,微纳电子技术,2004,41,11
    [28]C. R. Miskys, M. K. Kelly, O. Ambacher, Freestanding GaN-substrates and devices, Phys. Stat. Sol. (c) 2003.0, 1627.
    [29]L. Liu and J. H. Edgar, Substrates for gallium nitride epitaxy,Mater. Sci. Eng. R 2002.37, 61.
    [30]Y. Kawakami, A. Nakajima, X. Q. Shen, Improved electrical properties in AlGaN? GaN heterostructures using AlN? GaN superlattices working as a quasi-AlGaN barrier layer,Appl. Phys. Lett. 2007.90, 242112.
    [31]C. F. Lin, H. C. Cheng, J. A. Huang, Mobility enhancements in AlGaN/GaN/SiC with stair-step and graded heterostructures, Appl. Phys. Lett. 1997.70, 2583.
    [32]I. P. Smorchkova, L. Chen, T. Mates, AlN/GaN and (AlGan/AlN/GaN two-dimensional electron gas structures grown by plasma, J. Appl. Phys. 90, 5196 (2001).
    [33]Jinqiao Xie, Xianfeng Ni, Mo Wu, High electron mobility in nearly lattice-matched AlInN? Algan? GaN heterostructure field, Appl. Phys. Lett.2007. 91, 132116
    [34]C. X. Wang, K. Tsubaki, N. Kobayashi, Electron transport properties in AlGaN/InGaN/GaN double heterostructures grown by MOCVD. Appl. Phys. Lett.2004. 84, 2313.
    [35] SJ Pearton, Zolerjc, RJ Sul, GaN: prossessing, defects and devices, J Appl Phys, 1999, 86(1):1~78
    [36]Naoya Okamotoa,Katsuyuki Hoshinoa,Naoki Haraa,MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000 cm2=Vs ,Journal of Crystal Growth,2004,272:278~284
    [37]C. X. Wang, K. Tsubaki, N. Kobayashi, Electron transport properties in AlGaN/InGaN/GaN double heterostructures grown by metalorganic vapor phase epitaxy, Appl Phys Lett, 2004, 84:1313~1316
    [38]一凡,A1GaN/A1N/GaN大功率微波HEMT,微电子技术,2003,31(5):8
    [39] J.Liu *, Y. G. Zhou, AlGaN/GaN/InGaN/GaN HEMTs with an InGaN-notch, Physica status solidi(c), 2006,3(6):2312~2316
    [40]张进城王冲杨燕,AIN阻挡层对AIGaN/GaN HEMT器件的影响,半导体学报,2005,26(12):2396~2400
    [41] T. Mizutani, M. Ito, S. Kishimoto, AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation, IEEE Electron Device Lett. 28, 549 (2007).
    [42] Jie Liu, Yugang Zhou, Jia Zhu, AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement, IEEE Electron Device Lett.2006. 27, 10
    [43] Z. Y. Fan, J. Li, M. L. Nakarmi 200 nm deep ultraviolet photodetectors based on AlN, Appl. Phys. Lett. 88, 073513 (2006).
    [44] M. S. Shur, A. D. Bykhovski, and R. Gaska, Piezoelectric doping and elastic strain relaxation in AlGaN–GaN heterostructure field effect Appl.Phys.Lett. 1998. 76,3061.
    [45] T. Wang, J. Bai, S. Sakai, Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes, Appl. Phys. Lett.2001. 78, 2617.
    [46]周建军江若琏,界面极化效应对AlGaN/GaN异质结pin探测器光电响应的影响半导体学报2007,28(6),947
    [47]M. J. Wang, B. Shen, Y. Wang, S. Huang, Z. J. Yang, K. Xu, and G. Y. Zhang,“Observation of inversion behaviors induced by polarization effects in GaN/AlxGa1-xN/GaN based metal-insulator-semiconductor structures”, Applied Physics Letters 2006. 88, 242104
    [48] B. Jogai, Free electron distribution in AlGaN/GaN heterojunction field-effect transistors, J. Appl. Phys. 2002.91, 3721
    [49] R. M. Chu, Y. G. Zhou, Y. D. Zheng, Influence of doping on the two-dimensional electron gas distribution in AlGaN/GaN heterojunction, Appl. Phys. Lett. 2001.79, 2270.
    [50] A. D. Bykhovski, R. Gaska, and M. S. Shur, Piezoelectric doping and elastic strain relaxation in AlGaN–GaN heterostructure field effect , Appl. Phys. Lett.1998. 73, 3577
    [51] J. P. Ibbetson, P. T. Fini, K. D. Ness, Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure,Appl. Phys. Lett. 2000,77, 250
    [52] G. Koley and M. G. Spencer, Surface potential measurements on GaN and AlGaN/GaN heterostructures by scanning SKPM, J. Appl. Phys. 2001.90, 337.
    [53] B. Jogai, Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction , J. Appl. Phys. 2003.93, 1631.
    [54] Kohei Nakagami, Yutaka Ohno, Shigeru Kishimoto Surface potential measurements of AlGaN? GaN high-electron-mobility transistors , Appl. Phys. Lett. 2004.85, 6028.
    [55] G. Koley and M. G. Spencer, On the origin of the two-dimensional electron gas at the AlGaN? GaN heterostructure ,Appl. Phys. Lett.2005. 86, 042107.
    [56] H. Hasegawa, T. Inagaki, S. Ootomo, Surface passivation of GaN and GaN/AlGaN heterostructures by dielectric films , J. Vac. Sci. Technol. B,2003. 21, 1844.
    [57] A. N. Bright, P. J. Thomas, M. Weyland, Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contact, J. Appl. Phys. 2001.89, 3143.
    [58] F. Roccaforte, F. Iucolano, F. Giannazzo, Nanoscale carrier transport in Ti? Al? Ni? Au Ohmic contacts on AlGaN epilayers grown , Appl. Phys. Lett. 2006.89, 022103.
    [59] M. W. Fay, G. Moldovan, P. D. Brown, Structural and electrical characterization of AuTiAlTi/AlGaN/GaN ohmic contacts. J. Appl. Phys. 2002.92, 94.
    [60] Ching-Ting Lee and Hsiao-Wei Kao, Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN, Appl. Phys. Lett. 2000.76, 2364 .
    [61] Z. M. Zhao, R. L. Jiang, Ti/Al/Pt/Au and Al ohmic contacts on Si-substrated GaN, Appl. Phys. Lett.2001. 79, 218.
    [62] M. W. Fay, G. Moldovan, N. J. Weston, Structural and electrical characterization of AuPdAlTi ohmic contacts to AlGaN? GaN with varying Ti content, J. Appl. Phys.2004. 96, 5588.
    [63] V. Kumar, L. Zhou, D. Selvanathan, Thermally-stable low-resistance Ti/Al/Mo/Au multilayer ohmic contacts on n–GaN, J. Appl. Phys. 2002.92, 1712.
    [64] F. M. Mohammed, L. Wang, and I. Adesida, Dislocation-induced nonuniform interfacial reactions of Ti/Al/Mo/Au ohmic contacts on AlGaN/GaN heterostructure, Appl. Phys. Lett.2005. 87, 262111.
    [65] F. M. Mohammed, L. Wang, I. Adesida, The role of barrier layer on Ohmic performance of Ti/Al-based contact metallizations on AlGaN/GaN heterostructures, J. Appl. Phys.2006, 100, 023708.
    [66] R. France, T. Xu, P. Chen, Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition, Appl. Phys. Lett. 2007,90, 062115.
    [67] M. A. Miller, S. E. Mohney, A. Nikiforov, V/Al/V/Ag Ohmic contacts to n-AlGaN/GaN heterostructures with a thin GaN cap, Appl. Phys. Lett.2006, 89, 132114
    [68] N. Maeda, M. Hiroki, N. Watanabe, Systematic Study of Insulator Deposition Effect (Si3N4, SiO2, AlN, and Al2O3) on Electrical Properties in AlGaN/GaN Heterostructures, Jan. J. Appl. Phys. 2007.46, (2) 547.
    [69] M. J. Wang, B. Shen, F. J. Xu, tunneling induced electron transfer in SiNx/AlGaN/GaN based metal-insulator-semiconductor strctures, Physics Letters A.2007. 369, 249.
    [70]C. S. Oh, C. J. Youn, G. M. Yang, AlGaN/GaN metal--oxide--semiconductor heterostructure field-effect transistors on SiC, Appl. Phys. Lett.2004. 85, 4214.
    [71] S. Ootomo, T. Hashizume, and H. Hasegawa, Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistor, Phys. Stat. Sol. (c) 2002,1, 90.
    [72] C. J. Kao, M. C. Chen, C. J. Tun, Comparison of low-temperature GaN, SiO, and SiN as gate insulators on AlGaN?GaN heterostructure field-effect transistors ,J. Appl. Phys. 2005.98, 064506
    [73] J. Derluyn, S. Boeykens, K. Cheng, Improvement of AlGaN? GaN high electron mobility transistor structures by in situ deposition Si3N4, J. Appl. Phys. 2005.98, 054501.
    [74] S. L. Selvaraj, T. Ito, Y. Terada, AlN? AlGaN? GaN metal-insulator- semiconductor high- electron- mobility transistor on 4 in silicon substrate for high breakdown characteristics, Appl. Phys. Lett.2007. 90.173506.
    [75] P. Kordos, D. Gregusova, R. Stoklas, Improved transport properties of AlO?AlGaN?GaN metal-oxide-semiconductor heterostructure field-effect transistor, Appl. Phys. Lett. 2007.90. 123513.
    [76] J. Kuzmik, G. Pozzovivo, S. Abermann, Evaluation of the interface state density on Ni/ZrO2/InAlN/GaN MOS contacts, IEEE Trans. Electron Devices 2008. 55. 937.
    [77] P. D. Ye, B. Yang, K. K. NgGaN metal-oxide-semiconductor high-electron- mobility- transistor with atomic layer deposited, Appl. Phys. Lett.2005. 86.063501.
    [78] B. S. Kang, H. T. Wang, F. Ren, pH sensor using AlGaN? GaN high electron mobility transistors with ScO in the gate region, Appl. Phys. Lett.2007. 91.012110.
    [79] B. P. Gila, M. Hlad, A. H. Onstine, Improved oxide passivation of AlGaN? GaN high electron mobility transistors, Appl. Phys. Lett.2005. 87.163503.
    [80]R Vetury, Q Zhang, S Keller, The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs, IEEE Trans Electron Device, 2001, 48:560~564
    [81]张志国,李丽,杨瑞霞,GaN基异质结构效应晶体管功率器件,物理, 2005,34:442~448
    [82]W Y-F, B P Keller, GaN-based FETs for microwave high-power applications, IEECE Trans.Elecreon, 1999, E82-C: 1895~1900
    [83]M A Khan,M S Shur,Q C Chen,et a1, Current/voltage characteristic collapse in A1GaN/GaN heter0structure insulated gate field effect transistors at high drain bias[J], Electron Lett,1994,30:2 175~2 176
    [84]E Kohn, I Daumiller,P Sehmid, et a1.Large signal frequency dispersion of A1GaN/GaN heter0structure field effect transistors[J], Electron Lett,1999,35(12):1022~1023
    [85]C Nguyen,N X Nguyen ,D E Grider, Drain current compression in GaN M ODFETs under large—signal modulation at microwave frequencies[J].Electron Lett,1999,35(16):1380~1381
    [86]B M Green ,K K Chu .E M Chumbes,et a1.The effect of surface passivation on the microwave characteristics of undoped A1GaN/GaN HEMTs [J].IEEE Electron Device Lett, 2000,21:268~27
    [87]Alexei V Vertiatchikh,Lester F Eastman, Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance[J].IEEE Electron Device Lett,2004,24(9):535~537
    [88] J.D.Guo,F.M.Pan,Schottky contact and thermal stability of Ni on n-type GaN,J. Appl. Phys.1996,080:1623~1627
    [89] A.C.Schmitz,A.T.Ping,High temperature characteristics of Pd Schottky contacts on n-type GaN,Electronics letters32,1832(1996)
    [90] Jun Wang,D G Zhao,Y P Sun,Thermal annealing behaviour of Pt on n-GaN Schottky contacts.Journal of Physics D36,1018(2003)
    [91]T G G Maffeis,M C Simmonds,Near ideal,high barrier,Au-nGaN Schottky contacts.Journal of Physics D33,L115(2002)
    [92]M.T.Hirsch,K.J.Duxstad,E.E.Haller,Effects of annealing on Ti Schottky barriers on n-type GaN.Electronics letters33,0095(1997)
    [93]R.Mehandru,S.Kang,S.Kim,Effects of deposition conditions and annealing on W Schottky contacts on n-GaN.Materials Science in Semiconductor Processing, 2004 7(1),95-98
    [94] B.J.Zhang,T.Egawa,G.Y.Zhao.Schottky diodes of Ni/Au on n-GaN grown on sapphire and SiC substrates.APL79,2567(2001)
    [95]L.Dobos,B.Pecz,L.Toth,et.al.Structural and electrical properties of Au and Ti/Au contacts to n-type GaN.Vacuum 2008.82.794-798
    [96]V.Kumar,D.Selvanathan,A.Kuliev,et.al.Characterisation of iridium Schottky contacts on n-AlGaN.Electronics letters 2003.39(9).747-748
    [97]C.K.Ramesh,V.Rajagopal Reddy,Chel-Jong Choi,et.al.Electrical characteristics of molybdenum schottky contacts on n-type GaN.Materials Science&Engineering B 2004.112.30-33
    [98]L.Zhou,F.A.Khan,G.Gueva.et.al.Thermal stability of rhenium Schottky contacts on n-type AlGaN.Apply Physics letter.2002.81(9).1624-1627
    [99]Q.Z.Liu,L.S.Yu and S.S.Lau.Thermally stable PtSi Schottky contacts contacts on n-GaN.Appl.Phys.Lett.1997.70(10).1275-1277.
    [100]Chang Min Jeon and Jong-Lam Lee.Investigation of IrO2 and RuO2 Schottky contacts on AlGaN/GaN heterostructure.J.Apply.Phys.2004.95(2).698-703.
    [101]G.L.Chen,F.C.Chang.K.C.Shen.et.al.Thermal stability study of Ni/Ta n-GaN Schottky contacts.Appl.Phys.Lett.2002.80(4).595-597
    [102]Takuma Nanjo,Maruhisa Miura,Toshiyuki Oishi.et.al.Improvement of DC and RF Characteristics of AlGaN/GaN high electron mobility transistors by thermally anealed Ni/Pt/Au Schottky Gate.Jpn.J.Appl.Phys.2004.43.1925-1929.
    [103]N.Miura,T.Nanjo,M.suita.et.al.Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal.Solid-state Electronics.2004.48(5).689-695
    [104]Z.J.Lin,W.Lu,J.ee,D.M.Liu.et.al.Influence of Ni Schottky contacts area on two-dimensional electron-gas sheet carrier concentration of strained AlGaN/GaN heterostructures. Appl.Phys.Lett.2003.82.4364
    [105]S.N.Mohammad,Contact mechanisms and design principles for Schottky contacts to group-III nitrides.J.Appl.Phys.2005.97,063703.
    [106]A.Motayed,A.Sharma,K.A.Jones.et.al.Electrical characteristics of AlGaN Schottky diodes prepared by a two-step surface treatment.J.App.Phys. 2004. 96.063703
    [107]R.M.Chu,L.K.Shen,N.Fichtenbaum.et.al.V-gate GaN HEMTs for X-band power applications.IEEE Electron Devies Lett.2008.29,297
    [108]H. Kim, J. Lee, .et.al.Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing.Appl. Phys. Lett.2004. 86, 143505 .
    [109]H. Kim, M. Schuette, H. Jung, Passivation effects in Ni/AlGaN/GaN Schottky diodes by annealing. Appl. Phys. Lett.2006.89, 053516 .
    [110]Z. Q. Fang, D. C. Look,Deep centers in a free-standing GaN layer. Appl. Phys. Lett.2001. 78, 2178 .
    [111]D. F. Brown, S. Rajan.et.al. Electron mobility in N-polar GaN/AlGaN/GaN heterostructuress.Appl. Phys. Lett. 2008.93.042104 .
    [112]虞丽生,半导体异质结物理,科学出版社,2006,第二版
    [113]刘恩科,朱秉升,罗晋生。半导体物理学,国防工业出版社,2002,第4版。
    [114]T. Hashizume, J. Kotani, and H. Hasegawa, Leakage mechanism in GaN and AlGaN Schottky interfaces.Appl. Phys. Lett. 84, 4884 (2004)
    [115]徐川,AlGaN/GaN异质结场效应晶体管工艺研究和特性表征,学位论文,北京大学,2007.
    [116]Shreepad Karmalkar and D.Mahaveer Sathaiya.Mechanism of the reverse gate leakage in AlGaN/GaN high electron mobility transistors.Appl.Phys. Lett.82, 3976-3979
    [117]L.S.Yu,Q.Z.Liu,Q.J.Xing,The role of the runneling component in the current-voltage characteristics of metal-GaN Schottky diodes.J.Appl.Phys. 1998.84.2099-2011
    [118]J.R.Yeargan,The Poole-Frenkel effects with compensation present.J.Appl.Phys. 1968.39.5600-5605.
    [119]E. H. Rhoderick, Metal-Semiconductor Contacts Chap. 1-3 (Clarendon, Oxford, 1978).
    [120]丁兆明,贺开矿著,《半导体器件制造工艺》,中国劳动出版社,1995。
    [121]DK Schroder,semiconductor material and device characterization,John Wiley&Sons,2006.64
    [122]Wang Chong,Zhang Jinfeng,Yang Yan,Temperature characteristics of AlGaN/GaN HEMTs using C-V and TLM for evaluating temperatures,Chinese journal of semiconductors,2006.27(5).864~867
    [123]晋勇孙小松,《X射线衍射分析技术》,国防工业出版社,2008
    [124]胡林彦,张庆军,沈毅,X射线衍射分析的实验方法及其应用,河北理工学院学报,2004,26(3)83~93
    [125]]Takuma nanjo,Toshiyuki,Muneyoshi suita, et al . Effects of a thin Al layer insertion between AlGaN and Schottky gate on the AlGaN/GaN high electron mobility transistor characteristics,Appl.Phys.Lett. 2006, 88, 043503
    [126]Miura N, Nanjo T, Suita M, Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal .Solid-state Electronics.2004.48 689
    [127]Ye P D, Yang B, Ng K K, et.al. GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric.App.Phys.Letts.2005.86.063501
    [128] Wang Xin-Jun, Zhang Jin-Feng, Zhang Jin-Cheng Hao Yue, AlGaN/GaN肖特基结参数分析与电流运输机理研究.2008 Acta Phys.Sin.57 3171
    [129]Sun Yuanping, Shen X M, Wang J,Thermal annealing behaviour of Ni/Au on n-GaN Schottky contacts. J.Phys.D:Appl.Phys.2002.35 2648
    [130] Liu Jie, Hao Yue, Feng Qian,Characterization of Ni/Au GaN Schottky contact base on I-V-T and C-V-T measurements.Acta Phys.Sin.2007.56 3483
    [131]S.K.Cheung,N.W.Cheung,Extraction of Schottky diode parameters from forward current-voltage characteristics.Appl.Phys.Lett 1986.49(2)85~89
    [132]]Zeyrek S, Altmdal S, Yuzer H, Current transport mechanism in Al/Si3N4/p-Si (MIS) Schottky barrier diodes at low temperatures .Appl.Surf.Sci.2006.252 2999
    [133] Card H C, Rhoderick E H, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J.Phys.D .1971.4 1589
    [134] Sze S M 1981 Physics of Semiconductor Devices (Willey,New York) 2nd ed.
    [135] Rhoderick E H, Williams R H 1988 Metal Semiconductor Contacts (Clarendon, Ocford ) 2nd ed
    [136] Kaneko Masamitsu, Hashizume Tamotsu, Control of leakage current in AlGaN Schottky interfaces by an ultrathin Al layer. Phys.stat.sol. (c)2006. 3 1758
    [137]J. Kotani, M. Tajima, S. Kasai .Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures.Appl. Phys. Lett. 2007.91, 093501
    [138]E.J.Miller,X.Z.Dang and E.T.Yu,Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors.J.Appl.Phys.88.5951
    [139]W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse, Appl. Phys. Lett. 80, 3207 (2002).
    [140]S. Arulkumaran, T. Egawa, H. Ishikawa, Temperature dependence of gate–leakage current in AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett. 82, 3110 (2003).
    [141]W. Saito, M. Kuraguchi, Y. Takada,High breakdown voltage AlGaN-GaN power-HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 2005.52, 159
    [142]T. Hashizume and H. Hasegawa, Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure.Applied Surface Science. 2004.234, 387.
    [143]H. Hasegawa, T. Inagaki, S. Oyama, Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors.J. Vac. Sci. Technol. B 2003.21, 1844.
    [144]H. W. Jang, J. M. Baik, Incorporation of oxygen donors in AlGaN.Journal of The Electrochemical Society, 2004.151, G536 .
    [145]J. W. P. Hsu, M. J. Manfra, Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl. Phys. Lett. 2001.78, 1685 .
    [146]H. Zhang, E. J. Miller, and E. T. Yu, Analysis of leakage current mechanisms in Schottky contacts to GaN and Al 0.25 Ga 0.75N. J. Appl. Phys.2006. 99, 023703
    [147]H. Kim, J. Lee, D. M. Liu, and W. Lu, Appl. Phys. Lett. 2004.86, 143505 .
    [148]Z. Tekeli, S. Altindal, M. ?akmak, The behavior of the I-V-T characteristics of inhomogeneous(Ni/Au)-AlGaN/AlN/GaN heterostructures at high temperature.J. Appl. Phys. 102, 054510 (2007).
    [149]Feng Qian,Hao Yue, Yue Yuan-Zheng,Study of AlGaN/GaN MOSHEMT device with Al2O3 insulating film.2008 Acta Physica Sinica.57,1886
    [150] Hasegawa H and Oyama S,Mechanism of anomalous current transport in n-type GaN Schottky contacts. J. Vac. Sci. Technol. B 2002.20, 1467
    [151] Tan W S, Houston P A,.Parbrook P J, Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors. Appl.Phys.Lett.2002.80.3207
    [152]Hawkridge M.E and Chems D,Oxygen segregation to dislocations in GaN. 2005 Appl.Phys.Lett.87.221903
    [153]Liu Fang, Wang Tao, Shen Bo, et al. The leakage current mechanisms in the Schottky diode with a thin Al layer insertion between Al0.245Ga0.755N/GaN heterostruture and Ni/Au Schottky contact,Chinese Physics B (2009)18, 1614-1617.
    [154]Liu Fang, Wang Tao, Shen Bo, et al. Thermal annealing behaviour of Al/Ni/Au multilayer on n-GaN Schottky contacts.Chinese Physics B(2009)18,1618-1621.
    [155]Y.Zhou,D.Wang,C.Ahyi.et.al.Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier.J.Appl.Phys.2007.101.024506.
    [156]F.E.Jones,B.P.Wood,J.A.Myers,Current transport and the role of barrier inhomogeneities at the high barrier n-InP | poly(pyrrole) interface.J.Appl. Phys.1999.86.6431.
    [157]S.Karatas,S.Alindal,A.Ozmen.Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(1 0 0) Schottky contacts .Appl.Surf.Sci, 2003,217,250
    [158]F.Lucolano,F.Roccaforrte,Temperature behavior of inhomogeneous Pt/GaN Schottky contacts.Appl.Phys.Lett.2007.90,092119
    [159]Z.Tekeli,S.Altindal,M.Cakmak.et.al.The behavior of the I-V-T characteristics of inhomogeneous (Ni/Au)–Al0.3Ga0.7N/AlN/GaN heterostructures at high temperatures.J.Appl.Phys.2007.102,054510
    [160]HT Chiu,SH Chuang,Tungsten nitride thin films prepared by MOCVD.J.Mater.Res,1993.8.1353
    [161]Karl John Huber and Carolyn Rubin Aita,Resistivity changes and phase evolution in W–N films sputter deposited in Ne–N2 and Ar–N2 discharges.J. Vac. Sci. Technol.1988.6.1717.
    [162]So.F.C.T,Kolawa,E.Zhao.WxN1?x alloys as diffusion barriers between Al and Si.J.Appl.Phys.1988.64.2787
    [163]A.Bosseboeuf,A.Fourier.Meyer.et.al.WNxfilms prepared by reactive ion-beam sputter deposition.Appl.Surf.Sci.1991.53.353
    [164]L.Boukhris,J.M.Poitevin.et.al.Electrical resistivity, structure and composition of d.c. sputtered WNx films.Thin solid Films,1997,310.222
    [165]Wong,K.M.,Shen Y.G.,Wong,P.L.,Tribological properties of sputtered tungsten and tungsten nitride thin films.Science in china.2001.44.222~226
    [167]Chung Yu Lu,Edward Yi Chang,Juien huang.Enhancement of the Schottky barrier height using a Nitrogen-Rich tungsten nitride thin film for the schottky contacts on AlGaN/GaN.Journal of Electronic Materials.2008.37(5).624~628
    [168]S.M.Gasser,M.A.Nicolet.Stability of W and Re contacts to GaN.J.Appl.Phys. 1996.80.278
    [169]S.D.Marcus,R.F.Foster,Characterization of Low-Pressure Chemically Vapor-Deposited Tungsten Nitride Films.Thin solid films 1993.263.330
    [170]K.M.Chang,T.H.Yeh,I.C.Deng,Amorphouslike chemical vapor deposited tungsten diffusion barrier for copper metallization and effects of nitrogen addition.J.Appl.Phys.1997.81.3670
    [171]M.H.Tsai,S.C.Sun,H.T.Chiu.et.al.Metalorganic chemical vapor deposition of tungsten nitride for advanced metallization.Appl.Phys.Lett.1996.68.1412
    [172]Y.T.Kim,C.W.Lee,S.K.Min,New method to improve the adhesion strength of tungsten thin film on silicon by W2N glue layer.Appl.Phys.Lett.1992.61.537
    [173]K.M.Yu, J.M.Jaklevic, E.E.Haller.et.al, High-temperature annealing characteristics of tungsten and tungsten nitride Schottky contacts to GaAs under different annealing conditions.J.Appl.Phys.1988.64.1284
    [174]Y.G.Shen and Y.W.Mai,composition,residual stress,and structural properties of thin tungsten nitride films deposited by reactive magnetron sputtering.J. Appl.Phys.2000.88(3).1380~1384.
    [175]张利春,高玉芝,宁宝俊,反应溅射氮化钨薄膜特性研究,半导体学报,1990,11(5).339~353
    [176]Y.G.Shen,Y.W.Mai.Effect of deposition conditions on internal stresses and microstructure of reatively sputtered tungsten nitride films.Surface and coatings technology .2000.127.239-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700